
6. Compactness

. . . compact sets play the same role in the theory of abstract

sets as the notion of limit sets do in the theory of point sets.

Maurice Frechet, 1906

Compactness is one of the most useful topological properties in analysis, although, at

first meeting its definition seems somewhat strange. To motivate the notion of a compact

space, consider the properties of a finite subset S ⊂ X of a topological space X. Among

the consequences of finiteness are the following:

i) Any continuous function f :X → R, when restricted to S, has a maximum and a

minimum.

ii) Any collection of open subsets of X whose union contains S has a finite subcollection

whose union contains S.

iii) Any sequence of points {xi} satisfying xi ∈ S for all i, has a convergent subsequence.

Compactness extends these properties to other subsets of a space X, using the topology to

achieve what finiteness guarantees. The development in this chapter runs parallel to that

of Chapter 5 on connectedness.

Definition 6.1. Given a topological space X and a subset K ⊂ X, a collection of subsets

{Ci ⊂ X | i ∈ J} is a cover of K if K ⊂
�

i∈J
Ci. A cover is an open cover if every Ci

is open in X. The cover {Ci | i ∈ J} of K has a finite subcover if there are members of

the collection Ci1 , . . . , Cin with K ⊂ Ci1 ∪ . . . ∪ Cin . A subset K ⊂ X is compact if any

open cover of K has a finite subcover.

Examples: Any finite subset of a topological space is compact. The space (R,usual) is not

compact since the open cover {(−n, n) | n = 1, 2, . . .} has no finite subcover. Notice that

if K is a subset of Rn
and K is compact, it is bounded, that is, K ⊂ B(�0,M) for some

M > 0. This follows since {B(�0, N) | N = 1, 2, . . .} is an open cover of Rn
and hence, of

K. Since B(�0, N1) ⊂ B(�0, N2) for N1 ≤ N2, a finite subcover is contained in a single open

ball and so K is bounded. The canonical example of a compact space is the unit interval

[0, 1] ⊂ R.

The Heine-Borel Theorem. The closed interval [0, 1] is a compact subspace of (R,

usual).

Proof: Suppose {Ui | i ∈ J} is an open cover of [0, 1]. Define T = {x ∈ [0, 1] | [0, x] has

a finite subcover from {Ui}}. Certainly 0 ∈ T since 0 ∈
�

Ui and so in some Uj . We

show 1 ∈ T . Since every element of T is less than or equal to 1, T has a least upper

bound s. Since {Ui} is a cover of [0, 1], for some j ∈ J , s ∈ Uj . Since Uj is open, for

some � > 0, (s − �, s + �) ⊂ Uj . Since s is a least upper bound, s − δ ∈ T for some

0 < δ < � and so [0, s− δ] has a finite subcover. It follows that [0, s] has a finite subcover

by simply adding Uj to the finite subcover of [0, s − δ]. If s < 1, then there is an η > 0

with s + η ∈ (s− �, s + �) ∩ [0, 1], and so s + η ∈ T , which contradicts the fact that s is a

least upper bound. Hence s = 1. ♦

Is compactness a topological property? We prove a result analogous to Theorem 5.2

for connectedness.
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Proposition 6.2. If f :X → Y is a continuous function and X is compact, then f(X) ⊂
Y is compact.

Proof: Suppose {Ui | i ∈ J} is an open cover of f(X) in Y . Then {f−1
(Ui) | i ∈ J} is an

open cover of X. Since X is compact, there is a finite subcover, {f−1
(Ui1), . . . , f

−1
(Uin)}.

Then X = f
−1

(Ui1) ∪ · · · ∪ f
−1

(Uin) and so f(X) ⊂ Ui1 ∪ · · · ∪ Uin . ♦
It follows immediately that compactness is a topological property. The closed interval

[a, b] ⊂ (R,usual) is compact for a < b. Since S
1

is the continuous image of [0, 1], S
1

is

compact. Notice that compactness distinguishes the open and closed intervals in R. Since

(0, 1) is homeomorphic to R and R is not compact, (0, 1) �∼= [0, 1]. Since (0, 1) ⊂ [0, 1],

arbitrary subspaces of compact spaces need not be compact. However, compactness is

inherited by closed subsets.

Proposition 6.3. If X is a compact space and K ⊂ X is a closed subset, then K is

compact.

Proof: If {Ui | i ∈ J} is an open cover of K, we can take the collection {X−K}∪{Ui | i ∈ J}
as an open cover of X. Since X is compact, the collection has a finite subcover, namely

{X −K, Ui1 , . . . , Uin}. Leaving out X −K, we get {Ui1 , . . . , Uin}, a finite subcover of K.

♦
A partial converse holds for Hausdorff spaces.

Proposition 6.4. If X is Hausdorff and K ⊂ X is compact, then K is closed in X.

Proof: We show X −K is open. Take x ∈ X −K. By the Hausdorff condition, for each

y ∈ K there are open sets Uy, Vy with x ∈ Uy, y ∈ Vy and Uy∩Vy = ∅. Then {Vy | y ∈ K} is

an open cover of K. Since K is compact, there is a finite subcover {Vy1 , Vy2 , . . . , Vyn}. Take

the associated open sets Uy1 , . . . , Uyn and define Ux = Uy1 ∩ · · · ∩Uyn . Since Uyi ∩Vyi = ∅,
Ux doesn’t meet Vy1 ∪ . . . ∪ Vyn ⊃ K. So Ux ⊂ X −K. Furthermore, x ∈ Ux and Ux is

open. Construct Ux for every point x in X −K, and the union of these open sets Ux is

X −K and K is closed. ♦

Corollary 6.5. If K ⊂ Rn
is compact, K is closed and bounded.

Quotient spaces of compact spaces are seen to be compact by Theorem 6.2. The

converse of Corollary 6.5 will follow from a consideration of finite products.

Proposition 6.6. If X and Y are compact spaces, then X × Y is compact.

X

Y

x

Proof: Suppose {Ui | i ∈ J} is an open cover of X ×Y . From the definition of the product

topology, each Ui =

�
j∈Ai

Vij ×Wij where Vij is open in X, Wij is open in Y and Ai is

an indexing set. Consider the associated open cover {Vij ×Wij | i ∈ J, j ∈ Ai} by basic
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open sets. If we can manufacture a finite subcover from this collection, we can just take

the Ui in which each basic open set sits to get a finite subcover of X × Y .

To each x ∈ X consider the subspace {x}×Y ⊂ X×Y . This subspace is homeomorphic

to Y and hence is compact. Furthermore {Vij ×Wij | i ∈ J, j ∈ Ai} covers {x} × Y and

so there is a finite subcover V
x
1 ×W

x
1 , . . . , V

x
e ×W

x
e of {x} × Y . Let V

x
= V

x
1 ∩ · · · ∩ V

x
e .

Since x ∈ V
x
, it is a nonempty open set. Construct V

x
for each x ∈ X and the collection

{V x | x ∈ X} is an open cover of X. Since X is compact, there is a finite subcover,

V
x1 , . . . , V

xn . Hence each x ∈ X appears in some V
xi . If y ∈ Y , then (x, y) ∈ V

xi
j ×W

xi
j

for some W
xi
j since x ∈ V

xi
1 ∩. . .∩V

xi
ei

and V
xi
1 ×W

xi
1 , . . . , V

xi
ei
×W

xi
ei

covers {x}×Y . Hence

{V xi
j ×W

xi
j | i = 1, . . . , n, j = 1, . . . , ei} is a finite subcover of X × Y . The associated

choices of Ui’s give the finite subcover we seek. ♦
By induction, any finite product of compact spaces is compact. Since [0, 1]× [0, 1] is

compact, so are the quotients given by the torus, Möbius band and projective plane. We

can now prove the converse of Corollary 6.5.

Corollary 6.7. If K ⊂ Rn
, then K is compact if and only if K is closed and bounded.

Proof: A bounded subset of Rn
is contained in some product of closed intervals [a1, b1]×

· · · × [an, bn]. The product is compact, and K is a closed subset of [a1, b1]× · · · × [an, bn].

By Proposition 6.3, K is compact. ♦
We can add the spheres S

n−1 ⊂ Rn
to the list of compact spaces—each is bounded

by definition and closed because S
n−1

= f
−1

({1}) where f : Rn → R is the continuous

function f(x1, . . . , xn) = x
2
1 + · · ·+x

2
n. The characterization of compact subsets of R leads

to the following familiar result.

The Extreme Value Theorem. If f :X → R is a continuous function and X is com-

pact, then there are points xm, xM ∈ X with f(xm) ≤ f(x) ≤ f(xM ) for all x ∈ X.

Proof: By Proposition 6.2, f(X) is a compact subset of R and so f(X) is closed and

bounded. The boundedness implies that the greatest lower bound of f(X) and the least

upper bound of f(X) exist. Since f(X) closed, the values glb f(X) and lub f(X) are in

f(X) (Can you prove this?) and so glb f(X) = f(xm) for some xm ∈ X; also lub f(X) =

f(xM ) for some xM ∈ X. It follows that f(xm) ≤ f(x) ≤ f(xM ) for all x ∈ X. ♦
The reader might enjoy deriving the whole of the single variable calculus armed with the

Intermediate Value Theorem and the Extreme Value Theorem.

Infinite products of compact spaces are covered by the following powerful theorem

which turns out to be equivalent to the Axiom of Choice in set theory [Kelley]. We refer

the reader to [Munkres] for a proof.

Tychonoff’s Theorem. If {Xi | i ∈ J} is a collection of nonempty compact spaces,

then, with the product topology,

�
i∈J

Xi is compact.

Infinite products give a different structure in which to consider families of functions

with certain properties as subspaces of a product. General products also provide spaces in

which there is a lot of room for embedding classes of spaces as subspaces of a product.

Compact spaces enjoy some other interesting properties:

Proposition 6.8. If R = {xα | α ∈ J} is an infinite subset of a compact space X, then

R has a limit point.
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Proof: Suppose R has no limit points. The absence of limit points implies that, for every

x ∈ X, there is an open set U
x

with x ∈ U
x

for which, if x ∈ R, then U
x ∩ R = {x} and

if x /∈ R, then U
x ∩ R = ∅. The collection {Ux | x ∈ X} is an open cover of X, which is

compact, and so it has a finite subcover, U
x1 , . . . , U

xn . Since each U
xi contains at most

one element in {xα | α ∈ J}, the set R is finite. ♦
The property that an infinite subset must have a limit point is sometimes called

the Bolzano-Weierstrass property [Munkres-red]. The proposition gives a sufficient test

for noncompactness: Find a sequence without a limit point. For example, if we give�∞

i=1
[0, 1], the countable product of [0, 1] with itself, the box topology, then the set

{(xn,i) ∈
�∞

i=1
| n = 1, 2, . . .} given by xn,i = 1 when n �= i and xn,i = 1/n if n = i, has

no limit point. (Can you prove it?)

Compactness provides a simple condition for a mapping to be a homeomorphism.

Proposition 6.9. If f :X → Y is continuous, one-one, and onto, X is compact, and Y

is Hausdorff, then f is a homeomorphism.

Proof: We show that f
−1

is a continuous by showing that f is closed (that is, f(K) is

closed whenever K is closed). If K ⊂ X is closed, then it is compact. It follows that f(K)

is compact in Y and so f(K) is closed because Y is Hausdorff. ♦
Proposition 6.9 can make the comparison of quotient spaces and other spaces easier.

For example, suppose X is a compact space with an equivalence relation ∼ on it, and

π:X → [X] is a quotient mapping. Given a mapping f :X → Y for which x ∼ x
�
implies

f(x) = f(x
�
), we get an induced mapping f̂ : [X] → Y that may be one-one, onto, and

continuous. If Y is Hausdorff, we obtain that [X] is homeomorphic to Y .

What about compact metric spaces? The diameter of a subset A of a metric space

X is defined by diam A = sup{d(x, y) | x, y ∈ A}.
Lebesgue’s Lemma. Let X be a compact metric space and {Ui | i ∈ J} an open cover.

Then there is a real number δ > 0 (the Lebesgue number) such that any subset of X

of diameter less than δ is contained in some Ui.

Proof: In the exercises to Chapter 3 we defined the continuous function d(−, A):X → R by

d(x, A) = inf{d(x, a) | x ∈ A}. In addition, if A is closed, then d(x,A) > 0 for x /∈ A. Given

an open cover {Ui | i ∈ J} of the compact space X, there is a finite subcover {Ui1 , . . . , Uin}.
Define ϕj(x) = d(x, X − Uij ) for j = 1, 2, . . . , n and let ϕ(x) = max{ϕ1(x), . . . , ϕn(x)}.
Since each x ∈ X lies in some Uij , ϕ(x) ≥ ϕj(x) > 0. Furthermore, ϕ is continuous so

ϕ(X) ⊂ R is compact, and 0 /∈ ϕ(X). Let δ = min{ϕ(x) | x ∈ X} > 0. For any x ∈ X,

consider B(x, δ) ⊂ X. We know ϕ(x) = ϕj(x) for some j. For that j, d(x,X − Uij ) ≥ δ,

which implies B(x, δ) ⊂ Uij . ♦
The Lebesgue Lemma is also known as the Pflastersatz [Alexandroff-Hopf] (imagine

plasters covering a space) and it will play a key role in later chapters.

By analogy with connectedness and path-connectedness we introduce the local version

of compactness.

Definition 6.10. A space X is locally compact if for any x ∈ U ⊂ X where U is an

open set, there is an open set V satisfying x ∈ V ⊂ cls V ⊂ U with cls V compact.
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Examples: For all n, the space Rn
is locally compact since each cls B(�x, �) is compact

(being closed and bounded). The countable product of copies of R,

�∞

i=1
R, in the product

topology, however, is not locally compact. To see this consider any open set of the form

U = (a1, b1)× (a2, b2)× · · · × (an, bn)× R× R× . . .

whose closure is [a1, b1] × [a2, b2] × · · · × [an, bn] × R × R × · · ·. This set is not compact

because there is plenty of room for infinite sets to float off without limit points. Thus

local compactness distinguishes finite and infinite products of R, a partial result toward

the topological invariance of dimension.

In the presence of local compactness and a little more, we can make a noncompact

space into a compact one.

Definition 6.11. Let X be a locally compact, Hausdorff space. Adjoin a point not in

X, denoted by ∞, to form Y = X ∪ {∞}. Topologize Y by two kinds of open sets: (1)

U ⊂ X ⊂ Y and U is open in X. (2) Y −K where K is compact in X. The space Y with

this topology is called the one-point compactification of X.

The one-point compactification was introduced by Alexandroff [Alexandroff] and is also

called the Alexandroff compactification. We verify that we have a topology on Y as follows:

For finite intersections there are the three cases: We only need to consider the case of two

open sets. (1) If V1 and V2 are both open subsets of X, then V1∩V2 is also an open subset

of X and hence of Y . (2) If both V1 and V2 have the form Y −K1 and Y −K2 where K1

and K2 are compact in X, then (Y −K1) ∩ (Y −K2) = Y − (K1 ∪K2) and K1 ∪K2 is

compact in X, so V1 ∩ V2 is open in Y . (3) If V1 is an open subset of X and V2 = Y −K2

for K2 compact in X, then V1 ∩ V2 = V1 ∩ (Y −K2) = V1 ∩ (X −K2) since V1 ⊂ X. Since

X −K2 is open in X, the intersection V1 ∩ V2 is open in Y .

For arbitrary unions there are three similar cases. If {Vβ | β ∈ I} is a collection of

open sets, then
�

Vβ is certainly open when Vβ ⊂ X for all β. If Vβ = Y −Kβ for all β,

then DeMorgan’s law gives

�
β
(Y −Kβ) = Y −

�
β
Kβ

and
�

β Kβ is compact. Finally, if the Vβ are of different types, the set-theoretic fact

U ∪ (Y −K) = Y − (K−U) together with the fact that if K is compact, then, since K−U

is a closed subset of K, so K − U is compact. Thus the union of the Vβ is open in Y .

Theorem 6.12. If X is locally compact and Hausdorff, X is not compact, and Y =

X ∪ {∞} is the one-point compactification, then Y is a compact Hausdorff space, X is a

subspace of Y , and cls X = Y .

Proof: We first show Y is compact. If {Vi | i ∈ J} is an open cover of Y , then ∞ ∈ Vj0 for

some j0 ∈ J and Vj0 = Y −Kj0 for Kj0 compact in X. Since any open set in Y satisfies the

property that Vi ∩X is open in X, the collection {Vi ∩X | i ∈ J, i �= j0} is an open cover

of Kj0 and so there is a finite subcover V1 ∩X, . . . , Vn ∩X of X. Then {Vj0 , V1, . . . , Vn} is

a finite subcover of Y .

Next we show Y is Hausdorff. The important case to check is a separation of x ∈ X

and ∞. Since X is locally compact and X is open in X, there is an open set V ⊂ X with
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x ∈ V and cls V compact. Take V to contain x and Y − cls V to contain ∞. Since X is

not compact, cls V �= X.

Notice that the inclusion i:X → Y is continuous since i
−1

(Y −K) = X −K and K

is closed in the Hausdorff space X. Furthermore, i is an open map so X is homeomorphic

to Y −{∞}. To prove that cls X = Y , check that ∞ is a limit point of X: if ∞ ∈ Y −K,

since X is not compact, K �= X so there is a point of X in Y −K not equal to ∞. ♦

Example: Stereographic projection of the sphere S
2

minus the North Pole onto R2
, shows

that the one-point compactification of R2
is homeomorphic to S

2
. Recall that stereographic

projection is defined as the mapping from S
2

minus the North Pole to the plane tangent to

the South Pole by joining a point on the sphere to the North Pole and then extending this

line to meet the tangent plane. This mapping has wonderful properties ([McCleary]) and

gives the homeomorphism between R2 ∪ {∞} and S
2
. More generally, Rn ∪ {∞} ∼= S

n
.

Compactness may be used to define a topology on Hom(X, Y ) = {f :X → Y such that

f is continuous}. There are many possible choices, some dependent on the topologies of

X and Y (for example, for metric spaces), some appropriate to the analytic applications

for which a topology is needed [Day]. We present one particular choice that is useful for

topological applications.

Definition 6.13. Suppose K ⊂ X and U ⊂ Y . Let S(K, U) = {f :X → Y , continuous

with f(K) ⊂ U}. The collection S = {S(K, U) | K ⊂ X compact, U ⊂ Y open} is a

subbasis for topology TS on Hom(X, Y ) called the compact-open topology. We denote

the space (Hom(X, Y ), TS) as map(X, Y ).

Theorem 6.14. (1) If X is locally compact and Hausdorff, then the evaluation mapping

e:X ×map(X, Y ) → Y, e(x, f) = f(x),

is continuous. (2) If X is locally compact and Hausdorff and Z is another space, then a

function F :X × Z → Y is continuous if and only if its adjoint map F̂ :Z → map(X, Y ),

defined by F̂ (z)(x) = F (x, z) is continuous.

Proof: Given (x, f) ∈ X × map(X, Y ) suppose f(x) ∈ V an open set in Y . Since x ∈
f
−1

(V ), use the fact that X is locally compact to find U open in X such that x ∈ U ⊂
cls U ⊂ f

−1
(V ) with cls U compact. Then (x, f) ∈ U × S(cls U, V ), an open set of

X ×map(X, Y ). If (x1, f1) ∈ U × S(cls U, V ), then f1(x1) ∈ V so e(U × S(cls U, V )) ⊂ V

as needed.

Suppose F̂ is continuous. Then F is the composite

e ◦ (id× F̂ ):X × Z → X ×map(X, Y ) → Y,

which is continuous.

Suppose F is continuous and consider F̂ :Z → map(X, Y ). Let z ∈ Z and S(K, U) a

subbasis open set containing F̂ (z). We show there is an open set W ⊂ Z, with z ∈ W and

F̂ (W ) ⊂ S(K, U). Since F̂ (z) ∈ S(K, U), we have F (K×{z}) ⊂ U . Since F is continuous,

it follows that K×{z} ⊂ F
−1

(U) and F
−1

(U) is an open set in X×Z. The subset K×{z}
is compact and so the collection of basic open sets contained in F

−1
(U) ⊂ X ×Z gives an

open cover of K×{z}. This cover has a finite subcover, U1×W1, U2×W2, . . . , Un×Wn. Let
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W = W1 ∩W2 ∩ · · · ∩Wn, a nonempty open set in Z since z ∈ Wi for each i. Furthermore,

K ×W ⊂ F
−1

(U). If z
� ∈ W and x ∈ K then F (x, z

�
) ∈ U , and so F̂ (W ) ⊂ S(K, U) as

desired. ♦

The description of topology as “rubber-sheet geometry” can be made precise by pic-

turing map(X, Y ). We want to describe a deformation of one mapping into another.

If f and g are in map(X, Y ), then a path in map(X, Y ) joining f and g is a mapping

λ: [0, 1] → map(X, Y ) with λ(0) = f and λ(1) = g. This path encodes the deforming of

f(X) to g(X) where at time t the shape is λ(t)(X). We can rewrite this path using the

adjoint to define an important notion to be developed in later chapters.

Definition 6.15. A homotopy between functions f, g:X → Y is a continuous function

H:X × [0, 1] → Y with H(x, 0) = f(x), H(x, 1) = g(x). We say that f is homotopic to
g if there is a homotopy between them.

Notice that Ĥ = λ, a path between f and g in map(X, Y ). A homotopy may be

thought of as a continuous, one-parameter family of functions deforming f into g.

We record some other important properties of the compact-open topology. The proofs

are left to the reader:

Proposition 6.16. Suppose that X is a locally compact and Hausdorff space. (1) If

(Hom(X, Y ), T ) is another topology on Hom(X, Y ) and the evaluation map,

e:X × (Hom(X, Y ), T ) → Y

is continuous, then T contains the compact-open topology. (2) If X and Y are locally

compact and Hausdorff, then the composition of functions

◦:map(X, Y )×map(Y,Z) −→ map(X, Z)

is continuous. (3) If Y is Hausdorff, then the space map(X, Y ) is Hausdorff.

Conditions on continuous mappings from X to Y lead to subsets of map(X, Y ) that

may be endowed with the subspace topology. For example, let map((X, x0), (Y, y0)) denote

the subspace of functions f :X → Y for which f(x0) = y0. This is the space of pointed
maps. More generally, if A ⊂ X and B ⊂ Y , we can define the space of maps of pairs,

map((X, A), (Y,B)), requiring that f(A) ⊂ B.

Exercises

1. A second countable space is “almost” compact. Prove that when X is second count-

able, every open cover of X has a countable subcover (Lindelöf’s theorem).

2. Show that a compact Hausdorff space is normal (also labelled T4), that is, given two

disjoint closed subsets of X, say A and B, then there are open sets U and V with

A ⊂ U , B ⊂ V and U ∩ V = ∅.

3. A useful property of compact spaces is the finite intersection property. Suppose

that F = {Fj | j ∈ J} is a collection of closed subsets of X with the following property:
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F1 ∩ · · · ∩ Fk �= ∅ for every finite subcollection {F1, . . . , Fk} of F , then

�
F∈F

F �= ∅.
Show that this condition is equivalent to a space being compact. (Hint: Consider the

complements of the Fi and the consequence of the intersection being empty.)

4. Suppose X is a compact space and {x1, x2, x3, . . .} is a sequence of points in X. Show

that there is a subsequence of {xi} that converges to a point in X.

5. Show the easy direction of Tychonoff’s theorem, that is, if {Xi | i ∈ J} is a collection

of nonempty spaces, and the product

�
i∈J

Xi is compact, then each Xi is compact.

6. Although the compact subsets of R are easily determined (closed and bounded), things

are very different in Q ⊂ R with the subspace topology. Determine the compact

subsets of Q. We can mimic the one-point compactification of R using Q: Let Q̂ =

Q∪{∞} topologized by T = {U ⊂ Q, U open, or Q̂−K, where K is a compact subset

of Q}. Show that (Q̂, T ) is not Hausdorff. Deduce that Q is not locally compact.

7. Proposition 6.9 states that if f :X → Y is one-one, onto, and continuous, if X is

compact, and Y is Hausdorff, then f is a homeomorphism. Show that the condition

of Y Hausdorff cannot be relaxed.

8. Prove Proposition 6.16.
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