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So what is mathematics?

Mάθηµα

“What one gets to know” or “what one learns”



From A Mathematician’s Lament by Paul Lockhart

“. . . nobody has the faintest idea what it is that mathematicians
do.”

Mathematics is an art.

G.H. Hardy: “A mathematician, like a painter or poet, is a
maker of patterns. If his patterns are more permanent that
theirs, it is because they are made with ideas.



The Pigeonhole Principle

Suppose there are 200 pigeonholes in a local post office for
patrons’ mail. On a particular Monday, after all the mail has
been picked up over the weekend and the boxes are empty, a
sack of mail comes in containing 201 letters. What can you
conclude?

Now suppose we know only that there are more than 200 letters
in the sack?

A mathematician likes to make an abstract version of her
experience. So perhaps we just say there are N many
pigeonholes and there are more than N letters that arrive in the
sack. What can you conclude?



A little long division

Let’s divide 7919 by 13. Using long division we get what we see
on the board.

Other examples:

2

3
= 0.66

1

7
= 0.142857142857

1

11
= 0.0909



A little long division

Proposition. A rational number is represented by an infinite
repeating decimal.

Proof (a convincing argument): Suppose we divide q into p
where p and q are positive integers. If q divides p, then p = qd

and
p

q
= d.000. Suppose there is a positive remainder

p = qd+ r. The remainder will be between 0 and q, 0 < r < q.
We bring down a 0 (r × 10) and divide again. We produce
another remainder 0 ≤ r1 < q. If we get 0’s for the rest of the
way. Notice that there are q − 1 possible nonzero remainders, 1,
2, 3, . . . , q − 1. If we do the divisions bringing down zeroes q
times, we have q nonzero remainders from among q − 1
possibilities. Some remainder must repeat! If it repeats, we get
an infinite repeating decimal. By the Pigeonhole Principle, it
has to repeat.



A little long division

The proposition above flows one way, a fraction has a repeating
decimal. It could be that some repeating decimal represents a
number that is NOT a rational number. That would lead to
some confusion. Let”s see how an example works.

r = 1.234567567.

What does this mean?

r = 1 +
234

1000
+

567

10002
+

567

10003
+ · · ·



A little long division

Don’t be fooled – a sum of infinitely many fractions need not be
a fraction as we will soon see. Let’s do some arithmetic:

r = 1 +
234

1000
+

567

10002

(
1 +

1

1000
+

1

10002
+ · · ·

)

Suppose s = 1 +
1

1000
+

1

10002
+

1

10003
+ · · · . Then

1000s = 1000 + 1 +
1

1000
+

1

10002
+ · · · = 1000 + s. Then

999s = 1000 and s =
1000

999
, a fraction.

Therefore r = 1+
234

1000
+

567

10002
· 1000
999

, a finite sum of fractions,

and hence a fraction.



Rational/irrational

This calculation leads from any infinite repeating decimal to
some rational number. So we have proved:

Theorem. Numbers represented by an infinite repeating
decimal are exactly the rational numbers.

This means that an infinite nonrepeating decimal does not
represent a rational number. For example,

L = 0.101001000100001000001 · · ·

=
1

101
+

1

101+2
+

1

101+2+3
+

1

101+2+3+4
+ · · ·

Because the strings of 0’s grow bigger and bigger, if part
repeated, it would eventually fall into a string of consecutive 0’s
and so be 0. But evidently a 1 appears every so often forever.
This number is called Liouville’s number, an irrational
number.



Rational/irrational

Also, if a number is irrational for some reason, then it has a
nonrepeating decimal representation.

Claim:
√
2 is irrational.

Proof (see Aristotle). Suppose
√
2 is rational. Then

√
2 =

p

q

with p and q whole numbers and
p

q
is in lowest terms, meaning,

if any number divides p it does not divide q, and vice versa. By

squaring, 2 =
p2

q2
and 2q2 = p2. Since the left hand side is even,

p2 is even. Now an even number squared is even, and an odd
number squared is odd. So p is even. Say p = 2r, then
p2 = (2r)2 = 4r2 = 2q2 and so 2r2 = q2 and q is even. But then
2 divides both p and q, a contradiction. How did this happen?
Working our way back through the argument, the error must
have been made at the beginning and so

√
2 is not a rational

number.



Rational/irrational

√
2 = 1.41421355237 . . . is an infinite, nonrepeating

decimal.

This argument generalizes to other square roots and higher
roots of 2.



Infinities
Theorem of Georg Cantor. The infinity of real numbers is
larger than the infinity of the counting numbers.

The counting numbers are 1, 2, 3, . . . . If we consider only the
real numbers between 0 adn 1, then we can represent them as
infinite decimals of the form 0.a1a2a3 . . ..

If we could count all the real numbers between 0 and 1, we
would get an infinite list:

r1 = 0.a11a12a13a14 . . .

r2 = 0.a21a22a23a24 . . .

r3 = 0.a31a32a33a34 . . .

...

rn = 0.an1an2an3an4 . . .

...



Infinities

If the infinity of the counting numbers and the real numbers
between 0 and 1 were the same, then we could include every
real number between 0 and 1 in the list. Consider the following
procedure that gives a number, call it

R = 0.b1b2b3 . . . .

bn =

{
7, if 0 ≤ ann ≤ 4,

2, if 5 ≤ ann ≤ 9.

Notice that bn ̸= ann for any n and so R differs from every real
number in the list. For example, if we look at r50, then R differs
from r50 at the 50th decimal place.



Infinities

Hence the list is incomplete. Even if we added R to the list by
shifting the list, there would be another version of R that would
be missed. Therefore, the collection of real numbers between 0
and 1 is larger than the collection of counting numbers, a bigger
infinity.

(There are a few details that I have left out. They can be filled
in nicely and any difficulties overcome.)

You might say, why not use the rational numbers to count the
real numbers? There seem to be more of them than there are
counting numbers. But, in fact, that is not correct. The infinity
of the counting numbers is the same as the infinity of the
rational numbers – because we can list them!



Infinities
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