When analyzing the brightness of a star, or a mode of a laser beam we observe the effects of that object. In this case we gather photons, and we use tools to gather as much radiation as possible. This data is then transmitted onto a screen to see a representation of what is actually going on. When an electric signal is sent to an oscilloscope, are we actually seeing the signal? A spectrum of light must enter through a series of optical and electrical things before being displayed, and those things can and do distort the image. These are optical filters. Sometimes this is done intentionally to block out certain frequencies, but other times the distortion is unavoidable. By understanding the convolution of electromagnetic waves one can isolate the desired data from the signal presented. I will model using Mathematica different spectra and examine how convolution and deconvolution work as means of setting up usable data.
It might be helpful to start with modeling just the concept of convolution and then move on to some practical applications.