Since there is SO much literature on LCD technology and since this really is not that new of a field, I had a lot of trouble searching for something to investigate that had not already been modeled before. Instead, I ended up using preexisting equations to explore the things that I found interesting like the transmission peaks of twisted nematic field effect and how this led to LCD screens actually being a significant competitor in display technology.
My original plan was to compare LCD, PDP, and CRT screens, but the unfamiliar terminology of LCD technology made it difficult for me to dissect all of the literature in a timely enough manner to be able to explore PDP and CRT screens. My complete ineptitude in navigating Mathematica also delayed furthering my research. I am particularly disappointed that I did not get to further investigate EMI shields used in PDP screens, as there was not an extensive amount of texts focused on EMI shields, so it would have been interesting to piece together some of my own calculations or observations.
Since the twisted nematic field effect was first employed in LCD technology, research has been moving the field towards more cost effective, efficient, and quality display screens. If I were to further research this topic, I would look at comparing the TN-LCD screens with the LCD mode being used in the LCD touch screen of the iPhone. Since we are in constant contact with LCD technology in today’s world, I feel like we are prone to take for granted how LCD screens came into being, how they function, and the math that describes their existence and purpose.