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Abstract. This paper is intended to provide an introduction to the theory of substitution tilings.
For our purposes, tiling substitution rules are divided into two broad classes: geometric and combi-
natorial. Geometric substitution tilings include self-similar tilings such as the well-known Penrose
tilings; for this class there is a substantial body of research in the literature. Combinatorial sub-
stitutions are just beginning to be examined, and some of what we present here is new. We give
numerous examples, mention selected major results, discuss connections between the two classes of
substitutions, include current research perspectives and questions, and provide an extensive bib-
liography. Although the author attempts to represent the field as a whole, the paper is not an
exhaustive survey, and she apologizes for any important omissions.

1. Introduction

A tiling substitution rule is a rule that can be used to construct infinite tilings of Rd using a finite
number of tile types. The rule tells us how to “substitute” each tile type by a finite configuration
of tiles in a way that can be repeated, growing ever larger pieces of tiling at each stage. In the
limit, an infinite tiling of Rd is obtained.

In this paper we take the perspective that there are two major classes of tiling substitution rules:
those based on a linear expansion map and those relying instead upon a sort of “concatenation”
of tiles. The first class, which we call geometric tiling substitutions, includes self-similar tilings, of
which there are several well-known examples including the Penrose tilings. In this class a tile is
substituted by a configuration of tiles that is a linear expansion of itself, and this geometric rigidity
has permitted quite a bit of research to be done. We will note some of the fundamental results,
directing the reader to appropriate references for more detail. The second class, which we call
combinatorial tiling substitutions, is sufficiently new that it lacks even an agreed-upon definition.
In this class the substitution rule replaces a tile by some configuration of tiles that may not bear
any geometric resemblance to the original. The difficulty with such a rule comes when one wishes
to iterate it: we need to be sure that the substitution can be applied repeatedly so that all the tiles
fit together without gaps or overlaps. The examples we provide are much less well-known (in some
cases new) and are ripe for further study. The two classes are related in a subtle and interesting
way that is not yet well understood.

1.1. Some history. The study of aperiodic tilings in general, and substitution tilings specifically,
comes from the confluence of several discoveries and lines of research. Interest in the subject from
a philosophical viewpoint came to the forefront when Wang [59] asked about the decidability of
the “tiling problem”: whether a given set of prototiles can form an infinite tiling of the plane. He
tied this answer to the existence of “aperiodic prototile sets”: finite sets of tiles that can tile the
plane, but only nonperiodically. He saw that the problem is decidable if no aperiodic prototile
set exists. Berger [4] showed that the tiling problem is undecidable and was the first to find an
aperiodic prototile set. Since then many other aperiodic prototile sets have been found, including
the Penrose tiles. It turned out that one way prove a prototile set is aperiodic involves showing
that every tiling formed by the prototile set is self-similar.
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Independently, work was proceeding on one-dimensional symbolic substitution systems, a com-
bination of dynamical systems and theoretical computer science. Symbolic dynamical systems had
become of interest due to their utility in coding more complex dynamical systems, and great progress
was being made in our understanding of these systems. Substitution dynamical systems, a special
type of symbolic dynamical system, proved to be particularly receptive to analysis. Queffelec [43]
summarized what was known about the ergodic and spectral theory of substitution systems, while
a more recent survey of the state of the art appears in [42]. Substitution tilings can be seen as a
natural extension of this branch of dynamical systems; insight and proof techniques can often be
borrowed for use in the tiling situation. We will use symbolic substitutions to motivate our study
in the next section.

From the world of physics, a major breakthrough was made in 1984 by Schechtman et. al. [53]
with the discovery of a metal alloy that, by rights, should have crystalline structure since its x-ray
spectrum was diffractive. However, the diffraction pattern had five-fold rotational symmetry, which
is not allowed for ideal crystals! This type of matter has been termed “quasicrystalline”, and self-
similar tilings like the Penrose tiling, having the right combination of aperiodicity and long-range
order, were immediately recognized as valid mathematical models. Dynamical systems entered the
picture, and it was realized that the spectrum of a tiling dynamical system is closely related to the
diffraction spectrum of the solid it models [10, 25]. Thus we find several points of departure for the
study of substitution tilings and their dynamical systems.

1.2. One-dimensional symbolic substitutions. Let A be a finite set called an alphabet, whose
elements are called letters. Then A∗, the set of all finite words with elements from A, forms a
semigroup under concatenation. A symbolic substitution is any map σ : A → A∗. A symbolic
substitution can be applied to words in A∗ by concatenating the substitutions of the individual
letters. A block of the form σn(a) will be called a level-n block of type a.

Example 1. Let A = {a, b} and let σ(a) = abb and σ(b) = bab. Beginning with the letter a we get

a→ abb→ abb bab bab→ abb bab bab bab abb bab bab abb bab→ · · · ,

where we’ve added spaces to emphasize the breaks between substituted blocks. Notice that the
block lengths triple when substituted.

Example 2. Again let A = {a, b}; this time let σ(a) = ab and σ(b) = a. If we begin with a we get:

a→ ab→ ab a→ ab a ab→ ab a ab ab a→ ab a ab ab a ab a ab→ · · ·

Note that in this example block lengths are 1, 2, 3, 5, 8, 13, ... , and the reader can verify that
they will continue growing as Fibonacci numbers.

These examples illustrate the major distinction we make between substitutions. In the first
example, the length of a substituted letter is always 3 and thus the size of any level-n block must
be 3n; this is a substitution of constant length. In the second example the size of a substituted
letter depends on the letter itself, and the size of a level-n block is computed recursively; this is a
substitution of non-constant length. This is the essence of the distinction between geometric and
combinatorial tiling substitutions.

It is interesting to consider infinite sequences of the form {xk} = ...x−2x−1.x0x1x2... in AZ. Such
a sequence is said to be admitted by the substitution if every finite block of letters is contained in
some level-n block. In the theory of dynamical systems, the space of all sequences admitted by
the substitution is studied using the shift action s({xk}) = {xk+1} (basically, moving the decimal
point one unit to the right). An interested reader should see [43, 42] to find out more.
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1.3. Two-dimensional symbolic substitutions. The most straightforward generalization to
tilings of R2 (or Rd) is to use unit square tiles labeled (colored) by the alphabet A. These tilings
can be considered as sequences in Z2, and substitutions can take letters to square or rectangular
blocks of letters. We only need to ensure that all of the blocks “fit” to form a sequence without
gaps or overlaps.

To construct a constant length case substitution we can expand each colored tile by some integer
n > 1 and then subdivide into n2 (or nd) colored unit squares. A simple method for constructing
non-constant length substitutions is to take the direct product of one-dimensional substitutions of
non-constant length.

Example 3. Let A = {1, 2}, where we represent 1 as a white unit square tile and 2 as a blue unit
square tile. Suppose the length expansion is 3 and that the tiles are substituted by a three-by-three
array of tiles, colored as in Figure 1. Starting with the blue level-0 tile, level-0, level-1, level-2 and
level-3 tiles are shown in Figure 2. One sees in this example the tiling version of the rule creating
the Sierpinski carpet.

Figure 1. A substitution on two colored square tiles.

Figure 2. Level-0, level-1, level-2, and level-3 tiles.

Example 4. This time, let the alphabet be {a, b} × {a, b}; for simplicity of notation we put
(a, a) = 1, (a, b) = 2, (b, a) = 3, (b, b) = 4. The direct product of the Fibonacci substitution of
Example 2 with itself is shown in Figure 3. Using only colors without the numbers we show the

3
3

4
1

2
1
21 32 4 1 1

Figure 3. The Fibonacci direct product substitution.

level-0 through level-4 blocks of type 1 in Figure 4. The characteristic “plaid” appearance of the
direct product is evident.
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Figure 4. A few iterations of the Fibonacci direct product substitution.

Some literature on d-dimensional symbolic substitutions exists. In the non-constant length case,
direct product substitutions, with a generalization allowing randomness in the choice of substitution
from level to level, are studied in [33]. An extension of this idea, allowing substitutions with
restrictions forcing the substitutions to “fit”, are studied in [23]. In the constant-length case, a
partial survey and spectral analysis of this class from the dynamical systems viewpoint appears
in [13]. For those wishing to experiment with various substitutions of both constant and non-
constant length, the author maintains a MATLAB freeware computer program that allows the user
to generate these tilings of Z2 and manipulate them in several ways [15].

1.4. Tilings of Rd. Let us introduce some terminology that will be useful throughout the paper. A
tile is a set t ⊂ Rd that is the closure of its interior. We will always assume that tiles are bounded; in
the literature it is frequently assumed that tiles are connected or even homeomorphic to topological
balls. In fact it is often required that the tiles be polygonal, but in substitution tiling theory tiles
with fractal boundary occur naturally. When it is desirable to distinguish between congruent tiles
they can be labeled (also called marked or colored). Two tiles are considered equivalent if they differ
by a rigid motion and carry the same label. A prototile set is a finite set P of inequivalent tiles.
Given a prototile set P, a tiling of Rd is a set T of tiles, each equivalent to a tile from P, such that

(1) T covers Rd: Rd =
⋃
{t : t ∈ T } , and

(2) T packs Rd: distinct tiles have non-intersecting interiors.
A T -patch is a finite union of tiles with nonintersecting interiors covering a connected set; two

patches are equivalent if there is a rigid motion between them that matches up equivalent tiles. A
tiling is said to be of finite local complexity (FLC) (also known as having a finite number of local
patterns) if there are only finitely many two-tile T -patches up to equivalence. A tiling is called
repetitive (also called almost periodic or the local isomorphism property) if for any T -patch P there
is an R > 0 such that in every ball of radius R there is a patch equivalent to P . In dynamical
systems theory the most work has been done on repetitive tilings with finite local complexity.

1.5. Infinite tilings from substitutions; tiling spaces and dynamical systems. Given a
tiling substitution, it is possible to construct infinite tilings and tiling spaces from that substitution
in a few different ways. (This is also true for symbolic substitutions). Our description will be
necessarily imprecise as different substitutions can require different definitions of some of the terms;
we give the main ideas here and refer the reader to sources such as [45, 48], and [56] to get more
details.

One way to get an infinite tiling is to begin with some initial block or tile and substitute ad
infinitum. In many cases a limiting sequence or tiling T0 will exist. Sometimes it will cover only
a half-line, quarter-plane, or some other unbounded region of space, and sometimes it will cover
the entire line or plane. A less constructive method is to define a tiling T as admitted by the
substitution if every finite configuration of tiles in T is equivalent to a configuration found inside a
level-n tile, for some n. This generalizes the notion of admitted sequences from the one-dimensional
case.
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The tiling space associated to a substitution is the set of all tilings admitted by that substitution.
Another way to obtain this space is to take the closure (in a suitable metric) of all rigid motions
of a limiting tiling T0. In either case, a point in the tiling space X is an infinite tiling, and any
nontrivial rigid motion of that tiling is considered a different point in the tiling space.

1.6. Outline of the paper. Substitutions of constant length have a natural generalization to
tilings in higher dimensions, which we introduce in Section 2. These generalizations, which include
the well-studied self-similar tilings, rely upon the use of linear expansion maps and are therefore
rigidly geometric. We present examples in varying degrees of generality and include a selection of
the major results in the field.

Extending substitutions of non-constant length to higher dimensions seems to be more difficult,
and is the topic of Section 3. To even define what this class contains has been problematic and
there is not yet a consensus on the subject. For lack of existing terminology we have decided to call
this type of substitution combinatorial as tiles are combined to create the substitutions without
any geometric restriction save that they can be iterated without gaps or overlaps, and because in
certain cases it is possible to define them in terms of their graph-theoretic structure.

In many cases one can transform combinatorial tiling substitutions into geometric ones through
a limit process. In Section 4, we will discuss how to do this and what the effects are to the extent
that they are known. We conclude the paper by discussing several of the different ways substitution
tilings can be studied, and what sorts of questions are of interest.

2. Geometric tiling substitutions

Although the idea had been around for several years, self-similar tilings of the plane were given a
formal definition and introduced to the wider public by Thurston in a series of four AMS Colloquium
lectures, with lecture notes appearing thereafter [58]. Throughout the literature one finds varying
degrees of generality and some commonly used restrictions. We make an effort to give precise
definitions here, adding remarks which point out some of the differences in usage and in terminology.

2.1. Self-similar tilings: proper inflate-and-subdivide rules. For the moment we assume
that the only rigid motions allowed for equivalence of tiles are translations; this follows [58] and
[56]. We give the definitions as they appear in [56], which includes that of [58] as a special case.

Let φ : Rd → Rd be a linear transformation that is expanding in the sense that all of its
eigenvalues are greater than one in modulus. A tiling T is called φ-subdividing if

(1) for each tile t ∈ T , φ(t) is a union of T -tiles, and
(2) t and t′ are equivalent tiles if and only if φ(t) and φ(t′) form equivalent patches of tiles in
T .

A tiling T will be called self-affine with expansion map φ if it is φ-subdividing, repetitive, and
has finite local complexity. If φ is a similarity the tiling will be called self-similar. For self-similar
tilings of R or R2 ∼= C there is an expansion constant λ for which φ(z) = λz.

The rule taking t ∈ T to the union of tiles in φ(t) is called an inflate-and-subdivide rule because
it inflates using the expanding map φ and then decomposes the image into the union of tiles on the
original scale. If T is φ-subdividing, then it will be invariant under this rule, therefore we show the
inflate-and-subdivide rule rather than the tiling itself. The rule given in Figure 1 is an inflate-and-
subdivide rule with φ(z) = 3z. However, the rule given in Figure 3 is not an inflate-and-subdivide
rule.

Example 5. The “L-triomino” or “chair” substitution uses four prototiles, each being an L formed
by three unit squares. We have chosen to color the prototiles since they are inequivalent up to
translation. The expansion map is φ(z) = 2z and in Figure 5 we show the substitution of the four
prototiles.
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Figure 5. The “chair” or “L-triomino” substitution.

This geometric substitution can be iterated simply by repeated application of φ followed by the
appropriate subdivision. Parallel to the symbolic case, we call a tile that has been inflated and
subdivided n times a level-n tile. In Figure 6 we show level-n tiles for n = 2, 3, and 4.

Figure 6. Level-2, level-3, and level-4 tiles.

2.2. A few important results. One of the earliest results was a characterization of the expansion
constant λ ∈ C of a self-similar tiling of C.

Theorem 2.1. (Thurston [58]) If complex number λ is the expansion constant for some self-similar
tiling, then it is an algebraic integer which is strictly larger than all its Galois conjugates other than
its complex conjugate.

In the study of substitutions, from one-dimensional symbolic substitutions to very general tiling
substitutions, the substitution matrix is an indispensable tool. (This matrix has also been called
the “transition”, “composition”, “subdivision”, or even “abelianization” matrix). Suppose that the
prototile set (or alphabet) has m elements labeled by {1, 2, ...,m} . The substitution matrix M is
the m×m matrix with entries given by

(1) Mij = the number of tiles of type i in the substitution of the tile of type j.

For example, the substitution in Example 3 has substitution matrix M =
(

9 1
0 8

)
when we

label a = 1 and b = 2. If an initial configuration of tiles has n white tiles and m blue tiles, then
M [n m]T is the number of white and blue tiles after one application of the substitution.

Since the substitution matrix is always an integer matrix with nonnegative entries, Perron-
Frobenius theory is relevant (see for example [28, 56]). The results we need require M to be
irreducible: for every i, j ∈ {1, 2, ...,m} there exists an n such that (Mn)ij > 0. Among other
things, the Perron-Frobenius theorem states that if M is irreducible, then the largest eigenvalue
will be a positive real number that is larger in modulus than any of the other eigenvalues of the
matrix. This eigenvalue is unique, has multiplicity one, and is called the Perron eigenvalue of the
matrix.
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Primitivity, a special case of irreducibility, is particularly important. A matrix M is primitive
if there is an n > 0 such that Mn has strictly positive entries. Primitivity of M means if one
substitutes any tile (or letter) a fixed number of times, one will see all of the other tiles (or letters).
This is a relatively strong property, and one that is almost always assumed in the literature. All
of the substitutions in the paper are primitive except Examples 3 and 19. There are substitutions
that are irreducible but not primitive: for example the symbolic substitution a→ bb, b→ aa. The
author is not aware of any systematic analysis of such examples.

A proof of the following theorem can be found in [39].

Theorem 2.2. An FLC φ-subdividing tiling is repetitive if and only if its substitution matrix is
primitive.

Solomyak’s papers [56] and [57] give several other key results for the dynamical systems of self-
similar or self-affine tilings. The following is stated as a corollary to the Perron-Frobenius theorem.

Theorem 2.3. (Solomyak [56]) If M is primitive, the Perron eigenvalue of M is the volume
expansion |det φ|. The Perron left eigenvector gives the relative volumes of the prototiles.

An algebraic integer is a complex Pisot number if all of its algebraic conjugates (except its
complex conjugate) are smaller than one in modulus. Whether or not the expansion constant λ
is a Pisot number is especially important from a dynamical point of view. In dimensions one and
two, Solomyak [56] has shown that a self-similar tiling dynamical system is not weakly mixing if
and only if its expansion constant is a complex Pisot number. We will see this number-theoretic
property having other effects in Sections 3 and 4.

So far, the results in this section have depended only on the substitution matrix and expansion
constant, and not the geometry of the substitution. The final theorem in this section uses the notion
of “matching rules”, which are fundamentally geometric. Roughly speaking, a set of matching rules
determine which patches are allowed in a tiling. A simple yet classic example is the Penrose tiling
with marked rhombs, which we will encounter in Example 8. The markings give matching rules
that “enforce” the substitution in the sense that any tiling of the plane constructed following
the matching rules must be admitted by the Penrose substitution. Goodman-Strauss was able to
generalize this result to most geometric tiling substitutions:

Theorem 2.4. (Goodman-Strauss [21]) Every (geometric) substitution tiling of Rd, d > 1 can be
enforced with finite matching rules, subject to a mild condition: We require that tiles admit a set
of “hereditary edges” such that the substitution tiling is “sibling edge-to-edge”.

We leave a discussion of the particulars to [21] and note only that the “sibling edge-to-edge”
condition is mild enough to encompass most of the known examples.

2.3. Geometric generalization: infinite rotations and sizes. In the previous sections the
only rigid motions allowed for tile equivalence were translations. However, there are natural tiling
substitutions that require relaxing this to allow rotations.

Example 6. The “pinwheel” substitution rule acts on right triangles of side lengths 1, 2, and
√

5,
inflating them by a factor of

√
5 and subdividing into five triangles as shown in Figure 7.

Figure 7. The pinwheel substitution

Radin introduces pinwheel tilings in [44], attributing them to unpublished work of John H.
Conway. Radin proves that the tiles appear in an infinite number of orientations that are uniformly
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distributed mod 2π, and calls the tiling space “statistically round” because it is invariant under
rotations of infinite order. He also establishes matching rules for the pinwheel substitution, giving
us the first amazing example where local matching rules produce infinite rotations!

Figure 8. A level-3 tile for the pinwheel inflation.

Example 7. Sadun [52] comes up with an interesting twist on the previous example: the “gener-
alized pinwheel” tilings. Instead of requiring that the tiles be isometric to members of some finite
prototile set, he requires only that they be equivalent up to similarity. The subdivision rules are
quite straightforward but some choices arise for the inflation portion and we do not attempt to
explain those here. At the first level, one takes a right triangle with side lengths a, b and c and
subdivides it into 5 similar triangles as in Figure 9. The subdivision at the next stage takes place

α
a

b

c

Figure 9. The first decomposition in Sadun’s pinwheel generalization.

only on the largest of the triangles. One can continue subdividing indefinitely; for the appropriate
inflation at any stage and for precision of the results mentioned below we refer the reader to [52].

All salient properties of a tiling admitted by the substitution depend on the angle α. For the
original pinwheel tiling α = sin−1(1/

√
5), and that is one of the angles for which the tiling has

finite local complexity, but the tiles appear in an infinite number of orientations. For other values
of α the tiles will only appear in a finite number of sizes. There is only one value, α = π/4, for
which the tiles appear in both a finite number of sizes and a finite number of orientations. Figure
10 shows a few subdivisions of this case.

Figure 10. A special case of the generalized pinwheel tilings: α = π/4.



A PRIMER OF SUBSTITUTION TILINGS OF THE EUCLIDEAN PLANE 9

2.4. Geometric generalization: pseudo-self-similar tilings. A close cousin of the self-similar
tiling is the pseudo-self-similar tiling, which is generated by a variant of the inflate-and-subdivide
rule. Tiles are still inflated and then replaced by tiles from the original scale, but these may stick
out of or not completely cover the inflated tile, so the substitution rule is “imperfect”. We will
show two well-known substitutions in this section, both of which can be converted into proper
inflate-and-subdivide rules in different ways.

Example 8. The Penrose inflation using marked rhombs is shown in Figure 11. When the reader
attempts to inflate and subdivide a second time, she will notice that the subdivisions of adjacent
tiles overlap. This is not a contradiction, however, because the overlapping tiles are equal and will
therefore be considered the same tile.

Figure 11. The “Penrose inflation”: an imperfect substitution rule.

Figure 12. A few iterations of the Penrose inflation.

Penrose tilings appear in many equivalent forms, with alternative tile shapes such as triangles
or the famous “kites and darts”. The Scientific American article by Gardner [19] introduced the
Penrose tilings and many of their interesting properties to the general public. In Chapter 10 of
[22], the Penrose tiles are studied as kites and darts and in other forms. It is possible to slice
the Penrose rhombs in half, creating triangles (known as Robinson triangles) on which a proper
inflate-and-subdivide rule can be defined; we show this in Figure 13. Chapter 6 of [54] gives a
detailed analysis of Penrose tilings and includes the Robinson triangles.

Penrose tilings have a number of interesting properties, most of which can be found in other
tilings but were first observed in the Penrose tilings. We mention a few of the highlights and leave
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Figure 13. The triangles version of the inflate-and-subdivide rule.

the details to the references. There are (at least!) three ways, other than substitution, to generate
Penrose tilings. One, which we have already discussed, is via matching rules: if an infinite tiling
is constructed from Penrose tiles with the requirement that adjacent tiles have matching arrows
(both in number and direction), this tiling will be a Penrose tiling. Amazingly, this local activity
of matching the arrows forces the global property of being generated by a substitution!

Two other methods for generating Penrose tilings are the multigrid method and the projection
method. Since both methods rely on lattices, they can be used to prove that the nonperiodicity of
the Penrose tilings is a tightly controlled form of disorder. The multigrid method was discovered
by DeBruijn [9]. In this method one superimposes five grids of lines to create a “pentagrid”;
every pentagrid is dual to a Penrose tiling. This method is used by E. A. Robinson, Jr. [47] to
understand the Penrose tilings as a dynamical system. A nice description of the projection method
appears in [54], p. 195-196. In this method a copy of Rd is embedded in Rd+n, and some lattice
L ⊂ Rd+n is chosen. Points from L are projected onto the copy of Rd to form a tiling of Rd.
Projection tilings have been studied extensively and are only sometimes obtainable by methods of
substitution. A characterization of the intersection is given in a certain case in [24]. Point sets
generated by generalized projection methods are called “model sets” and are of great interest in
mathematics and physics, and their spectrum is the subject of intense study (see e.g. [29, 31]).

If the reader were to experiment with a large set of Penrose rhombs, he would quickly discover
that it is difficult to tile a large region without disobeying the matching rules. Indeed, almost all
finite configurations of Penrose rhombs, no matter how large, cannot be extended to infinite tilings
[35]! Thus the fact that an infinite Penrose tiling exists at all is a major result, and it can be proved
using the presence of the inflation rule.

Example 9. The “binary tilings” (see [54]) are generated by the substitution rule shown in Figure
14 using the unmarked Penrose tiles. The volumes expand linearly by a factor of (5 +

√
5)/2.

This substitution is interesting from the dynamical viewpoint as it produces a weakly mixing tiling
dynamical system. The fact that it is weakly mixing means that it has a level of disorder not
present in the Penrose tilings, despite the fact that the relative frequencies of thick to thin rhombs
is the same in both tilings! Weak mixing is evident in the diffraction spectrum, which is pictured
in [54] and is analyzed in a few papers including [20].

binarynat.nb 1

binarynat.nb 1

binarynat.nb 1

binarynat.nb 1

Figure 14. Another imperfect substitution uses the unmarked Penrose rhombs.

One can “redraw” the tiles of the binary tiling in such a way that the substitution rule becomes
a perfect inflate-and-subdivide rule that gives rise to a self-similar tiling of the plane. The method
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Out[55]=

binarynat.nb 1

binarynat.nb 1

Figure 15. How to iterate the binary substitution.

is to take the limit as n goes to infinity of the support of the level-n tiles divided by the nth power
of the expansion constant (see Figure 16, courtesy of E. Arthur Robinson, Jr.). A general version of
this process has been shown to work for all pseudo-self-similar tilings of the plane [41]. This result
is extended to tilings of Rd in [55], provided the tiles appear in a finite number of orientations.
In Section 4 we will use a similar process to transform combinatorial substitutions into geometric
ones, with some unexpected results.

20 E. ARTHUR ROBINSON, JR.

........

Figure 13. Iterating the boundary in the binary tiling decompo-
sition to obtain a perfect decomposition with a fractal boundary.

Theorem 5.26. (Priebe and Solomyak [PS01]) Suppose XS ⊆ XT is a imper-
fect substitution tiling dynamical system with d = 2. Then there is new prototile
set T ′ and a perfect substitution S′ on T ′ so that the substitution tiling dynamical
system XS′ ⊆ XT ′ and XS are topologically conjugate via a local mapping (i.e.,
corresponding tilings are mutually locally derivable).

This theorem is proved using a construction called “iterating the boundary”
which often results in producing fractal tiles. In Figure 13 this idea is illustrated
in the case of the binary tiling system of Example 4.5

Remark 5.27. One way in which tiling dynamical systems differ from discrete
symbolic dynamical systems is the following. The Curtis-Lyndon-Hedlund Theo-
rem [Hed69] says that any factor mapping between discrete symbolic dynamical
systems is implemented by a sliding block code. In tiling dynamical systems the
equivalent question is whether every topological conjugacy is implemented by a
local mapping. i.e., is the converse to Lemma 5.19 true? A negative answer was
provided by Petersen [Pet99] and Radin and Sadun [RS01].

5.5. Incongruent tilings. In the case that x is a periodic tiling one has
O(x) = O(x). In other words there is a single orbit. It follows that, up to translation
or congruence, there is just a single tiling.

Theorem 5.28. If x is a properly repetitive tiling then the number of orbits
in O(x) is uncountable. There are uncountably many incongruent tilings in a local
isomorphism class.

This follows directly form the next lemma, which illustrates the power of simple
topological ideas in this subject.

Proposition 5.29. Suppose (X, T ) is a minimal dynamical system with T an
action of Rd. Let Ω ⊆ X be such that X can be expressed as a disjoint union of
orbits X = ∪x∈ΩO(x). Then either card(Ω) = 1 or card(Ω) > ℵ0.

Proof. If Ω is finite then card(Ω) = 1 since (X, T ) is minimal. Thus we
suppose Ω is infinite.

For x ∈ Ω, write x in terms of its tiles x = {D1, D2, . . . }. Let Vi(x) = {T tx :
0 ∈ T tDi}. Then O(x) = ∪∞

i=1Vi(x) is a countable decomposition of O(x) into
nowhere dense sets (i.e., they have an empty interior). Thus X =

⋃
x∈Ω

⋃∞
i=1 Vi(x).

Figure 16. Obtaining fractal binary tiles.

3. Combinatorial tiling substitutions

The self-similar tilings and their close relatives in the previous section come from substitution
rules that have one thing in common: a single similarity (or expanding linear map, in the self-affine
case) governs the inflation of all of the tiles. Now we consider substitutions for which a tile and its
replacement may be geometrically unrelated, or for which there are several linear maps governing
the tile inflations. There is no unified definition for this class of substitutions. Attempts to define a
tiling substitution based on the dual graph of the tiling have been made [38, 12, 1, 11], and we call
this method “constructive”. However, there are perfectly reasonable tiling substitutions for which
combinatorial information is insufficient to define the substitution rules. Substitutions of this type
we call “non-constructive”. Leaving a formal presentation of the definitions to the references, we
simply present ideas and some examples.
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3.1. Constructive combinatorial tiling substitutions. In this type of substitution, level-n
tiles can be constructed using only the information about adjacencies between tiles, making it
possible to iterate the substitution using only local information.

For this discussion, we must require that the tiles in a tiling are topological balls. Such a tiling
of R2 makes a drawing of a planar graph: there is a vertex wherever three or more tiles meet, an
edge wherever exactly two tiles meet, and the tiles themselves are the facets. The elements of this
graph can be labeled according to the tile and adjacency types they represent; we may choose a
labeling scheme that provides as much or as little information about the surrounding tiles as we
wish. Any planar tiling has a dual graph: vertices of the dual graph are tiles of the tiling, there is an
edge between two vertices if the corresponding tiles are adjacent, and facets correspong to vertices
in the tiling. The elements of a dual graph inherit the labels of their dual counterparts. Part of
a tiling and its dual graph are shown in Figure 17, using the conventions that numbers represent
both the label and the vertex of the graph, and that the edge and facet labels are suppressed.

3

41

1
1 1

1
1

3

2

2

23

3

4

Figure 17. Dually situated tiling and graph.

The dual graph is a natural object on which to define a substitution, by analogy with one-
dimensional symbolic substitutions. The labeled vertices are the letters of an alphabet that corre-
sponds to our prototile set. Any rule that replaces a vertex with a finite graph might correspond to
a substitution rule for a prototile, provided the geometry of the tiles allows it. A difficulty is that
two vertices (tiles) may be adjacent in many different ways, so to make the dual graph “see” this,
we keep track of the adjacency types in our edge and facet labels. Constructive combinatorial sub-
stitutions specify exactly how the substituted graphs of two adjacent elements should be attached.
The next example, taken from [12], will provide some intuition.

Example 10. We obtain a direct product variation (DPV) substitution by rearranging some of the
tiles in the Fibonacci substitution of Figure 3 to break up the direct product structure. Here we
have carefully rearranged the tiles in the substitution of the type 1 tile so that the substitution can
be iterated without inconsistency. We show the result in Figure 18, along with the induced graph
substitution.

2

14
1
231 31 2

4
1
2

3

1 2 3 4 1
24

3 1
1 3

1

Figure 18. The vertices of the dual graph inherit the substitution.

To obtain the level-n block, one simply concatenates the level-(n − 1) blocks in the “obvious”
manner as shown in Figure 19, matching sides that have the same length in the order prescribed
by Figure 18. Since the side lengths of the level-(n − 1) blocks are Fibonacci numbers, the fit is
guaranteed at each stage. Note that the “plaid” appearance of the direct product (Figure 4) has
disappeared.

But what if you want to substitute a pair of adjacent tiles within a level-n block? You cannot do
it consistently without knowing the larger context of the adjacency, that is, the tiles that surround
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Figure 19. Iterating of the Fibonacci DPV on the tile of type 1.

them in the tiling. For example, consider two horizontally adjacent tiles of type 1. That adjacency
appears twice in the level-3 tile of type 1 and we have circled them on the left side of Figure
20; what happens under substitution is shown on the right of the same figure. For this graph
substitution, the problem can be handled by relabeling the edges and facets of the graph in terms
of the immediate configuration of tiles the edge or facet is contained in.

1

3
4 24

3

1

12

1

3 2

1

2

11 3

41

1
2

2

4
21

12

1

3

3

1

1
2 2

4

1

1
3

2

1
3

1

1

1 3

2

4

4

1

3

2

3

3
4 2

1

1

3 1
24 1

2

3

3

31

4

1

2

2

13
31

3 1
24

1

1

2
31

3
4 2

4

1

Figure 20. The substitution of an adjacent pair of tiles depends on its context.

The basic idea of a constructive combinatorial substitution for tilings as it appears in [12] and
in a similar form in [1] is this. Given a labeled vertex set V representing the prototile types, a
map from V to the set of nonempty labeled graphs on V is the basis for the substitution rule. The
edges and facets of these graphs are labeled to give information about the types of adjacencies they
represent in a tiling. The substitution rule also specifies how to substitute the labeled edges and
facets so that we know how to connect the vertex substitutions contained in certain labeled graphs.
(The need to specify graph substitutions on facets and not just edges is illustrated in an example
in [12]). Defining a tiling substitution rule this way is quite tricky since most labeled graphs do not
represent the dual graph of a tiling. This interplay between combinatorics and geometry is where
the technicalities come in to the formal definitions in the literature.

Example 11. The tiling substitution of Figure 21, introduced in [1], is based on a variation of
the one-dimensional “Rauzy substitution” σ(1) = 1 2, σ(2) = 3, σ(3) = 1. Figure 21 is obviously

11 1
2 2 3 3

Figure 21. A two-dimensional substitution based on the Rauzy one-dimensional substitution.

not enough information to iterate the substitution, so we specify how to substitute the “important
adjacencies” in Figure 22. This is enough [1]: there are no ambiguities when substituting other
adjacencies, and facet substitutions do not include any new information. We show a few iterates of
the tile of type 1 in Figure 23, starting with the level-2 tile of type 1. The fact that this substitution
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3
1

1
2

1
2

3 1
2 1
2

1
1

3 1
1
1
2 1

1
2

3
1
2

2 1

Figure 22. How to substitute important adjacencies for the Rauzy substitution.

rule can be extended to an infinite tiling of the plane is proved using noncombinatorial methods
in [1]; a combinatorial proof of existence would be welcomed. The Rauzy substitution falls into a
class of substitutions that encode “stepped surfaces”; see [11] for more results and references about
this class.

1
2

3
1

1
2

1
2

3

1
2

3
1

1
2

3
1

1
2

1
2

3
1

1
2

1
2

3 1
2

3
1

1
2

3
1

1
2

1
2

3
1
2

3
1

1
2

1
2

3

1
2

3
1

Figure 23. A few iterates of the Rauzy two-dimensional substitution.

3.2. Non-constructive tiling substitutions. When trying to make up new examples of combi-
natorial tiling substitutions it is easy to create examples that fail to be constructive. The problem
arises in the substitution of adjacencies: it may happen that no finite label set can be chosen to
describe all adjacencies sufficiently to know how to substitute them. There is evidence to suggest
that this sort of example can arise when the constant which best approximates the linear growth
of blocks is not a Pisot number. The author is not aware of any formal definition containing these
examples and so proposes the following definition, which works directly with the tiling and does
not involve dual graphs.

Definition 3.1. A (non-constructive) tiling substitution on a finite prototile set P is a set of
nonempty, connected patches S = {Sn(p) : p ∈ P and n ∈ 1, 2, ...} satisfying the following:

(1) For each prototile p ∈ P and tile t ∈ S1(p), and for each integer n ∈ 2, 3, ..., there are rigid
motions g(p, n, t) : Rd → Rd such that Sn(p) =

⋃
t∈S1(p)

g(p, n, t)
(
Sn−1(t)

)
, where

(2) for any t 6= t′ in S1(p), the patches g(p, n, t)
(
Sn−1(t)

)
and g(p, n, t′)

(
Sn−1(t′)

)
intersect at

most along their boundaries.

We say a tiling T is admitted by the substitution S if every patch in T appears as a subpatch of
some element of S. This very general definition is satisfied by every substitution appearing in this
paper except the rhombus version of the Penrose substitution and those generalized pinwheel tilings
that do not allow a finite number of tile sizes. Examination of Figures 11 and 12 will convince the
reader that condition (2) fails: the level-(n-1) tiles can overlap by entire tiles.

The Rauzy substitution of Example 11 has a particularly efficient representation by this defi-
nition. The patches S1(p) are given to the right of the arrows in Figure 21, with all lower right
corners at the origin. Now, Sn(2) = Sn−1(3) and Sn(3) = Sn−1(1), so g(2, n, 3) and g(3, n, 1) are
the identity map. We find Sn(1) = Sn−1(1) ∪ g(1, n, 2)

(
Sn−1(2)

)
, so g(1, n, 1) is the identity map
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and all we have left to figure out is the formula for g(1, n, 2). It turns out that g(1, n, 2) is transla-
tion by a vector ~vn that can be computed recursively. Let ~v0 = (0, 0), ~v1 = (0, 1) and ~v2 = (−1, 0);
for n ≥ 3 we have that ~vn = ~vn−3 − ~vn−2.

The Fibonacci DPV of Example 10 also has a relatively simple formuation in terms of Definition
3.1. The side lengths of level-n tiles are given recursively, and the placement of the level-(n − 1)
tiles to create level-n tiles depends only on these side lengths. Thus the translations g(p, n, t) are
computable recursively as well. The next example is also a DPV, but it cannot be defined in terms
of dual graphs and is non-constructive. We encourage the reader to think about how to write up
Definition 3.1 in this case.

Example 12. Consider a DPV arising from a one-dimensional substitution a→ abbb, b→ a. From
the direct product of this substitution with itself, we choose only to rearrange the substitution of
the type-1 tile as in Figure 24.

4

24

4

4

3

4

4

4 4
4

2

2

2
3

31

1
2

3

2

23 33 1
4

11

Figure 24. A non-Pisot direct product variation substitution.

The substitution matrix of this one-dimensional substitution has Perron eigenvalue θ = (1 +√
13/2), which is not a Pisot number: its algebraic conjugate θ2 = (1−

√
13/2) is larger than one

in modulus. Using analysis similar to what we will see in Section 4.1, we find that constants times
θn are the best approximation to the lengths of level-n blocks. The reader can jump ahead to the
left side of Figure 31 to see the effect of θ being non-Pisot on the substitution. There we find an
adjacent pair of tiles (circled in red) which, under substitution, go to disjoint level-1 tiles (circled
in green). It is possible to show that for any large R > 0 there is a level-n tile containing adjacent
tiles t1 and t2 such that the distance between the substitutions of t1 and t2 in the level-(n+ 1) tile
is greater than R. The method of proof relies on the fact that θ is non-Pisot and the result in [14].

To illustrate that non-constructive tiling substitutions can have non-square tiles, to show an
interesting connection to “fault lines” (see Section 4.3), and for its entertainment value, we include
an unpublished substitution discovered by the author in 2002.

Example 13. This substitution uses eight prototiles, shown to the left of the arrows in Figure 25.
The Perron eigenvalue of the substitution matrix is the same non-Pisot number as in the previous

Figure 25. A substitution similar to one in [12].

example. Again an argument can be made to show that there are always adjacencies that pull
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apart under the substitution, no matter how well we try to label them. The left side of Figure 32
shows four iterations of the square formed by two red triangles.

4. Connections between geometric and combinatorial substitutions

In Example 9, we saw an improper substitution that could be “fixed” by redrawing the tile
boundaries with the replace-and-rescale method. In this method, the new tile boundary is the
limit of the boundaries of the level-n tiles, rescaled by the nth power of the inflation factor. In
Example 9, the result was a set of fractal prototiles satisfying a proper inflate-and-subdivide rule.
It turns out that this process can be used to create prototile sets for self-similar tilings in the case
of some combinatorial substitutions as well. We begin with the one-dimensional case, which is
well-understood.

4.1. One-dimensional case. Given a symbolic substitution of non-constant length, it is easy to
create an inflate-and-subdivide rule on labeled intervals (tiles) that has the same combinatorics
as the symbolic substitution. The expansion constant is the Perron eigenvalue of the substitution
matrix and the tile lengths are given by the Perron eigenvector. We illustrate with the Fibonacci
substitution in a way that looks ahead to the higher-dimensional case.

Example 14. We introduce some geometry by thinking of two unit length prototiles represented
by different colors in Figure 26. The reader can check that the level-n tiles will have lengths

Figure 26. Fibonacci substitution with unit length tiles

given by the entries of (1, 1)Mn, where M is the substitution matrix
[

1 1
1 0

]
. This matrix has

eigenvalues given by
1±
√

5
2

: the golden mean γ and its conjugate 1− γ = −1/γ. Let ~v1 = (γ, 1)

and ~v2 = (1,−γ) denote the associated left eigenvectors. There are constants k1 and k2 so that
(1, 1) = k1~v1 + k2~v2, which gives us the vector of level-n tile lengths:

(2) (1, 1)Mn = γnk1~v1 + (−1/γ)nk2~v2

The lengths of the intervals for our self-similar tiling are the entries of lim
n→∞

γ−n(1, 1)Mn = k1~v1.
The length of the type-a tile is k1γ and the length of the type-b tile is k1. These lengths form an
eigenvector for M , so there exists an inflate-and-subdivide rule, which we have shown in Figure 27.

Figure 27. Fibonacci inflate-and-subdivide rule

Notes: (1) This process works on any substitution on m letters provided that the vector (1, 1, ..., 1)
lies in the span of the left eigenvectors of the substitution matrix of the substitution. It works
trivially on constant length substitutions since (1, 1, ..., 1), the vector of unit tile lengths, already
forms a Perron eigenvector for the substitution matrix.

(2) In the Fibonacci example, since γ is a Pisot number (its conjugate −1/γ is smaller than one
in modulus), the higher the inflation the less important the second term of Equation 2 becomes.
Thus the lengths of the level-n tiles of the inflate-and-subdivide rule are asymptotically close to
the lengths of the non-constant length substitution, and therefore approximately integers! The
situation is dramatically different, of course, if any of the secondary eigenvalues are strictly greater
than one in modulus.
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4.2. Two-dimensional case. The reader should not be too surprised to discover that this process
will work for direct product substitutions, such as Example 4, and their variations, such as Examples
10 and 12. The level-n blocks are rectangular and have side lengths given by the lengths of the one-
dimensional substitution. Rescaling by the expansion factor gives us rectangular tiles whose side
lengths are determined by the Perron eigenvector as before. Thus, if the original one-dimensional
substitutions have a proper inflate-and-subdivide rule, so will any DPVs associated with them.
Still, it is instructive to consider the two-dimensional replace-and-rescale method as it applies in
this simple case.

Example 15. Consider the Fibonacci DPV substitution of Example 10. There are four tile types

and the substitution matrix is M =


1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 . If there is a proper inflate-and-subdivide rule

corresponding to our substitution, it must have the same substitution matrix. This tells us that
the volume expansion of the rule must be the Perron eigenvalue, which in this case is γ2, the square
of the golden mean. (The other eigenvalues are 1, 1, and 1/γ2.) The level-n tiles of the DPV
substitution are supported on rectangles with side lengths given by either the nth or the (n− 1)st
Fibonacci numbers. We rescale the volumes by 1/γ2n to obtain prototiles for our self-similar tiling.

In some cases there is a “right” way to see this process. We must find a linear map φ : R2 → R2

that expands with the Perron eigenvalue of the substitution matrix M and approximates the growth
of the level-n tiles with increasing precision as n grows. Whether such a map exists, and how to

find it, is unclear in general, but in this example φ is given by the matrix
[
γ 0
0 γ

]
. Denoting the

support of the level-n tile of type t as supp(Sn(t)), we can find the support of the prototile t′ for
the inflate-and-subdivide rule that corresponds to t by setting

t′ = lim
n→∞

φ−n(supp(Sn(t)).

In Figure 28 we compare level-5 tiles from the DPV (left) and the self-similar tiling (right).

Figure 28. Comparing the DPV with the SST of Example 15.

Example 16. The self-similar tiling associated with the Rauzy two-dimensional substitution of
Example 11 has as its volume expansion the largest root of the polynomial x3−x2−1. One can show

that the expanding map is φ =
[

1 1
1 0

]
. The three tile types obtained by the replace-and-rescale

method are shown in Figure 29, compared with a large iteration of the substituton.
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Figure 29. A comparison of an iterate with the limiting self-similar tiles.

4.3. Curious examples. The replace-and-rescale method can produce intriguing results, espe-
cially if the substitution is not constructive or not primitive. We look at the non-constructive case
in Examples 17 and 18 and discover that the associated geometric substitution tilings may lose
local finiteness. In Example 19 we consider the non-primitive case to see how a lack of primitivity
can impact the geometric substitution; in this case an attempt to “fix” the situation yields new
tiling substitutions that fail to have the expected relationship to one another.

Example 17. Applying the replace-and-rescale method to the substitution in Example 12 produces
the inflate-and-subdivide rule of Figure 30. It is proved in [14] that any tiling admitted by this

Figure 30. The inflate-and-subdivide rule associated with Example 12.

inflate-and-subdivide rule does not have finite local complexity since there are two tiles that meet
in infinitely many different ways. (Examination of the tiling on the right of Figure 31 may convince
the reader that this is plausible). This lack of local finiteness means that the dynamical results
found in [56], most notably that the system should be weakly mixing, cannot be directly applied.

For self-similar tilings the loss of finite local complexity can only happen along arbitrarily long
line segments composed of tile edges [27, 14]. As you travel along such a segment, a discrepancy in
the number of short tile edges from one side of the line to the other appears; on longer segments this
discrepancy increases as more and more short edges pile up on one side than the other. Because the
tile edge lengths are not rationally related, this means that we must keep seeing new adjacencies
as the discrepancy grows. In the limit one will see infinite fault lines along which tiles may slide
across one another with arbitrary offsets.

The growth of these discrepancies is made possible by the fact that the expansion constant’s
algebraic conjugate is greater than one in modulus. This is also responsible for the fact that
original DPV has adjacencies that are ripped apart when substituted, as shown in the left of Figure
31.

Example 18. As in the previous example, the substitution of Example 13 gives rise to a self-similar
tiling that does not have finite local complexity. In the previous example, fault lines could occur
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Figure 31. Three iterates of the tile of type 1, with a loss of FLC on the right.

both horizontally and vertically. In this example, fault lines can occur horizontally, vertically, and
diagonally, as one can see from the right side of Figure 32. The author believes there may be
examples that allow fault lines in more than three distinct directions.trinp-alt2.nb 1trinp.nb 1

Figure 32. Four iterations of a square formed by two red triangles. Fault lines
occur in three directions in the tiling on the right.

Example 19. A famous one-dimensional dynamical system is given by the Chacon cut-and-stack
construction, which provided the first example of a weakly but not strongly mixing system (see
[42], p. 133 for a synopsis of the results in the one-dimensional case). The cut-and-stack ergodic
measure-preserving system can be recoded by the symbolic substitution a → aaba, b → b, and
Figure 33 shows a DPV substitution based on this.
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Figure 33. A Chacon DPV substitution.

Another tiling version of the construction, shown in Figure 34, is analyzed from a dynamical
systems viewpoint in [34] and put in the context of combinatorially substitutive tilings in [12]. The
four prototiles used in those works are not square, but are a rescaling of the supports of the level-1
tiles in Figure 33.

Figure 34. The Chacon cut-and-stack construction found in [34].

This substitution is not primitive since no matter how many times we substitute the three small
tiles, they will never contain the large square. Because of this we cannot obtain a meaningful self-
similar tiling directly using the replace-and-rescale method: the replacements of all but the large
square will have volumes that go to zero under rescaling, leaving us with only the first tile and a
trivial substitution.

There is a way to recode the system into a primitive one, producing the prototiles shown to
the right of the arrows in Figure 35. By referring to Figure 36, the reader may be convinced that
knowing the surroundings of a particular tile is enough to decide unambiguously with which new
prototile to replace it. The nonprimitive Chacon substitution turns into the primitive one of

Figure 35. A new tile set that makes a primitive Chacon substitution.

Figure 36. Chacon level-two tiles, nonprimitive and primitive versions.

Figure 37.
Because there is a locally defined map taking tilings admitted by the nonprimitive substitution

to tilings admitted by the primitive substitution, and vice versa, the tiling spaces are considered
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Figure 37. The Chacon primitive substitution.

mutually locally derivable. This means that the dynamical systems are equivalent in the sense
of “topological conjugacy” [40]. Thus important dynamical features are preserved. One such
dynamical feature, proved in [34], is that the dynamical system under the action of Z2 is weakly
mixing.

The larger eigenvalue of the substitution matrix of the Chacon primitive substitution is 9, and it
is not difficult to see that the length expansion is governed by powers of 3. The replace-and-rescale
method produces a prototile set of five congruent squares; the inflate-and-subdivide rule is shown
in Figure 38.

Figure 38. The inflate-and-subdivide rule associated to the Chacon primitive substitution.

What makes this example curious is that the dynamical systems of the combinatorially substitu-
tive tiling and its associated self-similar tiling are distinctly different. Since the self-similar tiling’s
expansion constant is the Pisot number 3, the results of [56] show that under the R2 action, its
dynamical system is not weakly mixing. An embedded Z2 action would therefore also fail to be
weakly mixing. This stands in contrast to the weakly mixing Z2 action proved in [34] when the
substitution is only combinatorial. One can see that the systems are “misaligned” by considering
Figure 39 and comparing the location of the red circle in each substitution, which for n = 0, 1,
and 2 represents the central level-n tile within its level-(n+ 1) tile. One can check that as n grows
without bound so does the distance between the red dots. That is, if any corners of the level-n tiles
are lined up, the red dots will move further and further away from one another!

5. Some areas of research

Substitution tilings are being studied from topological, dynamical, physical, combinatorial, and
other perspectives, often in conjunction with one another. In this section we will briefly outline
areas of current interest and possible questions for future study.

5.1. Geometric tiling substitutions. Tilings make good models for the atomic structure of
crystals and quasicrystals, and perhaps the most exciting work on them is being done at the in-
tersection of physics and topology. Methods for investigating certain tiling spaces via C∗-algebras
have been developed and are nicely summarized in [26]. The types of tilings that are most easily
evaluated this way are self-similar tilings and tilings generated by the projection method. (Some
tilings, such as the Penrose and the “octagonal” tilings, fall into both categories). The K-theory of
these C∗-algebras are of interest to both mathematicians and physicists. The possible energy levels
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Figure 39. Comparing three iterations of the white square.

of electrons in a material modeled by a tiling determine gaps in the spectrum of the associated
Schrödinger operator. The K-theory gives a natural labeling of the spectral gaps, thus provid-
ing theoretically relevant physical information (see [3] for a detailed discussion of this branch of
study). It is believed that there may be additional physical interpretations for K-theory and other
topological invariants of tiling spaces.

There is more promising topological work being done as well. For instance, it has been shown
in varying degrees of generality (see [51] and references therein) that FLC tiling spaces are inverse
limits. Successful efforts to compute the homology and cohomology of tiling spaces, and to con-
nect these results to K-theory, have been plentiful. A nice summary of this work, along with the
discovery of torsion and its ramifications, appears in [18] with a primary emphasis on “canonical”
projection tilings. An informal discussion of the connections between some physical and mathemat-
ical problems appears in [50], with a focus on recent progress in the cohomology of tiling spaces.
Included is a summary of the work in [7] involving cohomological analysis of the deformations of
tiling spaces. An important question is the extent to which the homology and cohomology of tiling
spaces has physical interpretations.

Almost all of the existing literature on the topology of tiling spaces makes the assumption of local
finiteness. This is, after all, an appropriate restriction, given that the model of atomic structure
requires tiles (atoms) to fit together in only a finite number of ways. However, examples exist
of geometric tiling substitutions that result in non-FLC tilings, for example Danzer’s triangular
tilings [8] and the tiling from [14], which is easily generalized using the methods of Section 4.
In [27], Kenyon was the first to consider the conditions under which a tiling of R2 with finitely
many tile types can lose local finiteness: the tile boundaries must contain circles or arbitrarily long
line segments, thus substitution tilings without finite local complexity have fault lines along which
tiles can slide past one another. In [16], the cohomology of a highly restricted class of non-FLC
substitution tilings was successfully computed, and it was shown that each fault line leaves a sort
of signature in the cohomology in dimension 3, even though the tilings are two-dimensional. It is a
topic of current interest to understand the topology of tiling spaces without finite local complexity.

At the intersection of mathematical physics and dynamical systems is the connection between
the diffraction spectra of quasicrystalline solids and the dynamical spectra of the tilings that model
them. The fact that these spectra are related at all is first established in [10], while the mathematical
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description of the diffraction spectral measure is given sound theoretical footing in [25]. Much of
the work to date has centered around discrete point sets called Delone sets, which can be thought
of as locations of molecules and which can be converted into tilings in a few different ways. Ever
since Schectman et. al. [53] discovered quasicrystals in a laboratory experiment, people have
been trying to figure out which Delone sets are “diffractive” in that their spectra exhibit sharp
bright spots. Mathematically it is interesting to ask when the spectra consists only of sharp bright
spots, i.e. when it has “pure point spectrum”. More precisely, one defines a spectral measure
which can be broken into pure point, singular continuous, and absolutely continuous pieces with
respect to Lebesgue measure. Great progress has been made for “model sets” (obtained by a
generalized projection method), and for Delone sets generated by substitutions; a current synopsis
of the state of the art appears in [31]. It is now known that for certain locally finite Delone
sets the notions of pure point dynamical and pure point diffraction spectra coincide [29]. This
was generalized in [2] in a measure-theoretic setting which allows for a lack of local finiteness.
The question of whether certain substitution systems consist of model sets can be investigated by
looking for “modular coincidences”; [17] has an algorithm and many examples, which build upon
the work in [29]. Questions remain regarding the connections when there is any continuous portion
of the spectral measures. The dynamical spectra of specific geometric tiling substitutions have been
studied ([56, 13] and others) but are not completely understood.

Related to the study of tilings and model sets is a question in dynamical systems theory. For
one-dimensional symbolic substitutions, it is sometimes possible to find a “geometric realization”
of the substitution. A formal definition appears in [43], p. 140, but the idea is that a geometric
realization is a geometric dynamical system, (such as an irrational rotation of the circle), which
encodes the system via partition elements. For example, the Fibonacci substitution sequences can
be seen to code, in an almost one-to-one fashion, addition by 1/γ on a one-dimensional torus, where
γ is the golden mean (see [42], p. 199 for details). Orbits in this geometric realization “look like”
one-dimensional tilings. Several more examples are given in [42], p. 231. If a tiling dynamical
system arises from a model set, then it can be seen as a geometric realization. For example, it is
shown in [47] that the Penrose rhombic tiling dynamical system is an almost one-to-one extension
of an irrational rotation on a 4-dimensional torus. In general, we do not know when substitution
tilings have geometric realizations.

5.2. Combinatorial tiling substitutions. This paper provides the full extent, to the author’s
knowledge, of known classes of combinatorial tiling substitutions. All of the examples in Sec-
tion 3 are obtained by various means from one-dimensional symbolic substitutions. What other
mechanisms exist for generating combinatorial substitutions? Is there a method for obtaining non-
geometric substitutions from geometric ones? It seems clear that there should be a multitude of
other examples waiting to be discovered, and finding them is of paramount importance.

Combinatorial tiling substitutions have hardly begun to be studied from the dynamical systems
viewpoint. In analogy with the self-similar case and many of its generalizations, we would like
to investigate basic ergodic-theoretic properties such as repetitivity, unique ergodicity, and recog-
nizability. This program was carried out in [23] on a restricted class of two-dimensional symbolic
substitutions of non-constant length for which “standard” techniques could be applied. Unfortu-
nately, these techniques do not necessarily work in the non-geometric case. The crucial missing
piece is that the substitution rule cannot always be seen as an action from the tiling space to itself:
the substitution can be applied only to level-n tiles, not to entire tilings. Many combinatorial tiling
substitutions do not extend to maps of the tiling space in a canonical way, and it is unclear whether
(or when) any of them do. New methods will need to be devised to tackle even the most basic
questions in the dynamical systems and ergodic theory of combinatorial substitution tilings.

A closely related concept, essential to many standard arguments, is whether the substitution
map can be locally “undone” so that one can detect the level-1 tile in a given region without
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requiring infinite information about the tiling. This is called recognizablility in the sequence case
and the unique composition property in the self-similar tilings case. When the substitution acts as a
continuous map on the tiling space, unique composition is equivalent to the substitution map being
invertible. In the event of non-periodicity, recognizability and unique composition were proved in
[32] and [57], respectively. Although the substitution map may not make sense on tiling spaces
in the non-geometric case, the notion of unique composition still does, and a natural conjecture is
that combinatorial substitutions possess it whenever they are non-periodic.

In one dimension, there is great interest in the theory of “combinatorics on words” (see Part I of
[42] for an extensive exposition). In this theory, one considers finite blocks of letters and investigates
how often they appear, and in what combinations, within sequences. Substitution sequences are
particularly fertile for this type of study. The complexity of a sequence is a function p(n) telling
how many words of length n exist in the sequence; this can be used to compute the topological
entropy [42], p. 4. Any non-periodic sequence with minimal complexity is called Sturmian, the
classic example being the sequence given by the Fibonacci substitution. One can read about the
numerous consequences of being Sturmian in Chapter 6 of [42]. The notion of complexity can be
generalized to higher dimensions and some results exist in this direction (see [5] and references
therein). Combinatorial substitutions such as the Rauzy substitution of Example 11 are a natural
place to look for examples of low-complexity sequences.

Some problems that have been at least partially resolved for geometric substitutions are still open
for combinatorial ones. For instance it is completely unclear whether there should exist matching
rules which force tiles to fit together as prescribed by combinatorial substitutions. Would it be
possible to use the matching rules for their associated self-similar tilings, which we know exist by
[21], to find them? Another question is, since the connection to the atomic structure of solids is
an important motivation for the study of tiling spaces, can we identify the diffraction or dynamical
spectrum of combinatorial substitution? It is known that the dynamical spectrum of the Chacon
substitution is trivial since it is weakly mixing [34], and following [56] it is reasonable to conjecture
that DPV substitutions without Pisot expansions might also be weakly mixing. For combinatorial
substitutions, is the spectrum largely dependent on the Perron eigenvalue of the substitution matrix,
as it is in the geometric case [56]? Or is the situation like the one-dimensional symbolic case, which
is also highly sensitive to the combinatorics of the substitutions?

5.3. Connections between the constant and non-constant length cases. The first open
question is, when does a combinatoral tiling substitution give rise to a reasonable geometric one? We
have already seen that the non-primitive Chacon substitution of Example 19 does not. There must
be substitutions for which the limit in the replace-and-rescale method does not exist, or produces
topologically unpleasant tiles. In fact, it is unclear exactly how the replace-and-rescale method
ought to properly be applied: determining the appropriate linear expansion map is problematic
for at least two reasons. First, the combinatorial substitution might be encoding an inflate-and-
subdivide rule that does not inflate as a similarity. This means that knowing the volume expansion
would not tell us the appropriate length expansions. Second, if the linear map is a similarity, there
may be some rotation inherent in the combinatorial substitution that would need to be expressed
in the linear map, as in the Rauzy substitution of Example 11. In the best circumstances we could
hope to find conditions under which the expansion can be found, the limiting tiles are topologically
“nice”, and a proper inflate-and-subdivide rule exists.

It is interesting to consider the relationship between the dual graphs of a combinatorial substi-
tution and its associated geometric substitution (if it exists). It is clear from Figure 28 that the
dual graphs must always have the same labeled vertices, but the edge and facet sets do not seem to
bear a consistent relationship to one another. In the case of Example 15 the edge set of the DPV’s
dual graph is contained in that of its self-similar tiling, but this is not true in general. Since the
unlabeled dual graphs are not isomorphic, there is no homeomorphism of the plane taking one to
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another (see [22], p. 169). Can an understanding of the combinatorial properties of one tiling still
give us insight into the other?

In one-dimensional symbolic dynamics, the Curtis-Lyndon-Hedlund Theorem (see [30]) states
that homeomorphisms between symbolic dynamical systems are equivalent to local maps called
“sliding block codes”. A sliding block code transforms one sequence into another element by
element, deciding what to put in the new sequence by looking in a finite window in the old one.
Similarly, one tiling can be transformed locally into another; if the process is invertible the tilings
are mutually locally derivable. It has come to light that there is no Curtis-Lyndon-Hedlund theorem
for tiling dynamical systems [37, 46]. Using the basic method of [46], one can show that Example
10 and the associated self-similar tiling of Example 15 have topologically conjugate dynamical
systems without the possibility of mutual local derivability. We conjecture that in the Pisot case,
combinatorial substitutions have topologically conjugate dynamical systems with their geometric
counterparts. In general one would not expect the conjugacy to be through mutual local derivability.

Our final question takes note of the fact that the dynamical relationship between substitution
sequences and self-similar tilings of the line is especially subtle. On a sequence space there is
a Z-action; passing to a tiling by choosing tile lengths provides a natural action by R called a
“suspension”. Surprisingly, the continuous action of the tiling space is probably better understood
than the discrete action! For instance, the presence or absence, and nature of, eigenvalues of the
tiling dynamical system can be understood in terms of the expansion constant along with certain
geometric information [56]. This situation is far more complicated in the symbolic case and the
interested reader should see [42], Section 7.3 for a synopsis. Also, topological conjugacies between
different suspensions have been thoroughly considered in [6], where it is seen that the eigenvalues
of the substitution matrix play a critical role. We can consider tilings such as those in Figure 31
as being suspensions of the same sequence in Z2, and ask similar questions about their spectra and
topological properties. More generally, we can consider tilings such as those in Figure 32 as being
suspensions of the same labeled graph. This perspective yields an interesting set of problems at
the intersection of dynamics and combinatorics.
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1. P. Arnoux, V. Berthé, and A. Siegel, Two-dimensional iterated morphisms and discrete planes, Theor. Comp.
Sci. 319 (2004), no. 1-3, 145-176.

2. M. Baake and D. Lenz, Dynamical systems on translation bounded measures: Pure point dynamical and diffrac-
tion spectra, Ergodic Theory Dynam. Systems 24 (2004), 1867-1893.

3. J. Bellissard, D. Hermmann, and M. Zarrouati, Hull of aperiodic solids and gap labeling theorems, in Directions in
Mathematical Quasicrystals (M. Baake and R. V. Moody Eds.) CRM Monograph Series, American Mathematical
Society, Providence, 2000.

4. R. Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc. 66 (1966), 1-72.
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22. B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman and Co., New York, 1987.
23. C. Hansen, Dynamics of multi-dimensional substitutions, Ph. D. thesis, George Washington University, 2000.
24. E. O. Harriss and J. S. W. Lamb, Canonical substitution tilings of the Ammann-Beenker type, Theoret. Comput.

Sci. 319 (2004), 241-279.
25. A. Hof, On diffraction by aperiodic structures, Commun. Math. Phys. 169 (1995), 25-43.
26. J. Kellendonk and I. Putnam, Tilings, C∗-algebras, and K-theory, in Directions in Mathematical Quasicrystals

(M. Baake and R. V. Moody, Eds.), CRM Monograph Series, American Mathematical Society, Providencee, 2000.
27. R. Kenyon, Rigidity of planar tilings, Invent. math. 107 (1992), 637-651.
28. B. Kitchens, Symbolic Dynamics, Universitext Series, Springer-Verlag, New York, 1998.
29. J.-Y. Lee, R. V. Moody, B. Solomyak, Pure point dynamical and diffraction spectra, Ann. Henri Poincaré 3
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