On the Number of Rational Iterated Pre-Images of -1 under Quadratic Dynamical Systems

Trevor Hyde Department of Mathematics Amherst College Amherst, Massachusetts 01002 USA

Received: October 21, 2009

Accepted: March 10, 2010

ABSTRACT

For the class of functions $f_c(x) = x^2 + c$, we prove a conditional bound on the number of rational solutions to $f_c^N(x) = -1$ and make computational conjectures for a bound on the number of rational solutions to $f_c^N(x) = a$ for a in a specific subset of the rationals.

I. INTRODUCTION

a. Definitions

Fix a rational number $c \in \mathbb{Q}$ and define a function f by $f_c(x) = x^2 + c$. Let f_c^N denote the N^{th} iterate of f_c defined as $f_c^N(x) = f_c(f_c^{N-1}(x))$. Important concepts in the theory of arithmetic dynamics include periodic points, preperiodic points and preimages:

Definition: A point x_0 is *periodic* if $f_c^N(x_0) = x_0$ for some $N \ge 1$.

Definition: A point x_0 is *preperiodic* if $f_c^N(x_0) = f_c^M(x_0)$ for some N, M > 0 such that $N \neq M$.

Definition: Fix $a \in \mathbb{Q}$. A point x_0 is an N^{th} pre-image of a if $f_c^N(x) = a$, we say $x_0 \in f_c^{-N}(a)$.

In this paper we investigate preimages. More precisely, we consider the problem of determining how many preimages of a fixed rational number are rational. Before discussing what is known, we introduce some terminology.

Definition: The set of *rational pre-images of* a is

$$\bigcup_{N\geq 1} f_c^{-N}(a)(\mathbb{Q}) = \{x_0 \in \mathbb{Q}: f_c^N(x_0)\}$$

$$= a \text{ for some } N > 1\}$$

Definition: The set of points in the (x,c)-plane satisfying the equation $f_c^N(x) = a$ is called the N^{th} pre-image curve of a, denoted $Y^{pre}(N,a)$.

Here is an example of the type of problem we will consider.

Example: $a = -\frac{3}{4}$ and $c = -\frac{229}{144}$ Let us find the set of rational pre-images:

$$f_c^{-1}(a)(\mathbb{Q}) = \left\{ \pm \frac{11}{12} \right\},$$

$$f_c^{-2}(a)(\mathbb{Q}) = \left\{ \pm \frac{19}{12} \right\},$$

$$f_c^{-3}(a)(\mathbb{Q}) = \left\{ \pm \frac{1}{12} \right\},\,$$

and

$$f_c^{-4}(a)(\mathbb{Q}) = \emptyset.$$

Since $c\in\mathbb{Q}$, we have $f_c\left(\frac{p}{q}\right)\in\mathbb{Q}$ for all rational numbers $\frac{p}{q}$. Therefore, if $f_c^{-N}(a)(\mathbb{Q})=\emptyset$ then $f_c^{-M}(a)(\mathbb{Q})=\emptyset$ for all M>N>0. Hence, there are 6 rational preimages of $a=-\frac{3}{4}$ for $c=-\frac{229}{144}$.

In [3], the authors prove that for all $a \in \mathbb{Q}$, there are finitely many rational pre-

¹ For more on periodic and preperiodic points, see [4], [5].

images of a and that there exists a bound $\kappa(a)$ independent of c, on the size of the set of rational pre-images of a.

Theorem 1.1. ([3], Thm. 1.2 for B=D=1) *Fix* $a \in \mathbb{Q}$. *If we define the quantity*

$$\kappa(a) = \sup_{c \in \mathbb{Q}} \# \left\{ \bigcup_{N > 1} f_c^{-N}(a)(\mathbb{Q}) \right\},\,$$

Then $\kappa(a)$ is finite.

This result has a strong analog in the theory of elliptic curves. Let E/\mathbb{Q} be an elliptic curve with a group of rational points $E(\mathbb{Q})$. Mazur's Theorem says that the torsion subgroup of $E(\mathbb{Q})$ is isomorphic to one of fifteen possible groups. In the language of arithmetic dynamics, if \mathcal{O} is the identity for $E(\mathbb{Q})$ and $[m]: E(\mathbb{Q}) \to E(\mathbb{Q})$ is the multiplication by m map (if $\mathcal{P} \in E(\mathbb{Q})$ then $[m](\mathcal{P})$ "adds" \mathcal{P} to itself m times) then Mazur's Theorem says that the number of pre-images of \mathcal{O} under [m] is finite and bounded above independent of the choice of elliptic curve E/\mathbb{Q} .

Theorem 1.2. ([2], Thm. 2.1—Mazur) Let E/\mathbb{Q} be an elliptic curve. If we define the quantity

$$\kappa' = \sup_{E(\mathbb{Q})} \# \left\{ \bigcup_{N>1} [m]^{-N} (\mathcal{O})(\mathbb{Q}) \right\}$$

then κ' is finite.

b. Computing $\kappa(a)$.

Although Theorem 1.1 ensures that $\kappa(a)$ exists, it does not provide a method for computing $\kappa(a)$. In [2], the authors conditionally prove $\kappa(0) \leq 8$ and conjecture $\kappa(0) = 6$. Let $X^{pre}(N,a)$ be the projective closure of the affine curve $Y^{pre}(N,a)$. The key to their proof is the fact that $X^{pre}(3,0)$ is birationally equivalent to a rank 1 elliptic curve, and then use a height argument to reduce the problem to a finite amount of computation. They conclude 0 has at most 2 rational 3^{rd} pre-images for all $c \in \mathbb{Q}$ excluding finitely many c corresponding to periodic points ([2], Prop. 5.3). A nearly

identical argument will be used in this paper to prove:

Theorem 1.3. Suppose for $c \in \mathbb{Q}$ such that $c \neq -2$, $f_c^N(x) = -1$ has no rational solution for $N \geq 4$, then $\kappa(-1) = 6$.

Remark: Note that -1 is a periodic point of f_{-2} . For this morphism, -1 has at least one rational N^{th} pre-image for arbitrary N.

Falting's Theorem tells us that curves with genus³ greater than 1 contain finitely many rational points. From [3] (Thm. 3.2), we know that the genus of X^{pre} (4, -1) is 5 and thus contains finitely many rational points. In other words, the are finitely many rational c-values for which $f_c^{-4}(-1)(\mathbb{Q}) \neq \emptyset$.

In a search performed by Benjamin Hutz across a-values up to height 50, only $a \in \left\{-\frac{5}{4}, -1, -\frac{3}{4}, -\frac{1}{2}, 0, \frac{1}{4}\right\}$ have 3^{rd} preimage curves birational to an elliptic curve with rank 1 (vital to the proof for the value of $\kappa(a)$ for a = -1, 0).

In the last section, we present computational evidence for no rational 4^{th} pre-images of -1 as well as for the conjectural $\kappa(a)$ of the other rank 1 a-values.

II. BACKGROUND

a. Elliptic Curves

Consider a rational cubic polynomial in two variables

$$a_0x^3 + a_1x^2y + a_2xy^2 + a_3y^3 + a_4x^2 + a_5xy + a_6y^2 + a_7x + a_8y + a_9 = 0$$

with each $a_i \in \mathbb{Q}$ (we say a polynomial is *rational* if all of its coefficients are in \mathbb{Q}). The solutions of such an equation form an affine planar curve, which we shall call E. Suppose we want to find all the rational points of E (a *rational* point is a point with both coordinates in \mathbb{Q}). There is no known algorithm for finding a rational point on an

20

² See section II for background on elliptic curves.

³ Genus is an invariant of algebraic varieties. Defining it here would take us too far afield. It suffices to know that an elliptic curve is technically defined as a non-singular curve with genus 1 and a rational point.

^⁴ See section II b.

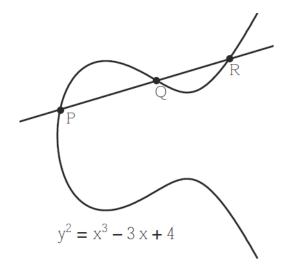


Figure 1. Finding a third rational point given two on an elliptic curve.

arbitrary cubic curve, but suppose we were able to find two rational points \mathcal{P} and \mathcal{Q} on E. The line $\overline{\mathcal{P}\mathcal{Q}}$ would be rational and in general, $\overline{\mathcal{P}\mathcal{Q}}$ would intersect E at one other point, \mathcal{R} . 5

The intersection of $\overline{\mathcal{PQ}}$ and E results in a rational cubic: since two of its roots are rational so is the third. Thus, given any two rational points on E we have a binary operation that gives a third rational point on E. After working through some technical details, one can see that the set of rational points on E forms a group $E(\mathbb{Q})$ with respect to the "addition" of points. A non-singular cubic curve with at least one rational point is called an *elliptic curve*.

A fundamental result in the theory of elliptic curves is due to Mordell (see [7]).

Theorem 2.1. ([7], Mordell's Theorem) If a non-singular plane cubic curve E contains a rational point, the group of rational points $E(\mathbb{Q})$ is finitely generated.

Since the operation on $E(\mathbb{Q})$ is commutative, the group of rational points

For a more complete treatment of elliptic curves, see [6] and [7].

b. Height Functions

Height functions measure the arithmetic complexity of a number. We define the height of a rational number $\frac{m}{n}$ as follows:

Definition: The height of $\frac{m}{n} \in \mathbb{Q}$ with (m,n)=1 is

$$H\left(\frac{m}{n}\right) = max(|m|,|n|).$$

If E is an elliptic curve and $\mathcal{P} \in E(\mathbb{Q})$, then we say the height of \mathcal{P} is the height of the x-coordinate of \mathcal{P} :

$$H(\mathcal{P}) = H(\chi(\mathcal{P})).$$

Height functions have quasi-multiplicative properties but often it is useful to convert these to additive properties by way of the *logarithmic height*.

⁽called the *Mordell-Weil group*) is isomorphic to the direct product of a finite number of copies of \mathbb{Z} (the number of copies is known as the *rank* of $E(\mathbb{Q})$ and a finite number of cyclic groups (called *torsion subgroups* of $E(\mathbb{Q})$).

⁵ There are exceptions in the non-projective plane, but if we embed E in the projective plane \mathbb{P}^2 and count multiplicities, then the statement holds in general.

⁶ A single rational point can be "added" to itself by finding the tangent to the curve at that point which will intersect the curve a one other point.

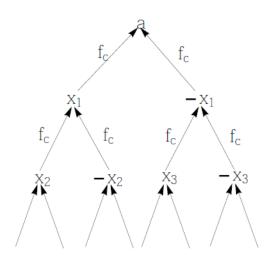


Figure 2. Pre-images of a.

Definition: The *logarithmic height*, denoted h, is defined on \mathbb{P}^1 as $h\left(\frac{m}{n}\right) = \log H\left(\frac{m}{n}\right)$.

The following theorem describes the relationship between the height of a point and its double.

Theorem 2.2. [7] There is a constant C, independent of \mathcal{P} , such that

$$h(2\mathcal{P}) \ge 4h(\mathcal{P}) - C$$

for all $\mathcal{P} \in E(\mathbb{Q})$.

The difficulty in working with this formula is the constant C. However, we can work around C with the *canonical height*.

Definition: The *canonical height*, denoted \hat{h} , is defined as

$$\widehat{h}(\mathcal{P}) = \frac{1}{\deg f} \lim_{N \to \infty} \frac{h(f([2^N]\mathcal{P}))}{4^N},$$

where $f: E(\mathbb{Q}) \to \mathbb{R}$ is any even function.

Now we can restate Theorem 2.2 using the canonical height.

Theorem 2.3. ([6], Thm. 9.3b) For all $\mathcal{P} \in E(\mathbb{Q})$,

$$\hat{h}(2\mathcal{P}) \ge 4\hat{h}(\mathcal{P}).$$

The following theorem describes the relationship between the canonical and logarithmic height.

Theorem 2.4. ([6], Thm. 9.3b) Let f be an even function. Then for all $\mathcal{P} \in E(\mathbb{Q})$,

$$(\deg f)\hat{h}(\mathcal{P}) = h_f(\mathcal{P}) + C$$
,

where C is a constant independent of \mathcal{P} .

For a more complete treatment of height functions, see [6] and [7].

III. COMPUTING $\kappa(-1)$

In this section we will prove our main result, Theorem 1.3, by proving that there are at most 2 rational 1^{st} , 2^{nd} , and 3^{rd} pre-images. We begin with a trivial maximum upper bound on the size of the set $f_c^{-N}(a)$. Since f_c is quadratic, the N^{th} pre-image curve has $deg(X^{pre}(N,a)) = 2^N$; thus, there are at most 2^N elements in $f_c^{-N}(a)(\mathbb{Q})$ (see Figure 2). Non-zero rational pre-images will always come in pairs because if $x_0 \in f_c^{-N}(a)(\mathbb{Q})$ then $-x_0 \in f_c^{-N}(a)(\mathbb{Q})$.

a. Second Pre-Images

We are ready to prove:

Proposition 3.1. The set $f_c^{-2}(-1)(\mathbb{Q})$ has at most 2 elements for all $c \in \mathbb{Q}$.

Proof. Fix $a \in \mathbb{Q}$ and suppose there exists $c \in \mathbb{Q}$ such that for rational numbers q, r, s,

$$f_c(\pm q) = s$$
, $f_c(\pm r) = -s$, and $f_c(\pm s) = a$.

That is, suppose there exists $c \in \mathbb{Q}$ such that a has four rational 2^{nd} pre-images. From the above system we derive,

$$s = \frac{1}{2}(q^2 - r^2), \quad c = \frac{1}{2}(q^2 + r^2),$$

and

$$c = -(s^2 - a).$$

Substitution yields

$$\frac{1}{2}(q^2+r^2) = \frac{1}{4}(q^2-r^2) - a,$$

and after homogenizing and rearranging,

$$Q^4 - 2Q^2R^2 + R^4 - 2Q^2W^2 - 2R^2W^2 - 4aW^4 = 0.$$

with $Q, R, W \in \mathbb{Z}$.

Let this equation define an algebraic set $S^{pre}\left(a\right)$ in the projective (Q,R,W)-space. For arbitrary a, the set $S^{pre}\left(a\right)$ is a genus 1 curve containing the rational point (Q,R,W)=(1,1,0). Thus $S^{pre}\left(a\right)$ is an elliptic curve. Hereafter, we will refer to $S^{pre}\left(a\right)$ as the full 2^{nd} pre-image curve. For a=-1, Bosma et al. [1] tell us

For a=-1, Bosma et al. [1] tell us that $S^{pre}(a)$ has rank 0 and torsion subgroup of order 8. So $\#S^{pre}(a)$ is finite and all rational points can be obtained using the arithmetic of the elliptic curve. This produces six points in $S^{pre}(a)$:

$$\begin{array}{lll} \mathcal{P}_1 = & (1:1:0), & \mathcal{P}_2 = & (1:-1:0), \\ \mathcal{P}_3 = & (-1:1:1), & \mathcal{P}_4 = & (1:1:1), \\ \mathcal{P}_5 = & (1:-1:1), & \mathcal{P}_6 = & (1:1:-1). \end{array}$$

 \mathcal{P}_1 and \mathcal{P}_2 are points at infinity and hence not on the same affine part of the curve. The four other points correspond to c=-1, which has two distinct 2^{nd} pre-images because s=0. Therefore, there does not exist $c\in\mathbb{Q}$ such that $f_c^{-2}(a)(\mathbb{Q})$ has four elements. This concludes the proof.

b. Third Pre-Images

Next we prove:

Proposition 3.2. The set $f_c^{-3}(-1)(\mathbb{Q})$ has at most 2 elements for all $c \in \mathbb{Q}$.

Proof. The proof is nearly identical to that of [2] (Prop. 5.3). Consequently, we omit some details for the sake of brevity. From [3] (Thm. 3.2) we find that $X^{pre}(3,-1)$ has genus 1 and contains the rational point (x,c)=(0,-1) so it is birational to an elliptic curve with an affine Weierstrass model [1] of the form $v^2=u^3+2u^2-5u+3$, hereafter referred to as E. The birational map for the

c-coordinate from E to $X^{pre}(3,-1)$ is given by

$$c = \frac{-u^4 - 2u^2 + 4u - 2}{(u^2 - 1)^2}.$$

According to Bosma et al. [1], E has rank 1 and no torsion. For $\mathcal{P} \in E(\mathbb{Q})$, let $u(\mathcal{P})$ denote the u-coordinate of \mathcal{P} . Define the even rational function g as

$$g(\mathcal{P}) = \frac{-u(\mathcal{P})^4 - 2u(\mathcal{P})^2 + 4u(\mathcal{P}) - 2}{(u(\mathcal{P})^2 - 1)^2}.$$

Then we may define a new height function $h_q(\mathcal{P}) = h(g(\mathcal{P}))$.

If (x_1,c_0) and (x_2,c_0) are rational points on $X^{pre}(3,-1)$ corresponding to points \mathcal{P}_1 and \mathcal{P}_2 on E, then $h_g(\mathcal{P}_1)=h_g(\mathcal{P}_2)$ because h_g depends only on c. Our strategy relies on the fact that E has rank 1, because we will be able to show that if a point \mathcal{P} has sufficiently large height, then $-\mathcal{P}$ is the only other point of the same height. This reduces our problem to checking a finite number of points.

Following [2] (Prop. 5.3) and [6], we can bound the difference between the canonical height \hat{h} on E and the modified height h_g . Since $\deg(g)=8$, the difference is bounded by the inequality

$$\left|8\hat{h}(\mathcal{P}) - h_g(\mathcal{P})\right| \le \frac{1}{3}\log C$$

where $\mathcal{P} \in E(\mathbb{Q})$, for an explicit constant $C \approx 1.41 \times 10^{129}$ computed with PARI/gp [8].

 $E(\mathbb{Q})$ has rank 1, so we can choose a generator $\mathcal{P}_0=(-1,-3)$, and for any $n\geq 1$ the above inequality and properties of the canonical height reveal

$$\begin{split} h_g([n+1]\mathcal{P}_0) - h_g([n]\mathcal{P}_0) &> 8\hat{h}([n+1]\mathcal{P}_0) - 8\hat{h}([n]\mathcal{P}_0) - \frac{2}{3}\log\mathcal{C} \\ &= 8(n+1)^2\hat{h}(\mathcal{P}_0) - 8n^2\hat{h}(\mathcal{P}_0) - \frac{2}{3}\log\mathcal{C} \\ &= 8(2n+1)\hat{h}(\mathcal{P}_0) - \frac{2}{3}\log\mathcal{C} \end{split}$$

It follows that the difference above is positive as soon as

$$n \ge \frac{1}{2} \left(\frac{\log C}{12 \hat{h}(\mathcal{P}_0)} - 1 \right) \approx 417.25$$

With $\hat{h}(\mathcal{P}_0) \approx 0.059$ [8]. This tells us that if n > 417, $g([n+1]\mathcal{P}_0) \neq g([n]\mathcal{P}_0)$ and for $c = g([n]\mathcal{P}_0)$, we have $\#f_c^{-3}(-1)(\mathbb{Q}) = 2$. Therefore, our problem is reduced to verifying that for $1 \leq n \leq 417$, $\#f_c^{-3}(-1)(\mathbb{Q}) = 2$. This computation was done with PARI/gp [8] and the result was affirmative.

c. Proof of Theorem 1.3

We are now ready to prove Theorem 1.3.

Proof. For any rational $c \neq 2$, Proposition 3.1 and Proposition 3.2 imply that

$$\kappa(-1) \leq \#f_c^{-1}(-1)(\mathbb{Q}) + \#f_c^{-2}(-1)(\mathbb{Q}) + \#f_c^{-3}(-1)(\mathbb{Q}) \leq 2 + 2 + 2 = 6$$

For

$$c = -\frac{113}{64}$$

$$\#\left\{\bigcup_{N\geq 1}f_c^{-N}\left(-1\right)(\mathbb{Q})\right\}=6$$

So this bound is optimal. Hence, $\kappa(-1) = 6$.

IV. COMPUTATIONAL EVIDENCE

a. Fourth Pre-images

We proved $\kappa(-1)=6$ under the condition that $f_c^{-4}(-1)(\mathbb{Q})=\emptyset$. A search for points on the elliptic curve birational to $X^{pre}(3,-1)$ up to logarithmic height 10^5 found no c-values with 4^{th} pre-images.

b. Conjectural $\kappa(a)$

Recall that a search of rationals up to height 50 found only 6 a-values for which $X^{pre}(3, a)$ is birational to a rank 1 elliptic curve.

$$a \in \left\{-\frac{5}{4}, -1, -\frac{3}{4}, -\frac{1}{2}, 0, \frac{1}{4}\right\}.$$

Of these, $\kappa(a)$ has been conditionally proven for a=0 [2] and a=-1. Here we conjecture $\kappa(a)$ for $a\in\left\{-\frac{5}{4},-\frac{3}{4},-\frac{1}{2},\frac{1}{4}\right\}$.

conjecture $\kappa(a)$ for $a \in \left\{-\frac{5}{4}, -\frac{3}{4}, -\frac{1}{2}, \frac{1}{4}\right\}$. With Bosma et al [1] it was determined for each $a \in \left\{-\frac{5}{4}, -\frac{3}{4}, -\frac{1}{2}, \frac{1}{4}\right\}$ that $S^{pre}(a)$ is birational to an elliptic curve with rank 0 and torsion subgroup of order 4, implying $\#S^{pre}(a)$ is finite. Mapping back from the elliptic curve to $S^{pre}(a)$, we find only two rational points $(Q, R, W) = (1, \pm 1, 0)$

which are points at infinity. Thus $\#f_c^{-2}(a)(\mathbb{Q}) \leq 2$ for each a.

Since $X^{pre}(3,a)$ has rank 1, we were able to utilize the arithmetic of the curve to search for c-values corresponding to rational 3^{rd} pre-images. Searching points with PARI/gp [8] up to logarithmic height 2.5 \times 10^4 , each a value had two rational 3^{rd} pre-images and 0 rational 4^{th} pre-images. There were finitely many exceptions corresponding to f_c for which a was a periodic point. We conclude with a conjecture.

Conjecture 4.1. If rank $X^{pre}(3, a) = 1$, then $\kappa(a) = 6$.

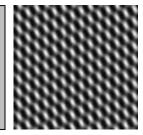
REFERENCES

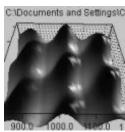
- Wieb Bosma, John Cannon, and Catherine Playoust. "The magma algebra system I" The User language 24(3-4) (1997) 235-265.
- Xander Faber and Benjmin Hutz. "On the number of rational iterated preimages of the origin under quadratic dynamical systems" arXiv:0810.1715 (2008).
- Xander Faber, Benjamin Hutz, Patrick Ingram, Rafe Jones, Michelle Manes, Thomas J. Tucker, and Michael E. Zieve. "Uniform bounds on pre-images under quadratic dynamical systems" Mathematical Research Letters 16(1) (2009) 87-101.
- Patrick Morton and Joseph H. Silverman. "Rational periodic points of rational functions" *International* Mathematics Research Notices 2 (1994) 97-110.
- 5. Bjorn Poonen. "The complete classification of rational preperiodic points of quadratic polynomials over Q:

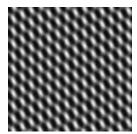
- a refined conjecture" *Mathematische Zeitscrift* **228**(1) (1998) 11-29.
- Joseph Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in Mathematics (Springer-Verlag, New York, 1992).
- 7. Joseph H. Silverman and John Tate. Rational Points on Elliptic Curves,
- Undergraduate Texts in Mathematics (Springer-Verlag, New York, 1992).
- 8. The PARI Group, Bordeaux. *PARI/gp, version 2.3.2*, (2007). Available from http://pari.math.u-bordeaux.fr/

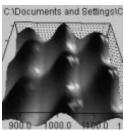
Center for Education in Nanoscience & Nanotechnology

University of Northern Iowa • Cedar Falls • Iowa • USA
A federally-funded initiative to educate a high-tech
professional workforce in nanoscience and nanotechnology









UNI Physics provides students with the personal mentoring typical of smaller colleges but adds the resources of a larger research university. Students and faculty work together on research projects, and students have the opportunity to continue research during summers as paid Undergraduate Research Fellows in Physics.

www.uni.edu/physics

Sigma Xi, The Scientific Research Society • 99 Alexander Drive • P.O. Box 13975 • Research Triangle Park, NC 27709 • 919-549-4691 • 800-243-6534