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Abstract We study for each n a one-parameter family of complex-valuedmeasures on
the symmetric group Sn , which interpolate the probability of amonic, degree n, square-
free polynomial in Fq [x] having a given factorization type. For a fixed factorization
type, indexed by a partition λ of n, the measure is known to be a Laurent polynomial.
We express the coefficients of this polynomial in terms of characters associated to Sn-
subrepresentations of the cohomology of the pure braid group H•(Pn, Q). We deduce
that the splitting measures for all parameter values z = − 1

m (resp. z = 1
m ), after

rescaling, are characters of Sn-representations (resp. virtual Sn-representations).
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1 Introduction

The purpose of this paper is to study for each n ≥ 1 a one-parameter family of complex-
valued measures on the symmetric group Sn arising from a problem in number theory,
and to exhibit an explicit representation-theoretic connection between these measures
and the characters of the natural Sn-action on the rational cohomology of the pure
braid group Pn .
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This family of measures, denoted ν∗
n,z , was introduced by Lagarias and Weiss

(2015), where they were called z-splitting measures, with parameter z. The mea-
sures interpolate from prime power values z = q the probability of a monic, degree n,
square-free polynomial in Fq [x] having a given factorization type. Square-free factor-
ization types are indexed by partitions λ of n specifying the degrees of the irreducible
factors. Each partition λ of n corresponds to a conjugacy class Cλ of the symmetric
group Sn ; distributing the probability of a factorization of type λ equally across the
elements of Cλ defines a probability measure on Sn . A key property of the resulting
probabilities is that their values for each fixed partition λ are described by a rational
function in the size of the field Fq as q varies. This property permits interpolation from
q to a parameter z ∈ P

1(C) on the Riemann sphere, to obtain a family of complex-
valued measures ν∗

n,z on Sn given in Definition 2.3 below.
On the number theory side, these measures connect with problems on the splitting

of ideals in Sn-number fields, which are degree n number fields formed by adjoining a
root of a degree n polynomial overZ[x]whose splitting field has Galois group Sn . The
paper (Lagarias and Weiss 2015, Theorem 2.6) observed that for primes p < n these
measures vanish on certain conjugacy classes, corresponding to the phenomenon of
essential discriminant divisors of polynomials having Galois group Sn , first noted by
Dedekind (1878). These measures converge to the uniform measure on the symmetric
group as z = p → ∞, and in this limit agree with a conjecture of Bhargava (2007,
Conjecture 1.3) on the distribution of splitting types of the prime p in Sn-extensions
of discriminant |D| ≤ B as the bound B → ∞, conditioned on (D, p) = 1.

The second author subsequently studied these measures interpolated at the special
value z = 1, viewed as representing splitting probabilities for polynomials over the
(hypothetical) “field with one element F1” (Lagarias 2016). These measures, called
1-splitting measures, turn out to be signed measures for all n ≥ 3. They are supported
on a small set of conjugacy classes, the Springer regular elements of Sn which are those
conjugacy classes Cλ for which λ has a rectangular Young diagram or a rectangle plus
a single box. Treated as class functions on Sn , rather than as measures, they were
found to have a representation-theoretic interpretation: after rescaling by n!, the 1-
splitting measures are virtual characters of Sn corresponding to explicitly determined
representations. As n varies, their values on conjugacy classes were observed to have
arithmetic properties compatible with the multiplicative structure of n; letting n =∏

p pep be the prime factorization of n, the value of the measure on each conjugacy
class factors as a product of values on classes of smaller symmetric groups Spep .
That paper also showed the rescaled z-splitting measures at z = −1 have a related
representation-theoretic interpretation.

In this paper we extend the representation-theoretic interpretation to the entire
family of z-splitting measures and relate it to the cohomology of the pure braid group.
Our starting point is the observation made in Lagarias (2016, Lemma 2.5) that for
a fixed conjugacy class the z-splitting measures are Laurent polynomials in z. They
have degree at most n − 1, so may be written

ν∗
n,z(Cλ) =

n−1∑

k=0

αk
n(Cλ)

(
1
z

)k
,
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with rational coefficients αk
n(Cλ), where λ is a partition of n. We call the αk

n(Cλ)

splitting measure coefficients. A main observation of this paper is that each splitting
measure coefficient αk

n(Cλ), viewed as a function of λ, is a rescaled character χk
n of a

certain Sn-subrepresentation Ak
n of the cohomologyof the pure braid group Hk(Pn, Q).

The pure braid groups Pn and their cohomology, alongwith the subrepresentations Ak
n ,

are defined and discussed in Sect. 4. In Sect. 4.3 we identify the Sn-representation Ak
n

with the cohomology of a complex manifold Yn carrying an Sn-action. We deduce as a
consequence a topological interpretation of the 1-splitting measure as a rescaled ver-
sion of the Sn-equivariant Euler characteristic of Yn . We also deduce that the rescaled
z-splitting measure is a character of Sn at z = − 1

m and is a virtual character of Sn at
z = 1

m , for all integers m ≥ 1.
The last result extends the representation-theoretic connection of Lagarias (2016)

for z = ±1 to parameter values z = ± 1
m for all m ≥ 1.

1.1 Results

The z-splitting measure on a conjugacy class Cλ of Sn is the rational function of z

ν∗
n,z(Cλ) := Nλ(z)

zn − zn−1 ,

where Nλ(z) ∈ Q[z] denotes the cycle polynomial associated to a partitionλ describing
the cycle lengths of Cλ. Given λ = (

1m1(λ)2m2(λ) · · · nmn(λ)
)
, the associated cycle

polynomial is

Nλ(z) :=
∏

j≥1

(
Mj (z)

m j (λ)

)

, (1.1)

where Mj (z) denotes the j th necklace polynomial. The necklace polynomial M j (z)
of order j is given by

Mj (z) := 1

j

∑

d| j
μ(d)z j/d .

where μ(d) is the Möbius function.
To avoid confusion wemake a remark on values of measures. Given a class function

f on Sn we write f (Cλ) to mean the sum of the values of f on Cλ, and write f (λ) to
mean the value f (g) taken at one element g ∈ Cλ; the latter notation is standard for
characters. Thus ν∗

n,z(Cλ) = |Cλ|ν∗
n,z(λ).

In Sect. 3 we express the coefficients of the family of cycle polynomials Nλ(z)
in terms of characters of the cohomology of the pure braid group Pn viewed as an
Sn-representation.
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222 T. Hyde, J. C. Lagarias

Theorem 1.1 (Character interpretation of cycle polynomial coefficients) Let λ be a
partition of n and Nλ(z) be a cycle polynomial. Then

Nλ(z) = |Cλ|
n!

n∑

k=0

(−1)khkn(λ)zn−k .

where hkn is the character of the kth cohomology of the pure braid group Hk(Pn, Q),
viewed as an Sn-representation.

Theorem 1.1 is a rescaled version of a result of Lehrer (1987, Theorem 5.5). Lehrer
arrived at it from his study of the Poincaré polynomials associated to the elements of
a Coxeter group acting on the complements of certain complex hyperplane arrange-
ments. We arrived at it through a direct study of the cycle polynomial Nλ(z) appearing
in the definition of the z-splitting measure, relating it to representation stability using
the twisted Grothendieck–Lefschetz formula of Church et al. (2014, Prop. 4.1). We
include a proof of Theorem 1.1 (as Theorem 3.2); the method behind this proof also
traces back to work of Lehrer (1992).

At the end of Sect. 3we applyTheorem1.1 togetherwith the formula (1.1) for Nλ(z)
to obtain explicit expressions for various characters hkn showing number-theoretic
structure, and to determine restrictions on the support of various hkn .

In Sect. 4 we review Arnol’d’s presentation of the cohomology ring of the pure
braid group. In Sect. 4.2 we use it derive an exact sequence determining certain Sn-
subrepresentations Ak

n of Hk(Pn, Q) which play the main role in our results. These
subrepresentations lead to a direct sum decomposition Hk(Pn, Q) � Ak−1

n ⊕ Ak
n ,

for each k ≥ 0. In Sect. 4.3 we interpret the Ak
n as the cohomology of an (n − 1)-

dimensional complex manifold Yn that carries an Sn-action. The manifold Yn is the
quotient of the pure configuration space PConfn(C) of n distinct (labeled) points in
C by a free action of C

×.
The main result of this paper, given in Sect. 5, expresses the z-splitting measures

ν∗
n,z in terms of the characters χk

n of the Sn-representations Ak
n .

Theorem 1.2 (Character interpretation of splittingmeasure coefficients)For eachn ≥
1 and 0 ≤ k ≤ n − 1 there is an Sn-subrepresentation Ak

n of H
k(Pn, Q) (constructed

explicitly in Proposition 4.2) with character χk
n such that for each partition λ of n,

ν∗
n,z(Cλ) = |Cλ|

n!
n−1∑

k=0

χk
n (λ)

(
− 1

z

)k
.

Thus the splitting measure coefficient αk
n(Cλ) = |Cλ| αk

n(λ) is given by

αk
n(Cλ) = (−1)k

|Cλ|
n! χk

n (λ).
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In Sect. 5.2 we interpret this result in terms of cohomology of the manifold Yn . On
setting t = − 1

z , we have that for each g ∈ Sn ,

ν∗
n,z(g) = 1

n!
n−1∑

k=0

Trace(g, Hk(Yn, Q))tk,

which is a value of the equivariant Poincaré polynomial for Yn with respect to the Sn-
action (Theorem 5.2). In particular we obtain the following topological interpretation
of the 1-splitting measure, as the special case t = −1.

Theorem 1.3 (Topological interpretation of 1-splitting measure) Let Yn denote the
open complex manifold PConfn(C)/C

×, which carries an Sn-action under permuta-
tion of the n points. Then the rescaled 1-splitting measure ν∗

n,1(·) evaluated at elements
g ∈ Sn is the equivariant Euler characteristic of Yn,

ν∗
n,1(g) = 1

n!
n−1∑

k=0

(−1)kTrace(g, Hk(Yn, Q)),

with respect to its Sn-action.

In Sect. 5.3 we obtain another corollary of Theorem 1.2. For z = − 1
m with m ≥ 1,

the rescaled splitting measure n!
|Cλ|ν

k
n,z(Cλ) is the character of an Sn-representation,

and when z = 1
m it is the character of a virtual Sn-representation (Theorem 5.3).

In Sect. 5.4 we deduce an interesting consequence concerning the Sn-action on
the full cohomology ring H•(Pn, Q). The structure of the cohomology ring of the
pure braid group H•(Pn, Q) as an Sn-module has an extensive literature. Orlik and
Solomon (1980) noted that H•(Pn, Q) � H•(M(An), Q) as Sn-modules, where

M(An) = C
n

� ∪H∈An H

is the complement of the (complexified) braid arrangement An , i.e. the arrangement
of n(n − 1)/2 hyperplanes zi = z j in C

n where 1 ≤ i < j ≤ n are the coordi-
nate functionals of C

n . The structure of the cohomology groups Hk(M(An), C) =
Hk(M(An), Q) ⊗ C as Sn-representations was determined in 1986 by Lehrer and
Solomon (1986, Theorem 4.5) in terms of induced representations IndSnZ(Cλ)(ξλ) for
specific linear representations ξλ on the centralizers Z(Cλ) of conjugacy classes
Cλ having n − k cycles. In 1987 Lehrer (1987, p. 276) noted that his results on
Poincaré polynomials implied the “curious consequence” that the action of Sn on⊕

k H
k(M(An, C)) is “almost” the regular representation in the sense that the dimen-

sion is n! and the character θ(g) of this representation is 0 unless g is the identity
element or a transposition, see also Lehrer (1987, Corollary (5.5)’, Prop. (5.6)). where
r is a reflection and 1 is the trivial representation. In Sect. 5.4 we apply Theorem 1.2
together with values of the (−1)-splitting measure computed in Lagarias (2016) to
make a precise connection between the Sn-representation structure on pure braid group
cohomology and the regular representation Q[Sn].
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Theorem 1.4 Let1n,Sgnn,andQ[Sn]be the trivial, sign,and regular representations
of Sn respectively. Then there is an isomorphism of Sn-representations,

n⊕

k=0

Hk(Pn, Q) ⊗ Sgn⊗k
n

∼= Q[Sn].

Here Sgn⊗k
n

∼= 1n or Sgnn according to whether k is even or odd.

When combined with Lehrer (1987, Prop. 5.6 (i)) determination of the character
θ as 2 IndSn〈τ 〉(1), where τ is a transposition, this result implies that each of the char-
acters of the Sn-representations acting on the even-dimensional cohomology, resp.
odd-dimensional cohomology are supported on the identity element plus transposi-
tions. We comment on other related work in Sect. 1.2.

In Sect. 6 we describe further interpretations of the representations Ak
n in terms of

other combinatorial homology theories. For fixed k and varying n, the sequence of Sn-
representations Hk(Pn, Q) was one of the basic examples exhibiting representation
stability in the sense of Church and Farb (2013), see Church et al. (2014, 2015). We
show in Proposition 6.2 that the representations Ak

n are isomorphic to others appearing
in the literature known to exhibit representation stability. Hersh and Reiner (2015,
Corollary 5.4) determine the precise rate of stabilization of these representations,
yielding the following result.

Theorem 1.5 (Representation stability for Ak
n) For each fixed k ≥ 1, the sequence

of Sn-representations Ak
n with characters χk

n are representation stable, and stabilize
sharply at n = 3k + 1.

To summarize these results:

(i) We start from a construction in number theory: a set of probability measures
on Sn that describe the distribution of degree n squarefree monic polynomial
factorizations (mod p) defined for a parameter z being a prime p. These measure
values interpolate at each fixed g ∈ Sn in the z-variable as polynomials in 1/z to
define complex-valued measures on Sn .

(ii) We make a connection of the interpolated measures as functions of z to topol-
ogy and representation theory: For fixed n the kth Laurent coefficients of the
z-parametrization at g ∈ Sn (rescaled by n!) coincide with the character of
an Sn-subrepresentation Ak

n of the cohomology of the pure braid group Pn ,
which is an Sn-representation on the cohomology of the complex manifold
Yn = PConfn(C)/C

×. As n varies with k fixed these coefficients exhibit rep-
resentation stability as n → ∞.

(iii) We deduce that (rescaled) measure values at values z = − 1
m for m ≥ 1 coincide

with characters of certain Sn-representations; those at z = 1
m withm ≥ 1 coincide

with certain virtual Sn-representations. For each n these representations combine
stable and unstable cohomology of Pn .

(iv) As a by-product we find a precise connection between the (total) cohomology of
the pure braid group as an Sn-representation and the regular representation of Sn .
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The main observation of this paper is the relation of these interpolation measures to
representation theory. We demonstrate this relation by calculation, and leave open the
problem of finding a deeper conceptual explanation for its existence.

1.2 Related work

The representations Ak
n have appeared in the literature in numerous places. In par-

ticular, a 1995 result of Getzler (1995, Corollary 3.10) permits an identification of
Ak
n as an Sn-module with the kth cohomology group of the moduli space M0,n+1 of

the Riemann sphere with n + 1 marked points, viewed as an Sn-module, holding one
point fixed. Getzler identifies this cohomology with the S1-equivariant cohomology of
PConfn(C), which is the cohomology of Yn given in Theorem 5.2. Some more recent
occurrences of Ak

n are discussed in Sect. 6.
In connectionwith Theorem1.4, inGaiffi (1996) further explainedLehrer’s formula

θ = 2 IndSn〈τ 〉(1) by showing that

H•(M(An−1), C) � H•(M(dAn−1), C) ⊗
(
C ⊕ C[ε]

ε2

)
,

as Sn-modules, where dAn−1 is obtained by a deconing construction, while the class
ε has degree 1 and carries the trivial Sn-action. (His space M(An−1) lies in C

n−1

and is obtained by restricting the braid arrangement on C
n to the hyperplane x1 +

x2 + · · · + xn = 0 in C
n , and the deconed configuration space M(dAn−1) ⊂ C

n−2.)
On comparison with our direct sum decomposition we have Hk(dAn−1, C) � Ak

n as
Sn-modules, showing that the deconed space dAn−1 has an isomorphic cohomology
ring as the complex manifold Yn with an appropriate Sn-module structure. Gaiffi and
also Mathieu (1996) showed there is a “hidden” Sn+1-action on this cohomology ring.
For more recent developments on the “hidden” action see Callegaro and Gaiffi (2015).

1.3 Plan of the Paper

In Sect. 2 we recall properties of the z-splitting measures from Lagarias and Weiss
(2015). In Sect. 3 we use the twisted Grothendieck–Lefschetz formula to relate
the coefficients of cycle polynomials to the characters of the Sn-representations
Hk(Pn, Q). In Sect. 4 we discuss the cohomology Hk(Pn, Q) of the pure braid group
Pn , and derive an exact sequence leading to the construction of the Sn-representations
Ak
n . In Sect. 5 we express the splitting measure coefficients αk

n(Cλ) in terms of the
character χk

n of the representation Ak
n . In Sect. 6 we discuss representation stability

and connect the Sn-representations Ak
n with others in the literature.

1.4 Notation

1. q = p f denotes a prime power.
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226 T. Hyde, J. C. Lagarias

2. The set of monic, degree n, square-free polynomials in Fq [x] is denoted
Confn(Fq).

3. We write partitions either as λ = [λ1, λ2, . . . , λ
], with parts λ1 ≥ λ2 ≥ · · ·
eventually 0, or as λ = (1m12m2 · · · ) where m j = m j (λ) is the number of parts
of λ of size j . The length of λ is 
(λ) = max{r : λr ≥ 1}, the size of λ is
|λ| = ∑

i λi = ∑
j jm j , and λi is the i th largest part of λ. (Compare Macdonald

1995.)
4. Each partition λ of n corresponds to a conjugacy class Cλ of Sn given by the

common cycle structure of the elements in Cλ. We let Zλ denote the centralizer of
Cλ in Sn . The size of the centralizer and conjugacy class are

zλ := |Zλ| =
∏

j≥1

jm j (λ)m j (λ)! cλ := |Cλ| = n!
zλ

respectively. Note that cλzλ = n!.
5. Following Stanley (1986), we let Par(n) denote the set of partitions of n and

Par = ⋃
n Par(n) the set of all partitions. However in Sect. 6, we let �n denote

the set of partitions of n, partially ordered by refinement.

2 Splitting Measures

We review the splitting measures introduced in Lagarias andWeiss (2015), summarize
their properties, and introduce the normalized splitting measures.

2.1 Necklace Polynomials and Cycle Polynomials

Definition 2.1 For j ≥ 1, the j th necklace polynomial M j (z) ∈ 1
j Z[z] is

Mj (z) := 1

j

∑

d| j
μ(d)z j/d ,

where μ(d) is the Möbius function.

Moreau (1872) noted in 1872 that for all integers m ≥ 1, Mj (m) is the number
of distinct necklaces having j beads drawn from a set of m colors, up to cyclic per-
mutation. This fact motivated Metropolis and Rota (1983) to name them necklace
polynomials. Relevant to the present paper, Mj (q) is the number of monic, degree j ,
irreducible polynomials in Fq [X ] Rosen (2002, Prop. 2.1). The factorization type of
a polynomial f ∈ Confn(Fq) is the partition formed by the degrees of its irreducible
factors, which we write [ f ].
Definition 2.2 Given a partition λ of n, the cycle polynomial Nλ(z) ∈ 1

zλ
Z[z] is

Nλ(z) :=
∏

j≥1

(
Mj (z)

m j (λ)

)

,
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where
(
α
m

)
is the usual extension of a binomial coefficient,

(
α

m

)

:= 1

m!
m−1∏

k=0

(α − k).

The cycle polynomial Nλ(z) has degree n = |λ| and is integer valued for z ∈ Z.
The number of f ∈ Confn(Fq) with [ f ] = λ is Nλ(q) (see Lagarias and Weiss 2015,
Sect. 4).

2.2 z-Splitting Measures

If λ a partition of n, then the probability of a uniformly chosen f ∈ Confn(Fq) having
factorization type λ is

Prob{ f ∈ Confn(Fq) : [ f ] = λ} = Nλ(q)

|Confn(Fq)| .

When n = 1, |Confn(Fq)| = q and for n ≥ 2 we have |Confn(Fq)| = qn − qn−1.
(See Rosen (2002, Prop. 2.3) for a proof via generating functions. A proof due to Zieve
appears in Weiss (2013, Lem. 4.1).) Hence, the probability is a rational function in q.
Replacing q by a complex-valued parameter z yields the z-splitting measure.

Definition 2.3 For n ≥ 2 the z-splitting measure ν∗
n,z(Cλ) ∈ Q(z) is given by

ν∗
n,z(Cλ) := Nλ(z)

zn − zn−1 .

Proposition 2.4 For each partition λ of n ≥ 1, the rational function ν∗
n,z(Cλ) is a

polynomial in 1
z of degree at most n − 1. Thus it may be written as

ν∗
n,z(Cλ) =

n−1∑

k=0

αk
n(Cλ)

(
1
z

)k
.

The function ν∗
1,z(C1) = 1 is independent of z.

Proof The case n = 1 is clear. For n ≥ 2 we have Nλ(1) = 0 by Lagarias (2016,
Lemma 2.5), whence Nλ(z)

z−1 is a polynomial of degree at most n − 1 in z. Therefore,

ν∗
n,z(Cλ) = Nλ(z)

zn − zn−1 = 1

zn−1

(
Nλ(z)

z − 1

)

is a polynomial in 1
z of degree at most n − 1. ��

For n ≥ 2 the Laurent polynomial ν∗
n,z(Cλ) is of degree atmost n−2 since z | Nλ(z)

(Lagarias and Weiss 2015, Lemma 4.3); that is, αn−1
n (Cλ) = 0. Tables 1 and 2 give

ν∗
n,z(Cλ), exhibiting the splitting measure coefficients αk

n(Cλ) for n = 4 and n = 5.
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228 T. Hyde, J. C. Lagarias

Table 1 Values of the
z-splitting measures ν∗

4,z(Cλ) on
partitions λ of n = 4

λ |Cλ| zλ ν∗
4,z(Cλ)

[1, 1, 1, 1] 1 24 1
24

(
1 − 5

z + 6
z2

)

[2, 1, 1] 6 4 1
4

(
1 − 1

z

)

[2, 2] 3 8 1
8

(
1 − 1

z − 2
z2

)

[3, 1] 8 3 1
3

(
1 + 1

z

)

[4] 6 4 1
4

(
1 + 1

z

)

Table 2 Values of the
z-splitting measures ν∗

5,z(Cλ) on
partitions λ of n = 5

λ |Cλ| zλ ν∗
5,z(Cλ)

[1, 1, 1, 1, 1] 1 120 1
120

(
1 − 9

z + 26
z2

− 24
z3

)

[2, 1, 1, 1] 10 12 1
12

(
1 − 3

z + 2
z2

)

[2, 2, 1] 15 8 1
8

(
1 − 1

z − 2
z2

)

[3, 1, 1] 20 6 1
6

(
1 − 1

z2

)

[3, 2] 20 6 1
6

(
1 − 1

z2

)

[4, 1] 30 4 1
4

(
1 + 1

z

)

[5] 24 5 1
5

(
1 + 1

z + 1
z2

+ 1
z3

)

3 Interpretation of Cycle Polynomial Coefficients

In Sect. 2.1 we defined the cycle polynomials Nλ(z) ∈ 1
zλ

Z[z] for each partition
λ of n. In this section we express the coefficients of Nλ(z) as a function of λ in
terms of characters hkn of the cohomology of the pure braid group Pn viewed as an Sn-
representation.We establish this connection using the twistedGrothendieck–Lefschetz
formula of Church et al. (2014). Using explicit formulas for the cycle polynomials we
obtain constraints on the support of hkn , and we compute hkn(λ) for varying n in several
examples.

3.1 Cohomology of the Pure Braid Group

Given a set X of n distinct points in 3-dimensional affine space, the braid group
Bn consists of homotopy classes of simple, non-intersecting paths beginning and
terminating in X , with concatenation as the group operation. Each element of Bn

determines a permutation of X , giving a short exact sequence of groups

0 → Pn → Bn
π−→ Sn → 0.
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Then Pn := ker π is called the pure braid group. Pn consists of homotopy classes of
simple, non-intersecting loops based in X . The action of Sn on X induces an action on
Pn by permuting the loops. Thus, for each k, the kth group cohomology Hk(Pn, Q)

carries an Sn-representation whose character we denote by hkn .

3.2 Twisted Grothendieck–Lefschetz Formula

A character polynomial is a polynomial P(x) ∈ Q[x j : j ≥ 1]. Character polynomials
induce functions P : Par → Q by

P(λ) := P (m1(λ),m2(λ), . . .) ,

noting that mi (λ) = 0 for all but finitely many i . For f ∈ Confn(Fq) we let P( f ) :=
P([ f ]). Given two Q-valued functions F and G defined on Sn let

〈F,G〉 := 1

n!
∑

g∈Sn
F(g)G(g).

The following theorem is due to Church et al. (2014, Prop. 4.1).

Theorem 3.1 (Twisted Grothendieck–Lefschetz formula for PConfn) Given a prime
power q, an integer n ≥ 1, and a character polynomial P, we have

∑

f ∈Confn(Fq )

P( f ) =
n∑

k=0

(−1)k〈P, hkn〉 qn−k, (3.1)

where hkn is the character of the cohomology of the pure braid group Hk(Pn, Q).

The classic Lefschetz trace formula counts the fixed points of an endomorphism f
on a compact manifold M by the trace of the induced map on the singular cohomology
of M . One may interpret the Fq points on an algebraic variety V defined over Fq as
the fixed points of the geometric Frobenius endomorphism of V . Using the machinery
of 
-adic étale cohomology, Grothendieck (1963) generalized Lefschetz’s formula to
count the number of points in V (Fq) by the trace of Frobenius on the étale cohomology
of V . For nice varieties V defined over Z, there are comparison theorems relating the
étale cohomology of V (Fq) to the singular cohomology of V (C). This connects the
topology of a complex manifold to point counts of a variety over a finite field. For
hyperplane complements the connection was made in 1992 by Lehrer (1992), and for
equivariant actions of a finite group on varieties the equivariant Poincaré polynomials
were determined by Kisin and Lehrer (2002).

Church et al. (2014) build upon Grothendieck’s extension of the Lefschetz formula
to relate point counts on natural subsets of Confn(Fq) to the singular cohomology of
the covering space PConfn(C) → Confn(C). PConfn(C) is the space of n distinct,
labelled points in C. The space PConfn(C) has fundamental group Pn , the pure braid
group, and is a K (π, 1) for this group. Hence, the singular cohomology of PConfn(C)
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is the same as the group cohomology of Pn . This fact yields the connection between
Confn(Fq) on the left hand side of (3.1) and the character of the pure braid group
cohomology.

3.3 Cycle Polynomials and Pure Braid Group Cohomology

We express the coefficients of the cycle polynomials Nλ(z) in terms of the characters
hkn as an application of Theorem 3.1. Theorem 3.2 is equivalent to Lehrer’s (1987,
Theorem 5.5) by comparing numerators and making a slight change of variables.

Theorem 3.2 Let λ be a partition of n, then

Nλ(z) = 1

zλ

n∑

k=0

(−1)khkn(λ)zn−k,

where hkn is the character of the Sn-representation Hk(Pn, Q).

Proof Define the character polynomial 1λ(x) ∈ Q[x j : j ≥ 1] by

1λ(x) =
∏

j≥1

(
x j

m j (λ)

)

.

Observe that for a partition μ ∈ Par(n) we have

1λ(μ) =
{
1 if μ = λ,

0 otherwise.

Therefore,

Nλ(q) =
∑

f ∈Confn(Fq )

1λ( f ).

On the other hand, by Theorem 3.1 we have

∑

f ∈Confn(Fq )

1λ( f ) =
n∑

k=0

(−1)k〈1λ, h
k
n〉qn−k .

If g ∈ Sn , let [g] ∈ Par(n) be the partition given by the cycle lengths of g. Thus,

〈1λ, h
k
n〉 = 1

n!
∑

g∈Sn
1λ(g)h

k
n(g) = 1

n!
∑

g∈Sn[g]=λ

hkn(g) = cλ

n! h
k
n(λ) = 1

zλ
hkn(λ).
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Therefore the identity

Nλ(q) = 1

zλ

n∑

k=0

(−1)khkn(λ)qn−k

holds for all prime powers q, giving the identity as polynomials in Q[z]. ��
Remark A recent result of Chen (2016, Theorem 1) also yields the identity in Theo-
rem 3.2 by specializing at t = 0.

One can explicitly compute hkn(λ) using Theorem 3.2 by expanding the formula
(1.1) for Nλ(z) and comparing coefficients. Lehrer (1987) derives several corollaries
this way. Here we give further examples intended to explore possible connections with
number theory. We obtain restrictions on the support of hkn in Proposition 3.3. Then
we compute values of hkn(λ) in Sects. 3.5 and 3.6. For any fixed k, the hkn are given
by character polynomials, while hn−k

n for k < 2n/3 exhibit interesting arithmetic
structure.

3.4 Support Restrictions on Characters hk
n

The character hkn is supported on partitions with at least one small part, while hn−k
n is

supported onpartitions having atmost k different parts. The latter aremulti-rectangular
Young diagrams having at most k steps, using the terminology of Dołega et al. (2010,
Sect. 1.7) and Śniady (2014).

Proposition 3.3 Let 0 ≤ k ≤ n and hkn be the character of the Sn-representation
Hk(Pn, Q), then

1. hkn is supported on partitions having at least one part of size at most 2k. The value
hkn(λ) is determined by m j (λ) for 1 ≤ j ≤ 2k.

2. hn−k
n is supported on multi-rectangular partitions λ having at most k distinct

values of j with m j (λ) > 0.

Proof (1) Theorem 3.2 implies hkn(λ) is nonzero iff the coefficient of zn−k in Nλ(z) is
nonzero. The degree of Mj (z) − 1

j z
j is at most � j/2�. Hence if j > 2k, then the

coefficient of zn−k in
(
Mj (z)
m j (λ)

)
is zero. Thus the only j contributing to the coefficient

of zn−k in Nλ(z) in (1.1) are those with 1 ≤ j ≤ 2k.
(2) Theorem3.2 implieshn−k

n (λ) is nonzero iff the coefficient of zk in Nλ(z) is nonzero.

If m j (λ) > 0, then z divides
(
Mj (z)
m j (λ)

)
. Hence if m j (λ) > 0 for more than k values

of j , then hn−k
n (λ) = 0. ��

Remark Property (1) is a manifestation of representation stability of hkn , which says
that for fixed k and all sufficiently large n, the values of hkn(λ) are described by a char-
acter polynomial in λ. A character polynomial for a partition λ = (1m12m2 · · · nmn )

is a polynomial in the variables m j , see Example 3.7. Farb (2014) raised the problem
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of explicitly determining such character polynomials. Proposition 3.3 bounds which
variables m j may occur in the character polynomial for hkn . A known sharp repre-
sentation stability property of hkn is that it equals such a character polynomial for all
n ≥ 3k + 1, as shown in Hersh and Reiner (2015, Theorem 1.1), taking dimension
d = 2.

3.5 Character Values hk
n(λ) for Fixed λ and Varying k

We give special cases of explicit determinations for hkn(λ) for various fixed λ and
varying k by directly expanding the cycle polynomial Nλ(z).

Example 3.4 (Dimensions of cohomology) The dimension of Hk(Pn, Q) is the value
of hkn at the identity element, corresponding to the partition (1n). Since M1(z) = z
and the centralizer of the identity in Sn has order z(1n) = n!, we have

N(1n)(z) =
(
z

n

)

= 1

n!
n−1∏

i=0

(z − i) = 1

n!
n∑

k=0

(−1)k
[

n

n − k

]

zn−k,

where
[ n
n−k

]
is an unsigned Stirling number of the first kind. Theorem 3.2 says

N(1n)(z) = 1

n!
n∑

k=0

(−1)khkn
(
(1n)

)
zn−k .

Comparing coefficients recovers the well-known formula due to Arnol’d (1969) for
the dimension of the pure braid group cohomology:

dim Hk(Pn, Q) = hkn
(
(1n)

) =
[

n

n − k

]

.

These values are given in Table 3.

Example 3.5 The partition λ = [n] corresponds to an n-cycle in Sn . The centralizer
of an n-cycle has order z[n] = n and

N[n](z) =
(
Mn(z)

1

)

= Mn(z) = 1

n

∑

d|n
μ(d)zn/d . (3.2)

Theorem 3.2 gives us

N[n](z) = 1

n

n∑

k=0

(−1)khkn ([n]) zn−k . (3.3)
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Table 3 Betti numbers of pure braid group cohomology Hk (Pn , Q)

n\k 0 1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0

3 1 3 2 0 0 0 0 0 0

4 1 6 11 6 0 0 0 0 0

5 1 10 35 50 24 0 0 0 0

6 1 15 85 225 274 120 0 0 0

7 1 21 175 735 1624 1764 720 0 0

8 1 28 322 1960 6769 13,132 13,068 5040 0

9 1 36 546 4536 22,449 67,284 118,124 109,584 40,320

Comparing coefficients, we find that

hn−k
n ([n]) =

{
(−1)n−kμ( nk ) if k | n,

0 if k � n.

3.6 Character Values hk
n(λ) for Fixed k and Varying λ

We now compute hkn(λ) for fixed k and varying λ.

Example 3.6 (Computing h0n and h
n
n) The cases k = 0 and n are both constant: h0n = 1

and hnn = 0. The leading coefficient of Nλ(z) is 1/zλ, hence Theorem 3.2 tells us
h0n(λ) = 1 for all λ. For j ≥ 1, we have z | Mj (z), from which it follows that
z | Nλ(z) for all partitions λ of n ≥ 1. In other words, for all m j ≥ 1

1

zλ
(−1)nhnn(λ) = Nλ(0) = 0.

Thus hnn(λ) = 0 for all λ, and Hn(Pn, Q) = 0.

Example 3.7 (Computing h1n and h2n) Taking λ = (1m12m2 · · · ), a careful analysis of
the zn−1 and zn−2 coefficients in Nλ(z) andTheorem3.2 yields the following formulas

h1n(λ) =
(
m1

2

)

+
(
m2

1

)

h2n(λ) = 2

(
m1

3

)

+ 3

(
m1

4

)

+
(
m1

2

)(
m2

1

)

−
(
m2

2

)

−
(
m3

1

)

−
(
m4

1

)

,

where m j = m j (λ). These formulas represent h1n and h2n as character polynomials,
and they appear in Church et al. (2014, Lemma 4.8). Note that h1n(λ) = h2n(λ) = 0
for partitions λ having all parts larger than 2 and 4 respectively, illustrating Proposi-
tion 3.3(1).
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Example 3.8 (Computing hn−1
n ) The z coefficient of Nλ(z) determines the value of

hn−1
n (λ). Since each j with m j (λ) > 0 contributes a factor of z to Nλ(z), hn−1

n
is supported on partitions of the form λ = ( jm). Note that the z coefficient of the
necklace polynomial Mj (z) is μ( j)/j . Let λ = ( jm), then the z coefficient of

Nλ(z) =
(
Mj (z)

m

)

= Mj (z)(Mj (z) − 1) · · · (Mj (z) − m + 1)

m!

is (−1)m−1 μ( j)
jm . Since zλ = jmm!, we conclude

hn−1
n (λ) =

{
(−1)m−nμ( j) jm−1(m − 1)! if λ = ( jm),

0 otherwise.

By Lehrer (1987, Corollary (5.5)′′) hn−1
n = Sgnn ⊗ IndSncn (ζn), where cn is a cyclic

group of order n and ζn is a faithful character on it, noted earlier by Stanley (1982).

Example 3.9 (Computing hn−2
n ) The z2 coefficient of Nλ(z) determines hn−2

n (λ).
Proposition 3.3(2) tells us that hn−2

n (λ) = 0 when m j (λ) > 0 for at least three j . We
treat the two remaining cases λ = (imi jm j ) and λ = ( jm) in turn. If λ = (imi jm j ),

then the z coefficient of
(
Mi (z)
mi

)
is (−1)mi−1 μ(i)

imi
, and similarly for

(
Mj (z)
m j

)
. We have

zλ = (imi mi !)( jm j m j !). Thus, by Theorem 3.2

hn−2
n

(
(im1 jm j )

) = (−1)mi+m j−nzλ
μ(i)μ( j)

(imi )( jm j )

= (−1)mi+m j−n
(
μ(i)imi−1(mi − 1)!

) (
μ( j) jm j−1(m j − 1)!

)
.

If λ = ( jm), then the z2 coefficient of Nλ(z) receives a contribution of
(−1)m−1 μ( j/2)

jm from the quadratic term of Mj (z) if j is even. The z coefficient of
(
Mj (z)
m j

)
/Mj (z) is

μ( j)

jm!

(
m−1∑

i=1

(−1)m−2(m − 1)!
i

)

= (−1)m
μ( j)

jm
Hm−1,

where Hm−1 = ∑m−1
i=1

1
i denotes the (m − 1)th harmonic number. The z coefficient

of Mj (z) is μ( j)
j . Using the convention that the Möbius function μ(α) vanishes at

non-integral α, we arrive at the following expression for hn−2
n (λ):

hn−2
n

(
( jm)

) = zλ(−1)m−n

(
μ( j)2Hm−1 − μ(

j
2 )
)

jm

= (−1)m−n
(
μ( j)2Hm−1 − μ(

j
2 )
)
jm−1(m − 1)!.
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4 Submodules Ak
n of Pure Braid Group Cohomology

Starting fromArnol’d’s presentation for the Sn-algebra H•(Pn, Q)we obtain a decom-
position Hk(Pn, Q) = Ak−1

n ⊕Ak
n of Sn-modules. The characters of the sequence Ak

n of
Sn-modules determine the splitting measure coefficients αk

n(Cλ). In Sect. 4.3 we inter-
pret A•

n as the cohomology of PConfn(C)/C
×, where C

× acts freely on PConfn(C)

by scaling coordinates.

4.1 Presentation of Pure Braid Group Cohomology Ring

Arnol’d (1969) gave the following presentation of the cohomology ring H•(Pn, Q) of
the pure braid group Pn as an Sn-algebra.

Theorem 4.1 (Arnol’d) There is an isomorphism of graded Sn-algebras

H•(Pn, Q) ∼= �•[ωi, j ]/〈Ri, j,k〉,

where 1 ≤ i, j, k ≤ n are distinct, ωi, j = ω j,i have degree 1, and

Ri, j,k = ωi, j ∧ ω j,k + ω j,k ∧ ωk,i + ωk,i ∧ ωi, j .

An element g ∈ Sn acts on ωi, j by g · ωi, j = ωg(i),g( j).

In what follows, we identify H•(Pn, Q) with this presentation as a quotient of
an exterior algebra. The ring �•[ωi, j ]/〈Ri, j,k〉 is an example of an Orlik–Solomon
algebra, which arise as cohomology rings of complements of hyperplane arrangements
(see Orlik and Solomon 1980; Dimca and Yuzvinsky 2010; Yuzvinsky 2001).

4.2 Sn-Modules Ak
n Inside Braid Group Cohomology

Let τ = ∑
1≤i< j≤n ωi, j ∈ H1(Pn, Q). The element τ generates a trivial Sn-

subrepresentation of H1(Pn, Q). We define maps dk : Hk(Pn, Q) → Hk+1(Pn, Q)

for each k by ν �→ ν ∧ τ . This map is linear and Sn-equivariant, since

g · dk(ν) = g · (ν ∧ τ) = (g · ν) ∧ (g · τ) = (g · ν) ∧ τ = dk(g · ν).

From dk+1 ◦ dk = 0 we conclude that

0 → H0(Pn, Q)
d0−→ H1(Pn, Q)

d1−→ · · · dn−1−−→ Hn(Pn, Q)
dn−→ 0

is a chain complex of Sn-representations. It follows from the general theory of Orlik-
Solomon algebras that the above sequence is exact (Dimca and Yuzvinsky 2010, Thm.
5.2). We include a proof in this case for completeness.
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Proposition 4.2 In the above notation,

0 → H0(Pn, Q)
d0−→ H1(Pn, Q)

d1−→ · · · dn−1−−→ Hn(Pn, Q)
dn−→ 0 (4.1)

is an exact sequence of Sn-representations. Set Ak
n := Im(dk) ⊂ Hk+1(Pn, Q). Hence

we have an isomorphism of Sn-representations for each k,

Hk(Pn, Q) ∼= Ak−1
n ⊕ Ak

n .

Proof Arnol’d (1969, Cor. 3) describes an additive basis Bk for Hk(Pn, Q) comprised
of all simple wedge products

ωi1, j1 ∧ · · · ∧ ωik , jk such that is < js for each s, and j1 < j2 < · · · < jk .

Let

Uk = {ωi1, j1 ∧ · · · ∧ ωik , jk ∈ Bk : (is, js) �= (n − 1, n)},

for k > 0 and U0 = {1}. Then set

Ck = Uk ∪ {ω ∧ τ : ω ∈ Uk−1}.

Claim. Ck is a basis of Hk(Pn, Q).
For example, we have

C1 = {ωi, j : (i, j) �= (n − 1, n)} ∪ {τ },

which is clearly a basis for H1(Pn, Q).
To prove the claim, since |Bk | = |Ck |, it suffices to show Ck spans Hk(Pn, Q). Note

that

Bk = Uk ∪ {ω ∧ ωn−1,n : ω ∈ Uk−1},

further reducing the problem to expressing ω ∧ ωn−1,n as a linear combination of Ck
for each ω ∈ Uk−1. Given ω = ωi1, j1 ∧ · · · ∧ ωik−1, jk−1 ∈ Uk−1, we use the relation

ωis , j ∧ ωi, j = ωis ,i ∧ ωi, j − ωis ,i ∧ ωis , j

to express ω ∧ ωi, j in terms of elements of Uk as follows:

ω ∧ ωi, j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

±ωi1, j1 ∧ · · · ∧ ωis , js ∧ ωi, j ∧ ωis+1, js+1 ∧ · · · ∧ ωik−1, jk−1

for js < j < js+1,

±ωi1, j1 ∧ · · · ∧ (ωis ,i ∧ ωi, j − ωis ,i ∧ ωis , j ) ∧ · · · ∧ ωik−1, jk−1

for js = j, is �= i,

0 for (is, js) = (i, j).
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The first and third cases are easily seen to belong in the span ofUk . Since is, i < j and
j does not occur twice as a largest subscript in ω, we see inductively that the second
case also belongs in the span ofUk . Therefore, ω ∧ τ = ω ∧ωn−1,n + ν, where ν is in
the span of Uk . Hence ω ∧ ωn−1,n = ω ∧ τ − ν is in the span of Ck and we conclude
that Ck is a basis, proving the claim.

We now show the sequence (4.1) is exact. Suppose ν ∈ ker(dk). Express ν in the
basis Ck as

ν =
∑

ω∈Uk

aω ω +
∑

ω∈Uk−1

bω ω ∧ τ.

Then

0 = dk(ν) = ν ∧ τ =
∑

ω∈Uk

aω ω ∧ τ .

Since ω ∧ τ is an element of the basis Ck+1 for each ω ∈ Uk , we have aω = 0. Hence,
ν = μ ∧ τ = dk−1(μ) where

μ =
∑

ω∈Uk−1

bω ω,

so ker(dk) = Im(dk−1). ��
Recall from Sect. 3.5 that the dimension of Hk(Pn, Q) is given by an unsigned

Stirling number of the first kind

dim
(
Hk(Pn, Q)

)
=
[

n

n − k

]

,

where the unsigned Stirling numbers are determined by the identity
∏n−1

k=0 (x + k) =
∑n−1

k=0

[n
k

]
xk . The exact sequence in Proposition 4.2 shows the dimension of Ak

n is

dim(Ak
n) =

k∑

j=0

(−1) j
[

n

n − k + j

]

.

Table 4 gives values of dim(Ak
n) for small n and k; here dim(An−1

n ) = 0 for n ≥ 2.

4.3 Ak
n as Cohomology of a Complex Manifold with an Sn-Action

Recall from Sect. 3.2 that the pure configuration space PConfn(C) is defined by

PConfn(C) = {(z1, z2, . . . , zn) ∈ C
n : zi �= z j when i �= j}.
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Table 4 dim(Akn)

n\k 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 1 2 0 0 0 0 0 0

4 1 5 6 0 0 0 0 0

5 1 9 26 24 0 0 0 0

6 1 14 71 154 120 0 0 0

7 1 20 155 580 1044 720 0 0

8 1 27 295 1665 5104 8028 5040 0

9 1 35 511 4025 18,424 48,860 69,264 40,320

It is an open complex manifold, and the symmetric group Sn acts on PConfn(C) by
permuting coordinates. There is also a free action of C

× on PConfn(C) defined by

c · (z1, z2, . . . , zn) = (cz1, cz2, . . . , czn).

This action commutes with the Sn-action, hence induces an action of Sn on the
quotient complex manifold PConfn(C)/C

×. Therefore H•(PConfn(C)/C
×, Q) is an

Sn-algebra. We now relate the graded components Hk(PConfn(C)/C
×, Q) to the Sn-

submodules Ak
n of H

k(PConfn(C), Q) = Hk(Pn, Q) constructed in Proposition 4.2.

Theorem 4.3 Let PConfn(C)/C
× be the quotient of pure configuration space by

the free C
× action. The symmetric group Sn acts on PConfn(C)/C

× by permuting
coordinates. Let A•

n be the sequence of Sn-modules constructed in Proposition 4.2.
Then for each k ≥ 0 we have an isomorphism of Sn-modules

Hk(PConfn(C)/C
×, Q) ∼= Ak

n .

Proof We regard Xn := PConfn(C) as the total space of a C
×-bundle over the base

space Yn := PConfn(C)/C
×. As noted in Sect. 3.2 the cohomology of Xn is that of

the pure braid group, with its Sn-action. Viewing C
× as R

+ × S1, we see that Xn is an
R

+-bundle over the base space Zn := PConfn(C)/R
+, such that Zn is an S1-bundle

over Yn . The space Zn is a real-analytic manifold which inherits the Sn-action. For
any (z1, z2, . . . , zn) ∈ PConfn(C), let [[z1, z2, . . . , zn]] denote its image in Zn Since
z1 �= z2, we may rescale this vector by c = 1

|z1−z2| ∈ C
× to get (z̃1, z̃2, . . . , z̃n) =

1
|z1−z2| (z1, . . . , zn), which comprise exactly the set of all (z̃1, z̃2, . . . , z̃n) ∈ Xn satis-
fying the linear constraint z̃1 − z̃2 ∈ U (1) = {z ∈ C : |z| = 1}. We obtain a global
section Zn → Xn bymapping [[z1, z2, . . . , zn]] �→ 1

|z1−z2| (z1, . . . , zn), somay regard
Zn ⊂ Xn , noting that it is invariant under the Sn-action. Under this embedding we see
that Zn is a strong deformation retract of Xn , so has the same homotopy type as Xn .
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The retraction map is:

ht (z1, z2, . . . , zn) := ((1 − t)|z1 − z2| + t)
1

|z1 − z2| (z1, z2, . . . , zn) for 0 ≤ t ≤ 1.

Consequently Hk(Xn, Q) ∼= Hk(Zn, Q), for each k ≥ 0 as Sn-modules.
For any (z1, z2, . . . , zn) ∈ Xn , let [z1, z2, . . . , zn] denote its image in Yn . Since

z1 �= z2, we may rescale this vector by 1
z1−z2

∈ C
× to get (z̃1, z̃2, . . . , z̃n) =

1
z1−z2

(z1, . . . , zn), which comprise exactly the set of all (z̃1, z̃2, . . . , z̃n) ∈ Xn sat-
isfying the linear constraint z̃1 − z̃2 = 1. These define a global coordinate system
for Yn , identifying it as an open complex manifold, and the map Yn → Xn sending
[z1, z2 . . . , zn] �→ (z̃1, z̃2, . . . , z̃n) is a nowhere vanishing global section of this bun-
dle, so we may view Yn ⊂ Zn ⊂ Xn . This map is a nowhere vanishing section of Yn
inside the S1-bundle Zn as well.

The Gysin long exact sequence for Zn as an S1-bundle over Yn is

e∧−→ Hk(Yn, Q)→Hk(Zn, Q)→Hk−1(Yn, Q)
e∧−→ Hk+1(Yn, Q)→Hk+1(Zn, Q)→

The Euler class e ∈ H2(Yn, Q) of this is zero since the bundle has a nowhere vanishing
global section in Zn . Thus e∧ is the zero map and the Gysin sequence splits into short
exact sequences

0 −→ Hk(Yn, Q) −→ Hk(Zn, Q) −→ Hk−1(Yn, Q) −→ 0.

The maps are Sn-equivariant, since the Gysin sequence is functorial. It follows from
Maschke’s theorem that

Hk(Xn, Q) ∼= Hk(Zn, Q) ∼= Hk−1(Yn, Q) ⊕ Hk(Yn, Q) (4.2)

as Sn-modules. Since H−1(Yn, Q) = A−1
n = 0 by convention, we have H0(Yn, Q) ∼=

A0
n

∼= H0(Zn, Q) ∼= H0(Xn, Q). It then follows inductively from (4.2) and

Hk(Xn, Q) ∼= Ak−1
n ⊕ Ak

n,

that Hk(Yn, Q) ∼= Ak
n as Sn-modules for all k ≥ 0. ��

Remark The configuration space PConf(C) is a hyperplane complement as treated in
the book of Orlik and Terao (1992). It equals

M(An) := C
n

�

⋃

Hi, j∈An

Hi, j ,

where An := {Hi, j : 1 ≤ i < j ≤ n} denotes the braid arrangement of hyperplanes
Hi, j : zi = z j for 1 ≤ i < j ≤ n.
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5 Polynomial Splitting Measures and Characters

We now express the splitting measure coefficients αk
n(Cλ) in terms of the character

values χk
n (λ) where χk

n is the character of the Sn-representation Ak
n constructed in

Proposition 4.2. As a corollary we deduce that the rescaled z-splitting measures are
characters when z = − 1

m and virtual characters when z = 1
m , generalizing results

from Lagarias (2016).

5.1 Expressing Splitting Measure Coefficients by Characters

Recall,

ν∗
n,z(Cλ) = Nλ(z)

zn − zn−1 =
n−1∑

k=0

αk
n(Cλ)

(
1
z

)k
.

We now express the splitting measure coefficient αk
n(Cλ) in terms of the character

value χk
n (λ).

Theorem 5.1 Let n ≥ 2 and λ be a partition of n, then

ν∗
n,z(Cλ) = 1

zλ

n−1∑

k=0

(−1)kχk
n (λ)

(
1
z

)k
,

where χk
n is the character of the Sn-representation Ak

n defined in Proposition 4.2.
Thus,

αk
n(Cλ) = 1

zλ
(−1)kχk

n (λ).

Proof In Theorem 3.2 we showed

Nλ(z) = 1

zλ

n∑

k=0

(−1)khkn(λ)zn−k,

where hkn is the character of Hk(Pn, Q). The Sn-representations Ak
n were defined in

Proposition 4.2 where we showed that

Hk(Pn, Q) ∼= Ak−1
n ⊕ Ak

n . (5.1)

Taking characters in (5.1) gives

hkn = χk−1
n + χk

n .
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We compute

Nλ(z)

zn
= 1

zλ

n∑

k=0

(−1)khkn(λ)
(
1
z

)k

= 1

zλ

n∑

k=0

(−1)k
(
χk−1
n (λ) + χk

n (λ)
) (

1
z

)k

=
(
1 − 1

z

) 1

zλ

n−1∑

k=0

(−1)kχk
n (λ)

(
1
z

)k
.

Dividing both sides by
(
1 − 1

z

)
yields

ν∗
n,z(Cλ) = Nλ(z)

(
1 − 1

z

)
zn

= 1

zλ

n−1∑

k=0

(−1)kχk
n (λ)

(
1
z

)k
.

Comparing coefficients in the two expressions for ν∗
n,z(Cλ) we find

αk
n(Cλ) = 1

zλ
(−1)kχk

n (λ).

��

5.2 Cycle Polynomial and Splitting Measure as Equivariant Poincaré
Polynomials

Given a complex manifold X , the Poincaré polynomial of X is defined by

P(X, t) =
∑

k≥0

dim Hk(X, Q)tk .

If a finite group G acts on X , then the cohomology Hk(X, Q) is a Q-representation
of G with character hkX , and the equivariant Poincaré polynomial of X at g ∈ G is
defined by

Pg(X, t) =
∑

k≥0

Trace(g, Hk(X, Q)tk =
∑

k≥0

hkX (g)tk .

Note that if g = 1 is the identity of G, then hkX (1) = dim Hk(X, Q) and P1(X, t) =
P(X, t).

Under the change of variables z = − 1
t , the work of Lehrer (1987, Theorem 5.5)

identifies (rescaled) cycle polynomials with equivariant Poincaré polynomials of
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PConfn(C), for g ∈ Sn , as

1

zn
N[g](z) = |Cλ|

n!
∑

k≥0

hkn(g)t
k = 1

zλ
Pg(PConfn(C), t)

Using the result of Sect. 4.3 we obtain a similar interpretation of the splitting
measure values.

Theorem 5.2 Let Yn = PConfn(C)/C
×. Setting t = − 1

z , for each g ∈ Sn the z-
splitting measure is given by the scaled equivariant Poincaré polynomial

ν∗
n,z(g) = 1

n!
n−1∑

k=0

Trace(g : Hk(Yn, Q))tk,

attached to the complex manifold Yn,where g acts as a permutation of the coordinates.

Proof This formula follows from Theorem 5.1, using also the identification of Ak
n =

Hk(Yn, Q) as an Sn-module in Theorem 4.3. Since we evaluate the character on a
single element g ∈ Sn , the prefactor becomes 1

zλcλ
= 1

n! . ��
Remark In the theory of hyperplane arrangements treated in Orlik and Terao (1992)
the change of variable z = − 1

t appears as an involution converting the Poincaré
polynomial of a hyperplane complement (such as PConfn(C)) to another invariant,
the characteristic polynomial of an arrangement, given in Orlik and Terao (1992,
Defn. 2.52).

5.3 Splitting Measures for z = ± 1
m

Representation-theoretic interpretations of the rescaled z-splitting measures for z =
±1 were studied in Lagarias (2016, Sec. 5). Theorem 5.3 below generalizes those
results to give representation-theoretic interpretations for z = ± 1

m when m ≥ 1 is an
integer.

Theorem 5.3 Let n ≥ 2 and λ be a partition of n, then

1. For z = − 1
m with m ≥ 1 an integer, we have

ν∗
n,− 1

m
(Cλ) = 1

zλ

n−1∑

k=0

χk
n (λ)mk .

The function zλν∗
n,− 1

m
(Cλ) is therefore the character of the Sn-representation

Bn,m =
n−1⊕

k=0

(
Ak
n

)⊕mk

,
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with dimension

dim Bn,m =
n−1∏

j=2

(1 + jm).

2. For z = 1
m with m ≥ 1 an integer, we have

ν∗
n, 1

m
(Cλ) = 1

zλ

n−1∑

k=0

(−1)kχk
n (λ)mk .

The function zλν∗
n, 1

m
(Cλ) is a virtual character, the difference of characters of

representations B+
n,m and B−

n,m,

B+
n,m

∼=
⊕

2 j<n

(
A2 j
n

)⊕m2 j

B−
n,m

∼=
⊕

2 j+1<n

(
A2 j+1
n

)⊕m2 j+1

.

These representations have dimensions

dim B±
n,m = 1

2

⎛

⎝
n−1∏

j=2

(1 + jm) ±
n−1∏

j=2

(1 − jm)

⎞

⎠

respectively.

Proof (1) The formula for the (− 1
m )-splitting measure follows by substituting z =

− 1
m in Theorem 5.1. Arnol’d (1969, Cor. 2) shows the Poincaré polynomial p(t)

of the pure braid group Pn has the product form

p(t) =
n−1∏

j=1

(1 + j t) =
n∑

k=0

hkn
(
(1n)

)
tk .

On the other hand, by Theorem 3.2 we have

n!(−1)ntnN(1n)(−t−1) =
n∑

k=0

hkn
(
(1n)

)
tk . (5.2)

Dividing (5.2) by 1 + t we have

n−1∏

j=2

(1 + j t) = n!(−1)ntn
N(1n)(−t−1)

1 + t
=

n−1∑

k=0

χk
n

(
(1n)

)
tk . (5.3)

Substituting t = m gives the dimension formula.
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(2) Substituting z = 1
m in Theorem 5.1 gives the formula for the 1

m -splitting measure.
Separating the even and odd parts we have

zλν
∗
n, 1

m
(Cλ) =

∑

2 j<n

χ
2 j
n (λ)m2 j −

∑

2 j+1<n

χ
2 j+1
n (λ)m2 j+1.

Hence zλν∗
n, 1

m
(Cλ) = χ+

n,m(λ) − χ−
n,m(λ), where χ±

n,m are characters of B±
n,m

respectively. The dimension formulas follow from decomposing (5.3) into even
and odd parts.

��
Remark Other results in Lagarias (2016, Theorems 3.2, 5.2 and 6.1) determine the
values of the rescaled splitting measures for z = ±1, showing they are supported on
remarkably few conjugacy classes; for z = 1 these were the Springer regular elements
of Sn . Theorem 5.3 does not account for the small support of the characters for z = ±1.
The characters hkn and χk

n have large support in general, hence cancellation must occur
to explain the small support. It would be interesting to account for this phenomenon.

5.4 Cohomology of the Pure Braid Group and the Regular Representation

We use Theorem 5.1 together with the splitting measure values at z = −1 computed
in Lagarias (2016) to determine a relation between the Sn-representation structure of
the pure braid group cohomology and the regular representation of Sn . Let Ak

n be the
Sn-subrepresentation constructed in Proposition 4.2, and define the Sn-representation

An :=
n−1⊕

k=0

Ak
n .

Theorem 5.4 Let 1n, Sgnn, and Q[Sn] denote the trivial, sign, and regular represen-
tations of Sn respectively. Then there are isomorphisms of Sn-representations,

n⊕

k=0

Hk(Pn, Q) ⊗ Sgn⊗k
n

∼= Q[Sn].

and

An ⊗ (
1n ⊕ Sgnn

) ∼= Q[Sn].

Proof We showed in Proposition 4.2 that Hk(Pn, Q) ∼= Ak−1
n ⊕ Ak

n , with A−1
n =

An
n = 0. Therefore, summing over 0 ≤ k ≤ n,

An ∼=
⊕

k even

Hk(Pn, Q) ∼=
⊕

k odd

Hk(Pn, Q).
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Since Sgn⊗2
n

∼= 1n , we have

n⊕

k=0

Hk(Pn, Q) ⊗ Sgn⊗k
n

∼=
(
⊕

k even

Hk(Pn, Q) ⊗ 1n

)

⊕
(
⊕

k odd

Hk(Pn, Q) ⊗ Sgnn

)

∼= (An ⊗ 1n) ⊕ (An ⊗ Sgnn)
∼= An ⊗ (1n ⊕ Sgnn).

If χn is the character of An , then it follows from Theorem 1.4 that

χn(λ) =
n−1∑

k=0

χk
n (λ) = zλν

∗
n,−1(Cλ),

so the values of χn are given by the rescaled (−1)-splitting measure.
Theorem 6.1 of Lagarias (2016) shows

ν∗
n,−1(Cλ) =

{
1
2 λ = (1n) or (1n−2 2),

0 otherwise.

Now let ρ = χn · (1n + sgnn) be the character of An ⊗ (1n ⊕ Sgnn). If λ = (1n),
we compute

ρ(λ) = χn(λ)
(
1 + sgnn(λ)

) = n!ν∗
n,−1(Cλ)(2) = n!.

If λ = (1n−2 2), then
(
1 + sgnn(λ)

) = 0, hence ρ(λ) = 0. If λ is any other partition,
then ν∗

n,−1(Cλ) = 0, hence ρ(λ) = 0. Therefore ρ agrees with the character of the
regular representation, proving

n⊕

k=0

Hk(Pn, Q) ⊗ Sgn⊗k
n

∼= An ⊗ (1n ⊕ Sgnn) ∼= Q[Sn].

��

6 Other Interpretations of Ak
n

Theorem 4.3 interprets the Sn-representation Ak
n geometrically as

Ak
n

∼= Hk(PConfn(C)/C
×, Q).

In this section we note two other interpretations of Ak
n , coming from combinatorial

constructions previously studied in the literature. These interpretations imply that the
Ak
n for fixed k exhibit representation stability in the sense of Church and Farb (2013)

as n → ∞.
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Proposition 4.2 gave the following direct sum decomposition of the pure braid
group cohomology,

Hk(Pn, Q) ∼= Ak−1
n ⊕ Ak

n . (6.1)

The isomorphisms (6.1) uniquely determine the Ak
n as Sn-representations up to iso-

morphism. Uniqueness holds since finite-dimensional representations are semisimple
by Maschke’s theorem, using the general result that if 0 = C0,C1,C2, . . . is any
sequence of semisimple modules with submodules Bk ⊆ Ck , then isomorphisms

Ck ∼= Bk−1 ⊕ Bk

for each k determine the Bk up to isomorphism.
Let�n denote the collection of partitions of a set with n elements, partially ordered

by refinement (see Stanley 1986, Example 3.10.4)).
Hersh and Reiner (2015, Sec. 2) describe two other sequences of Sn-representations

giving direct sum decompositions of Hk(Pn, Q) coming from the Whitney and sim-
plicial homology of the lattice �n .

Proposition 6.1 1. There is an isomorphism of Sn-representations

Hk(Pn, Q) ∼= WHk(�n), (6.2)

where WHk(�n) is the kth Whitney homology of the lattice �n.
2. There is an isomorphism of Sn-representations

W Hk(�n) ∼= β[k−1](�n) ⊕ β[k](�n)

where β[k](�n) is the [k] = {1, 2, . . . , k}-rank selected homology of the lattice
�n.

3. There is an isomorphism of Sn-representations

β[k](�n) ∼= H̃k−1

(
�k

n

)
,

where �k
n is the sub-poset of λ ∈ �n with |λ| − 
(λ) ≤ k and H̃k−1

(
�k

n

)
denotes

its reduced simplicial homology.

Proof (1) This result is due to Sundaram and Welker (1997, Theorem 4.4 (iii)), cf.
Hersh and Reiner (2015, Thm. 2.11, Sec. 2.3). (See Hersh and Reiner 2015, Sec. 2.4
for more on the Whitney homology of �n .)

(2) Sundaram (1994, Prop. 1.9) decomposes WHk(�n) as

WHk(�n) ∼= β[k−1](�n) ⊕ β[k](�n), (6.3)

where [k] = {1, 2, . . . , k} and β[k](�n) is the [k]-rank selected homology of the lattice
�n (Hersh and Reiner 2015, Prop. 2.17).

123

Author's personal copy



Polynomial Splitting Measures and Cohomology of the Pure. . . 247

(3) Because the lattice �n is Cohen–Macaulay, (Hersh and Reiner 2015, Sec. 2.5)
note the isomorphism

β[k](�n) ∼= H̃k−1
(
�k

n

)
, (6.4)

where�k
n is the sub-poset of λ ∈ �n with |λ|−
(λ) ≤ k and H̃k−1

(
�k

n

)
is its reduced

simplicial homology. ��
The following proposition relates Ak

n , β[k](�n), and H̃k−1
(
�k

n

)
using (6.1).

Proposition 6.2 Let�n be the lattice of partitions of an n-element set, and�k
n ⊆ �n

the sub-poset comprised of λ ∈ �n with |λ| − 
(λ) ≤ k. Then we have the following
isomorphisms of Sn-representations

Ak
n

∼= β[k](�n) ∼= H̃k−1
(
�k

n

)
.

Proof The isomorphisms (6.2) and (6.3) in Proposition 6.1 give the direct sum decom-
positions

Hk(Pn, Q) ∼= β[k−1](�n) ⊕ β[k](�n)

for 0 ≤ k ≤ n. By (6.1) we have that

Hk(Pn, Q) ∼= Ak−1
n ⊕ Ak

n .

Since for k = 0,

β[−1](�n) ∼= A−1
n = {0},

we obtain by induction on k ≥ 1 that

Ak
n

∼= β[k](�n)

Combining this isomorphism with (6.4) finishes the proof. ��
We deduce the representation stability of the characters χk

n from known results.

Proof of Theorem 1.5 The Sn-representations of the rank-selected homology
β[k−1](�n) were shown by Hersh and Reiner (2015, Corollary 5.4) to exhibit
representation-stability for fixed k and varying n and to stabilize sharply at n = 3k+1.
This fact combined with Proposition 6.2 proves Theorem 1.5. ��

The following tables for A1
n and A2

n exhibit representation stability and the sharp
stability phenomenon at n = 3k + 1. We give irreducible decompositions, with mul-
tiplicities, of Hk(Pn, Q) and A1

n in Table 5 and for A2
n in Table 6. To read the tables,

for example, the entry [4, 1, 1] denotes the isomorphism class of the irreducible rep-
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Table 5 Irreducible Sn -module decompositions for H1(Pn , Q) and A1n

n dim H1 H1(Pn , Q) dim A1n A1n

2 1 [2] 0 0

3 3 [3] ⊕ [2, 1] 2 [2, 1]
4 6 [4] ⊕ [3, 1] ⊕ [2, 2] 5 [3, 1] ⊕ [2, 2]
5 10 [5] ⊕ [4, 1] ⊕ [3, 2] 9 [4, 1] ⊕ [3, 2]
n ≥ 4

[ n
n−1

] [n] ⊕ [n − 1, 1] ⊕ [n − 2, 2] [ n
n−1

]− 1 [n − 1, 1] ⊕ [n − 2, 2]

Here λ abbreviates the irreducible representation Sλ

Table 6 Irreducible Sn -module decomposition for A2n

n dim A2n A2n

3 0 0

4 6 [3, 1] ⊕ [2, 1, 1]
5 26 [4, 1] ⊕ [3, 2] ⊕ 2[3, 1, 1] ⊕ [2, 2, 1]
6 71 [5, 1] ⊕ [4, 2] ⊕ 2[4, 1, 1] ⊕ [3, 3] ⊕ 2[3, 2, 1]
7 155 [6, 1] ⊕ [5, 2] ⊕ 2[5, 1, 1] ⊕ [4, 3] ⊕ 2[4, 2, 1] ⊕ [3, 3, 1]
8 295 [7, 1] ⊕ [6, 2] ⊕ 2[6, 1, 1] ⊕ [5, 3] ⊕ 2[5, 2, 1] ⊕ [4, 3, 1]
n ≥ 7

[ n
n−2

]− [ n
n−1

]+ 1 [n − 1, 1] ⊕ [n − 2, 2] ⊕ 2[n − 2, 1, 1] ⊕ [n − 3, 3]
⊕2[n − 3, 2, 1] ⊕ [n − 4, 3, 1]

resentation of S6 associated to the Specht module of the partition [4, 1, 1] of n = 6, in
the notation of Sagan (2013, Sec. 2.3), who gives a construction of the Specht module
representatives of the irreducible isomorphism classes.
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