6. Compactness

... compact sets play the same role in the theory of abstract
sets as the notion of limit sets do in the theory of point sets.
MAURICE FRECHET, 1906

Compactness is one of the most useful topological properties in analysis, although, at
first meeting its definition seems somewhat strange. To motivate the notion of a compact
space, consider the properties of a finite subset S C X of a topological space X. Among
the consequences of finiteness are the following:

i) Any continuous function f: X — R, when restricted to S, has a maximum and a
minimum.
i1) Any collection of open subsets of X whose union contains S has a finite subcollection
whose union contains S.
i11) Any sequence of points {z;} satisfying x; € S for all 4, has a convergent subsequence.

Compactness extends these properties to other subsets of a space X, using the topology to
achieve what finiteness guarantees. The development in this chapter runs parallel to that
of Chapter 5 on connectedness.

DEFINITION 6.1. Given a topological space X and a subset K C X, a collection of subsets
{C; Cc X |i€ J} isacover of K if K C U-GJCi' A cover is an open cover if every C;
7
is open in X. The cover {C; | i € J} of K has a finite subcover if there are members of

the collection C;,,...,C; with K C C;, U...UC; . A subset K C X is compact if any
open cover of K has a finite subcover.

Ezamples: Any finite subset of a topological space is compact. The space (R, usual) is not
compact since the open cover {(—n,n) | n = 1,2,...} has no finite subcover. Notice that
if K is a subset of R" and K is compact, it is bounded, that is, K C B(0, M) for some
M > 0. This follows since {B(0, N) | N =1,2,...} is an open cover of R" and hence, of
K. Since B(0,N;) € B(0,N,) for N; < Ny, a finite subcover is contained in a single open
ball and so K is bounded. The canonical example of a compact space is the unit interval
0,1] € R.

THE HEINE-BOREL THEOREM. The closed interval [0,1] is a compact subspace of (R,
usual).

Proof: Suppose {U; | i € J} is an open cover of [0,1]. Define T'= {x € [0,1] | [0,z] has
a finite subcover from {U;}}. Certainly 0 € T since 0 € |JU; and so in some U;. We
show 1 € T. Since every element of T is less than or equal to 1, T has a least upper
bound s. Since {U;} is a cover of [0, 1], for some j € J, s € U;. Since U; is open, for
some € > 0, (s —¢,s +¢€) C Uj. Since s is a least upper bound, s — ¢ € T for some
0 < d < e and so [0,s — ¢] has a finite subcover. It follows that [0, s|] has a finite subcover
by simply adding U; to the finite subcover of [0,s — §]. If s < 1, then there is an n > 0
with s +n € (s —€,5s+¢€)N[0,1], and so s +n € T, which contradicts the fact that s is a
least upper bound. Hence s = 1. &

Is compactness a topological property? We prove a result analogous to Theorem 5.2
for connectedness.



PROPOSITION 6.2. If f: X — Y is a continuous function and X is compact, then f(X) C
Y is compact.
Proof: Suppose {U; | i € J} is an open cover of f(X) in Y. Then {f~3(U;) | i € J} is an
open cover of X. Since X is compact, there is a finite subcover, {f~1(U;,),..., f~1(U;, )}
Then X = f~Y(U;,))U---U f~1(U;,) and so f(X) CU;, U---UU, . O
It follows immediately that compactness is a topological property. The closed interval
[a,b] C (R, usual) is compact for a < b. Since S! is the continuous image of [0, 1], S* is
compact. Notice that compactness distinguishes the open and closed intervals in R. Since
(0,1) is homeomorphic to R and R is not compact, (0,1) 2 [0,1]. Since (0,1) C [0, 1],
arbitrary subspaces of compact spaces need not be compact. However, compactness is
inherited by closed subsets.

PROPOSITION 6.3. If X is a compact space and K C X is a closed subset, then K is
compact.

Proof: It {U; | i € J} is an open cover of K, we can take the collection {X —K}U{U; | i € J}
as an open cover of X. Since X is compact, the collection has a finite subcover, namely
{X-K,U;,,...,U; }. Leaving out X — K, we get {U;,,...,U;, }, a finite subcover of K.
¢
A partial converse holds for Hausdorff spaces.

PrROPOSITION 6.4. If X is Hausdorff and K C X is compact, then K is closed in X.
Proof: We show X — K is open. Take x € X — K. By the Hausdorff condition, for each
y € K there are open sets U, V,, withz € Uy, y € V,; and U,NV,, = 0. Then{V, |y € K} is
an open cover of K. Since K is compact, there is a finite subcover {V,,,,V,,,...,V,, }. Take
the associated open sets Uy, ..., U, and define U, = U,, N---NU,, . Since Uy, NV, =0,
U, doesn’t meet V,,, U...UV, D K. So U, C X — K. Furthermore, z € U, and U, is
open. Construct U, for every point x in X — K, and the union of these open sets U, is
X — K and K is closed. &

COROLLARY 6.5. If K C R" is compact, K is closed and bounded.

Quotient spaces of compact spaces are seen to be compact by Theorem 6.2. The
converse of Corollary 6.5 will follow from a consideration of finite products.

PROPOSITION 6.6. If X and Y are compact spaces, then X XY is compact.

Y

Proof: Suppose {U; | i € J} is an open cover of X x Y. From the definition of the product

topology, each U; = U a Vij x W;; where Vj; is open in X, W;; is open in Y and A; is
J i

an indexing set. Consider the associated open cover {V;; x W;; | i € J, j € A;} by basic
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open sets. If we can manufacture a finite subcover from this collection, we can just take
the U; in which each basic open set sits to get a finite subcover of X x Y.

To each x € X consider the subspace {x} xY C X xY. This subspace is homeomorphic
to Y and hence is compact. Furthermore {V;; x W;; | i € J, j € A;} covers {z} x Y and
so there is a finite subcover Vi x W, ... . VEFx WZ of {x} xY. Let V¥ =V*nN---NVZE.
Since x € V¥, it is a nonempty open set. Construct V* for each x € X and the collection
{V*¥ | z € X} is an open cover of X. Since X is compact, there is a finite subcover,
ver ..,V Hence each x € X appears in some V®. If y € Y, then (z,y) € V" x W}

for some W7 since x € V"' N...NVZ and Vi" x W{™, ..., V2 x WZi covers {x} x Y. Hence
{VJ"" X iji i=1,...,n,7 =1,...,e;} is a finite subcover of X x Y. The associated
choices of U;’s give the finite subcover we seek. &

By induction, any finite product of compact spaces is compact. Since [0, 1] x [0, 1] is
compact, so are the quotients given by the torus, Mobius band and projective plane. We
can now prove the converse of Corollary 6.5.

COROLLARY 6.7. If K C R", then K is compact if and only if K is closed and bounded.

Proof: A bounded subset of R™ is contained in some product of closed intervals [aq, b1] X
- X [an,by]. The product is compact, and K is a closed subset of [a1,b1] X -+ X [ay, by].
By Proposition 6.3, K is compact. &

We can add the spheres S"~! C R” to the list of compact spaces—each is bounded
by definition and closed because S"~1 = f~1({1}) where f:R" — R is the continuous
function f(z1,...,7,) = 23+ -+ 2. The characterization of compact subsets of R leads
to the following familiar result.

THE EXTREME VALUE THEOREM. If f: X — R is a continuous function and X is com-
pact, then there are points T,,, xp € X with f(xy,) < f(x) < f(zym) for allz € X.

Proof: By Proposition 6.2, f(X) is a compact subset of R and so f(X) is closed and
bounded. The boundedness implies that the greatest lower bound of f(X) and the least
upper bound of f(X) exist. Since f(X) closed, the values glb f(X) and lub f(X) are in
f(X) (Can you prove this?) and so glb f(X) = f(z,,) for some z,, € X; also lub f(X) =
f(xpr) for some xp; € X. It follows that f(x,,) < f(z) < f(xp) for all z € X. O

The reader might enjoy deriving the whole of the single variable calculus armed with the
Intermediate Value Theorem and the Extreme Value Theorem.

Infinite products of compact spaces are covered by the following powerful theorem
which turns out to be equivalent to the Axiom of Choice in set theory [Kelley]. We refer
the reader to [Munkres| for a proof.

TYCHONOFF’S THEOREM. If {X; | i € J} is a collection of nonempty compact spaces,
then, with the product topology, H X, is compact.
icJ
Infinite products give a different structure in which to consider families of functions

with certain properties as subspaces of a product. General products also provide spaces in
which there is a lot of room for embedding classes of spaces as subspaces of a product.

Compact spaces enjoy some other interesting properties:

PROPOSITION 6.8. If R = {z, | a € J} is an infinite subset of a compact space X, then
R has a limit point.



Proof: Suppose R has no limit points. The absence of limit points implies that, for every
x € X, there is an open set U* with z € U® for which, if z € R, then U* N R = {z} and
if ¢ R, then U* N R = (). The collection {U” | x € X} is an open cover of X, which is
compact, and so it has a finite subcover, U*!,... U*". Since each U*i contains at most
one element in {z, | a € J}, the set R is finite. &

The property that an infinite subset must have a limit point is sometimes called
the Bolzano-Weierstrass property [Munkres-red]. The proposition gives a sufficient test
for noncompactness: Find a sequence without a limit point. For example, if we give

H(il[(),l], the countable product of [0,1] with itself, the box topology, then the set
{(xni) € Hzl |n=1,2,...} given by z,; =1 when n # i and x,,; = 1/n if n = 4, has

no limit point. (Can you prove it?)
Compactness provides a simple condition for a mapping to be a homeomorphism.

ProproOSITION 6.9. If f: X — Y 1is continuous, one-one, and onto, X is compact, and Y
is Hausdorff, then f is a homeomorphism.

Proof: We show that f~! is a continuous by showing that f is closed (that is, f(K) is
closed whenever K is closed). If K C X is closed, then it is compact. It follows that f(K)
is compact in Y and so f(K) is closed because Y is Hausdorff. &

Proposition 6.9 can make the comparison of quotient spaces and other spaces easier.
For example, suppose X is a compact space with an equivalence relation ~ on it, and
m: X — [X] is a quotient mapping. Given a mapping f: X — Y for which x ~ 2’ implies
f(z) = f(2'), we get an induced mapping f: [X] — Y that may be one-one, onto, and
continuous. If Y is Hausdorff, we obtain that [X] is homeomorphic to Y.

What about compact metric spaces? The diameter of a subset A of a metric space
X is defined by diam A = sup{d(z,y) | z,y € A}.

LEBESGUE’S LEMMA. Let X be a compact metric space and {U; | i € J} an open cover.
Then there is a real number § > 0 (the Lebesgue number) such that any subset of X
of diameter less than d is contained in some Uj;.

Proof: In the exercises to Chapter 3 we defined the continuous function d(—, A): X — R by
d(z,A) = inf{d(z,a) | z € A}. In addition, if A is closed, then d(z, A) > 0 for z ¢ A. Given
an open cover {U; | i € J} of the compact space X, there is a finite subcover {U;,,...,U; }.
Define ¢;(z) = d(z, X — Uy;) for j = 1,2,...,n and let p(x) = max{p1(z),...,on(z)}.
Since each x € X lies in some U;;, p(x) > ¢;(x) > 0. Furthermore, ¢ is continuous so
©(X) C R is compact, and 0 ¢ ¢(X). Let § = min{p(z) | z € X} > 0. For any =z € X,
consider B(z,d) C X. We know o(x) = ¢;(z) for some j. For that j, d(z, X — U;;) > 4,
which implies B(z,d) C Uy, . &

The Lebesgue Lemma is also known as the Pflastersatz [Alexandroff-Hopf]| (imagine
plasters covering a space) and it will play a key role in later chapters.

By analogy with connectedness and path-connectedness we introduce the local version
of compactness.

DEFINITION 6.10. A space X is locally compact if for any x € U C X where U is an
open set, there is an open set'V satisfying x € V C cls V C U with cls V' compact.
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Ezxamples: For all n, the space R" is locally compact since each cls B(Z,¢€) is compact
o0

(being closed and bounded). The countable product of copies of R, H 1R, in the product
1=

topology, however, is not locally compact. To see this consider any open set of the form

U= (a1,b1) X (ag,b2) X+ X (Gn,by) x RXR x ...

whose closure is [a1,b1] X [ag,ba] X -+ X [an,b,] X R X R x ---. This set is not compact
because there is plenty of room for infinite sets to float off without limit points. Thus
local compactness distinguishes finite and infinite products of R, a partial result toward
the topological invariance of dimension.

In the presence of local compactness and a little more, we can make a noncompact
space into a compact one.

DEFINITION 6.11. Let X be a locally compact, Hausdorff space. Adjoin a point not in
X, denoted by oo, to form'Y = X U {oco}. Topologize Y by two kinds of open sets: (1)
UcCXCY and U is open in X. (2) Y — K where K is compact in X. The space Y with
this topology is called the one-point compactification of X.

The one-point compactification was introduced by Alexandroff [Alexandroff] and is also
called the Alexandroff compactification. We verify that we have a topology on Y as follows:
For finite intersections there are the three cases: We only need to consider the case of two
open sets. (1) If V3 and V5 are both open subsets of X, then V3 NV5 is also an open subset
of X and hence of Y. (2) If both V; and V5 have the form Y — K; and Y — Ky where K,
and Ky are compact in X, then (Y — K1) N (Y — Ky) =Y — (K; UK>y) and K7 U Ky is
compact in X, so V1 NVs is open in Y. (3) If V; is an open subset of X and V5 =Y — K>
for Ky compact in X, then V1NV =V N (Y — Ky) = V1N (X — Ks) since Vi C X. Since
X — K5 is open in X, the intersection V; N V5 is open in Y.

For arbitrary unions there are three similar cases. If {Vz | 8 € I} is a collection of
open sets, then |J V3 is certainly open when V3 C X for all 8. If Vg =Y — Kz for all 3,
then DeMorgan’s law gives

UB(Y ~Kg)=Y — ﬂﬁKﬁ

and ﬂﬁ K3 is compact. Finally, if the V3 are of different types, the set-theoretic fact
UU(Y —K)=Y — (K —U) together with the fact that if K is compact, then, since K — U
is a closed subset of K, so K — U is compact. Thus the union of the Vj3 is open in Y.

THEOREM 6.12. If X is locally compact and Hausdorff, X is not compact, and Y =

X U{oo} is the one-point compactification, then'Y is a compact Hausdorff space, X is a
subspace of Y, and cls X =Y.

Proof: We first show Y is compact. If {V; | i € J} is an open cover of Y, then oo € Vj, for
some jo € J and V;, =Y — K for K;, compact in X. Since any open set in Y satisfies the
property that V; N X is open in X, the collection {V; N X | i € J,i # jo} is an open cover
of K, and so there is a finite subcover V1N X,...,V,,N X of X. Then {V},,V1,...,V,} is
a finite subcover of Y.

Next we show Y is Hausdorff. The important case to check is a separation of x € X
and oo. Since X is locally compact and X is open in X, there is an open set V' C X with
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x € V and cls V compact. Take V to contain z and Y — cls V' to contain co. Since X is
not compact, cls V # X.

Notice that the inclusion i: X — Y is continuous since i 1(Y — K) = X — K and K
is closed in the Hausdorff space X. Furthermore, ¢ is an open map so X is homeomorphic
to Y — {oo}. To prove that cls X =Y, check that co is a limit point of X: if co € Y — K,
since X is not compact, K # X so there is a point of X in Y — K not equal to oo. O

Ezample: Stereographic projection of the sphere S? minus the North Pole onto R?, shows
that the one-point compactification of R? is homeomorphic to S2. Recall that stereographic
projection is defined as the mapping from S? minus the North Pole to the plane tangent to
the South Pole by joining a point on the sphere to the North Pole and then extending this
line to meet the tangent plane. This mapping has wonderful properties ([McCleary]) and
gives the homeomorphism between R* U {oo} and S2. More generally, R" U {co} 2 S™.

Compactness may be used to define a topology on Hom(X,Y) = {f: X — Y such that
f is continuous}. There are many possible choices, some dependent on the topologies of
X and Y (for example, for metric spaces), some appropriate to the analytic applications
for which a topology is needed [Day]. We present one particular choice that is useful for
topological applications.

DEFINITION 6.13. Suppose K C X and U CY. Let S(K,U) = {f: X — Y, continuous
with f(K) C U}. The collection S = {S(K,U) | K C X compact, U C Y open} is a
subbasis for topology Ts on Hom(X,Y') called the compact-open topology. We denote
the space (Hom(X,Y),7s) as map(X,Y).

THEOREM 6.14. (1) If X is locally compact and Hausdorff, then the evaluation mapping
e X xmap(X,Y) =Y, (. f) = f(x),

is continuous. (2) If X is locally compact and Hausdorff and Z is another space, then a
function F: X x Z — Y is continuous if and only if its adjoint map F: Z — map(X,Y),
defined by F(2)(z) = F(z,z) is continuous.

Proof: Given (z,f) € X x map(X,Y) suppose f(z) € V an open set in Y. Since x €
f~Y(V), use the fact that X is locally compact to find U open in X such that z € U C
cls U c f~Y(V) with cls U compact. Then (z,f) € U x S(cls U,V), an open set of
X xmap(X,Y). If (z1, f1) € U x S(cls U, V), then fi(x1) € Vsoe(U x S(clsU,V)) CV
as needed.

Suppose F is continuous. Then F is the composite

eo(idx F): X x Z — X xmap(X,Y) — Y,

which is continuous.

Suppose F is continuous and consider F: Z — map(X,Y). Let z € Z and S(K,U) a
subbasis open set containing F (z). We show there is an open set W C Z, with z € W and
F(W) c S(K,U). Since F(z) € S(K,U), we have F(K x {z}) C U. Since F is continuous,
it follows that K x {z} C F~1(U) and F~(U) is an open set in X x Z. The subset K x {z}
is compact and so the collection of basic open sets contained in F~1(U) C X x Z gives an
open cover of K x {z}. This cover has a finite subcover, Uy x Wy, Uy x Wy, ..., U, xW,,. Let
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W =WiNnWzN---NW,, a nonempty open set in Z since z € W; for each i. Furthermore,
KxW c FYU). If 2/ € W and z € K then F(z,2') € U, and so F(W) C S(K,U) as
desired. &

The description of topology as “rubber-sheet geometry” can be made precise by pic-
turing map(X,Y). We want to describe a deformation of one mapping into another.
If f and g are in map(X,Y’), then a path in map(X,Y) joining f and g is a mapping
A:[0,1] — map(X,Y) with A(0) = f and A(1) = g. This path encodes the deforming of
f(X) to g(X) where at time ¢ the shape is A(¢)(X). We can rewrite this path using the
adjoint to define an important notion to be developed in later chapters.

DEFINITION 6.15. A homotopy between functions f,g: X — Y is a continuous function
H:X x[0,1] = Y with H(z,0) = f(x), H(z,1) = g(x). We say that f is homotopic to
g if there is a homotopy between them.

Notice that H = ), a path between f and ¢ in map(X,Y). A homotopy may be
thought of as a continuous, one-parameter family of functions deforming f into g.

We record some other important properties of the compact-open topology. The proofs
are left to the reader:

PROPOSITION 6.16. Suppose that X is a locally compact and Hausdorff space. (1) If
(Hom(X,Y),7) is another topology on Hom(X,Y') and the evaluation map,

e:X x (Hom(X,Y), 7)) =Y

is continuous, then T contains the compact-open topology. (2) If X and Y are locally
compact and Hausdorff, then the composition of functions

o:map(X,Y) x map(Y, Z) — map(X, Z)

is continuous. (3) If Y is Hausdorff, then the space map(X,Y') is Hausdorff.

Conditions on continuous mappings from X to Y lead to subsets of map(X,Y’) that
may be endowed with the subspace topology. For example, let map((X, z¢), (Y, y0)) denote
the subspace of functions f: X — Y for which f(xg) = yo. This is the space of pointed
maps. More generally, if A C X and B C Y, we can define the space of maps of pairs,
map((X, A), (Y, B)), requiring that f(A) C B.

Exercises
1. A second countable space is “almost” compact. Prove that when X is second count-

able, every open cover of X has a countable subcover (Lindel6f’s theorem).

2. Show that a compact Hausdorff space is normal (also labelled Ty), that is, given two
disjoint closed subsets of X, say A and B, then there are open sets U and V with
AcU,BcVandUNV =(.

3. A useful property of compact spaces is the finite intersection property. Suppose
that 7 = {F} | j € J} is a collection of closed subsets of X with the following property:
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FiN---N Fy # 0 for every finite subcollection {Fy, ..., Fi} of F, then ﬂFG}_F # ().

Show that this condition is equivalent to a space being compact. (Hint: Consider the
complements of the F; and the consequence of the intersection being empty.)

. Suppose X is a compact space and {z1, z2, z3, ...} is a sequence of points in X. Show
that there is a subsequence of {z;} that converges to a point in X.

. Show the easy direction of Tychonoff’s theorem, that is, if {X; | i € J} is a collection
of nonempty spaces, and the product H-GJX"' is compact, then each X; is compact.
3

. Although the compact subsets of R are easily determined (closed and bounded), things
are very different in Q C R with the subspace topology. Determine the compact
subsets of Q. We can mimic the one-point compactification of R using Q: Let (@ =
QU {0} topologized by T'= {U C Q,U open, or Q — K, where K is a compact subset
of Q}. Show that (@, T') is not Hausdorff. Deduce that Q is not locally compact.

. Proposition 6.9 states that if f: X — Y is one-one, onto, and continuous, if X is
compact, and Y is Hausdorff, then f is a homeomorphism. Show that the condition
of Y Hausdorff cannot be relaxed.

. Prove Proposition 6.16.



