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Cyclotomic factors of necklace polynomials
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1. Introduction. The dth necklace polynomial Md(x), for positive inte-
gral d, is defined by

Md(x) :=
1

d

∑
e|d

µ(e)xd/e,

where µ is the number-theoretic Möbius function and the sum is over all
positive divisors e of d. Necklace polynomials arise naturally in number the-
ory, combinatorics, dynamics, geometry, representation theory, and algebra.
For example, if q is a prime power and Fq is a finite field with q elements,
then Md(q) is the number of Fq-irreducible monic polynomials of degree d in
Fq[x]; if k ≥ 1 is a natural number, then Md(k) is the number of aperiodic
necklaces comprised of d beads chosen from among k colors.

We begin with the empirical observation that necklace polynomials are
highly reducible over Q. For example, if d = 105, then

M105(x) =
1

105(x
105 − x35 − x21 − x15 + x7 + x5 + x3 − x)

(1.1)

= e(x)(x4 + 1)(x2 − x+ 1)(x2 + 1)(x2 + x+ 1)(x+ 1)(x− 1)x,

where e(x) ∈ Q[x] is an irreducible polynomial of degree 92. With only two
exceptions, the irreducible factors of M105(x) are cyclotomic polynomials.
Recall that the mth cyclotomic polynomial Φm(x) is the Q-minimal poly-
nomial of a primitive mth root of unity. With this notation, (1.1) may be
expressed as

M105(x) = e(x) · Φ8 · Φ6 · Φ4 · Φ3 · Φ2 · Φ1 · x.
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Here are several more examples: there are irreducible, non-cyclotomic poly-
nomials f(x), g(x), h(x) ∈ Q[x] with degrees 148, 212, and 708, respectively,
such that

M165(x) =
1

165(x
165 − x55 − x33 − x15 + x11 + x5 + x3 − x),

= f(x) · Φ12 · Φ10 · Φ5 · Φ4 · Φ2 · Φ1 · x,
M231(x) =

1
231(x

231 − x77 − x33 − x21 + x11 + x7 + x3 − x)

= g(x) · Φ10 · Φ8 · Φ6 · Φ5 · Φ3 · Φ2 · Φ1 · x,
M741(x) =

1
741(x

741 − x247 − x57 − x39 + x19 + x13 + x3 − x)

= h(x) · Φ20 · Φ18 · Φ12 · Φ9 · Φ6 · Φ4 · Φ3 · Φ2 · Φ1 · x.

Since Md(x) has rational coefficients, Φm(x) dividing Md(x) is equivalent
to Md(ζm) = 0 for some primitive mth root of unity ζm. The plot below shows
all pairs (d,m) with 1 ≤ d,m ≤ 1000 such that Md(ζm) = 0.

This plot suggests that the preponderance of cyclotomic factors of Md(x)
observed above is not isolated to special values of d, but rather that it oc-
curs to some extent for all d. The primary objectives of this paper are to
explain why necklace polynomials have so many cyclotomic factors and to
characterize the pairs (d,m) of integers for which Md(ζm) = 0.
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A strikingly similar phenomenon occurs for the seemingly unrelated se-
quence Φd(x)− 1 of shifted cyclotomic polynomials. For example,

Φ105(x)− 1 = ẽ(x) · Φ8 · Φ6 · Φ4 · Φ3 · Φ2 · Φ1 · x,

Φ165(x)− 1 = f̃(x) · Φ10 · Φ5 · Φ4 · Φ2 · Φ1 · x,
Φ231(x)− 1 = g̃(x) · Φ12 · Φ10 · Φ6 · Φ5 · Φ4 · Φ3 · Φ2 · Φ1 · x,

Φ741(x)− 1 = h̃(x) · Φ18 · Φ12 · Φ9 · Φ6 · Φ4 · Φ3 · Φ2 · Φ1 · x,

where ẽ(x), f̃(x), g̃(x), h̃(x) ∈ Z[x] are irreducible, non-cyclotomic polyno-
mials of degree 35, 67, 99, and 407, respectively. Note that Φm(x) divid-
ing Φd(x) − 1 is equivalent to Φd(ζm) = 1 for a primitive mth root of
unity ζm.

Comparing the factorizations of Md(x) and Φd(x) − 1 in the examples
above we see there is a considerable overlap in their cyclotomic factors. The
table below illustrates that this is a common occurrence. For each 2 ≤ d ≤ 43,
we list all m for which Φm(x) divides both Md(x) and Φd(x) − 1 in plain
text, and all m for which Φm(x) divides Md(x) but not Φd(x) − 1 in bold.
For d in this range, there are no m for which Φm(x) divides Φd(x) − 1 but
not Md(x); the first time this occurs is with d = 231 and m = 4.

The secondary objectives of this paper are to explain why this quali-
tatively similar cyclotomic factor phenomenon occurs for the shifted cyclo-
tomic polynomials Φd(x) − 1, explain how these factors are related to the
factors of Md(x), and to characterize those pairs of integers (d,m) for which
Φd(ζm) = 1.

d m d m d m

2 1 16 1,2,4,8 30 1, 2, 4,6

3 1, 2 17 1, 2, 4, 8, 16 31 1, 2, 3, 5, 6, 10, 15, 30

4 1,2 18 1,2, 3,6 32 1,2,4,8,16

5 1, 2, 4 19 1, 2, 3, 6, 9, 18 33 1, 2, 5, 10

6 1,2 20 1, 2,4, 8,12 34 1, 2, 4,6, 8, 16

7 1, 2, 3, 6 21 1, 2,3, 6,8 35 1, 2, 3, 4, 6

8 1,2,4 22 1,2, 5,6, 10 36 1, 2, 3,4, 6,12

9 1, 2,3, 6 23 1, 2, 11, 22 37 1, 2, 3, 4, 6, 9, 12, 18, 36

10 1,2, 4,6 24 1, 2, 4,8 38 1,2, 3, 6, 9, 18

11 1, 2, 5, 10 25 1, 2, 4,5, 10, 20 39 1, 2,3, 4, 6, 12

12 1, 2,4 26 1,2, 3, 4, 6, 12 40 1, 2, 4,8, 16,24

13 1, 2, 3, 4, 6, 12 27 1, 2,3, 6,9, 18 41 1, 2, 4, 5, 8, 10, 20, 40

14 1,2, 3, 6 28 1, 2, 3,4, 6, 12 42 1, 2, 3,6

15 1, 2, 4 29 1, 2, 4, 7, 14, 28 43 1, 2, 3, 6, 7, 14, 21, 42
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We explain the cyclotomic factors of necklace polynomials Md(x) and
shifted cyclotomic polynomials Φd(x)− 1 using the representation theory of
finite abelian groups. We trace this phenomenon in both cases to a common
source, which we call the necklace operators, and show how these operators
account for the common cyclotomic factors of Md(x) and Φd(x) − 1. Our
analysis reveals a surprising connection between these unexpected cyclo-
tomic factors and arrangements of hyperplanes in finite abelian groups. For
example, we will explain how the arrangement of lines covering Z/(4)×Z/(4)
pictured below corresponds to the fact that Md(ζ65) = 0 and Φd(ζ65) = 1
with d = 9372603371 (see Example 2.7).

Our terminology and explicit results are detailed in the following section.

1.1. Results. Our first result relates the identities Md(ζm) = 0 and
Φd(ζm) = 1 and hyperplane arrangements in the group of Dirichlet characters
of modulus m. Let Um := (Z/(m))× denote the multiplicative group of
integers modulo m and let Ûm := Hom(Um,C×) be the group of Dirichlet
characters of modulus m. Each unit q ∈ Um determines a homomorphism
from Ûm to C× by χ 7→ χ(q); let Hq ⊆ Ûm denote the kernel of this map.
We call Hq the hyperplane associated to q,

Hq := {χ ∈ Ûm : χ(q) = 1}.

Note that with a choice of coordinates for the group Ûm—by which we
mean some isomorphism between Ûm and a product of cyclic groups Z/(n)—
Hq may be expressed as the vanishing set of an integral linear form, hence
the hyperplane terminology (see Remark 2.1).

Theorem 1.1. Let d,m > 1 be coprime integers. If Ûm ⊆
⋃

p|dHp, then
xm − 1 divides Md(x) and xm−1

x−1 divides Φd(x)− 1.

In other words, if the group Ûm of Dirichlet characters of modulus m
is covered by the arrangement of hyperplanes {Hp : p | d is prime}, then
Md(ζ

k
m) = 0 for all k ≥ 0 and Φd(ζ

k
m) = 1 for all k ̸≡ 0 mod m.



Cyclotomic factors of necklace polynomials 291

Remark 1.2. Theorem 1.1 avoids addressing Φd(1), but it is well-known
that Φd(1) = 1 whenever d is divisible by at least two distinct primes and
that Φpr(1) = p for any prime p and r ≥ 1.

Theorem 1.1 shows that hyperplane arrangements covering Ûm provide
one source of common cyclotomic factors of Md(x) and Φd(x)− 1, and that
these factors have the property that if Φm(x) is a factor, so is Φn(x) for
all n > 1 dividing m. Theorem 1.1 empirically accounts for the majority of
such common cyclotomic factors. For example, with 1 ≤ d ≤ 1000, Theorem
1.1 accounts for all common cyclotomic factors of Md(x) and Φd(x)− 1; for
about 88.9% of the cyclotomic factors of Md(x); and for about 99.7% of the
cyclotomic factors of Φd(x)− 1.

Example 1.3. We illustrate Theorem 1.1 in the case m = 24. The Dirich-
let characters Û24 form a 3-dimensional F2-vector space. Note that U24 is gen-
erated by 13, 17, and 19. Identifying U24 with the dual of Û24 we can choose
coordinates ρ : U24 → F̂3

2 such that ρ(13) = x, ρ(17) = y, and ρ(19) = z.
The pencil of planes containing the line ⟨(1, 1, 1)⟩ covers all of F3

2
∼= Û24 and

consists of

H13·17 : x+ y = 0, H13·19 : x+ z = 0, H17·19 : y + z = 0.

Since

13 · 17 ≡ 5 mod 24, 13 · 19 ≡ 7 mod 24, 17 · 19 ≡ 11 mod 24,

it follows from Theorem 1.1 with d = 385 = 5 · 7 · 11 that x24 − 1 divides
M385(x) and x24−1

x−1 divides Φ385(x)− 1.

Example 1.4. Let d,m ≥ 1 and suppose that d is divisible by some
prime p such that p ≡ 1 mod m. In this case, Hp = H1 = Ûm is the degener-
ate hyperplane, namely the entire group (recall that Hd is the kernel of the
evaluation map χ 7→ χ(d) for χ a Dirichlet character of modulus m). Hence
the arrangement {Hp ⊆ Ûm : p | d is prime} trivially covers Ûm. Thus Theo-
rem 1.1 implies that Md(ζm) = 0 and Φd(ζm) = 1 whenever d is divisible by
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a prime p such that p ≡ 1 mod m. In particular, with d fixed, this holds for
m = p−1 if gcd(d, p−1) = 1. This explains why cyclotomic factors of Md(x)
and Φd(x) − 1 are so prevalent: each such prime p dividing d contributes a
factor of xp−1−1

x−1 to both polynomials.

Our second result highlights the structure of the pairs (d,m) with m fixed
for which Md(ζm) = 0 or Φd(ζm) = 1.

Theorem 1.5. Let d, e,m ≥ 1.

(1) If Md(ζm) = 0 and e is coprime to m, then Mde(ζm) = 0.
(2) If d and e are coprime to m and if we have an equality of sets of residue

classes

{p mod m : p | d is prime} = {q mod m : q | e is prime},
then Md(ζm) = 0 if and only if Me(ζm) = 0.

Likewise, both assertions hold with Md(ζm) = 0 replaced by Φd(ζm) = 1.

Theorem 1.6 characterizes the pairs (d,m) for which Md(ζm) = 0 or
Φd(ζm) = 1, without the coprime restriction on d and m, in terms of hyper-
plane arrangements covering certain prescribed subsets of Ûm. First, some
set-up. If n divides m, then there is a natural injective map Ûn → Ûm in-
duced by the quotient Um → Un. We use these maps to identify Ûn with
its image in Ûm and say Ûn ⊆ Ûm. If χ ∈ Ûm, then let cχ be the smallest
positive integer n such that χ ∈ Ûn. Finally, let vp denote the normalized
p-adic valuation.

The precise statement of Theorem 1.6 is technical, but in essence it says
that for integers d,m ≥ 1, there is a subset Σ = Σd,m ⊆ Ûm of Dirichlet
characters of modulus m such that Md(ζm) = 0 if and only if Σ is cov-
ered by the union of hyperplanes Hp ⊆ Ûm for p a prime dividing d and
not m. A similar conclusion holds characterizing the pairs (d,m) such that
Φd(ζm) = 1, but with a couple of additional arithmetic conditions as well.

Theorem 1.6. Let d, e, f,m ≥ 1 be integers and let m′ be the product of
all primes p such that vp(m) = 1. Suppose that

(i) def is squarefree,
(ii) d is coprime to m,

(iii) e divides m′,
(iv) f divides m/m′.

Then:

(1) If Σf,m ⊆ Ûm is the set of all characters χ such that

(a) vp(cχ) = vp(m) if vp(m) ≥ 2 and vp(f) = 0, and
(b) vp(cχ) ≥ vp(m)− 1 if vp(m) > 2 and vp(f) = 1,
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then Mdef (ζm) = 0 if and only if

Σf,m ⊆

{⋃
p|dHp if 2 ∤ e,⋃
p|dHp ∪Ha

2 if 2 | e,

where Ha
2 ⊆ Ûm is the affine hyperplane

Ha
2 := {χ ∈ Ûm : χ(2) = −1}.

(2) If m does not divide def , then Φdef (ζm) = 1 if and only if

(a) H−1 ⊆

{⋃
p|md/eHp if 3 ∤ e,⋃
p|md/eHp ∪Ha

3 if 3 | e,

where Ha
3 ⊆ Ûm is the affine hyperplane

Ha
3 := {χ ∈ Ûm : χ(3) = −1},

(b) m divides φ(def), and

(c)
∑
a|def

⌊a/m⌋ ≡ φ(def)

m
mod 2.

Remark 1.7. We make several comments on Theorem 1.6.
(1) If d ≥ 1, let d0 be the product of all distinct primes dividing d and

let e = d/d0. Then dMd(ζm) = d0Md0(ζ
e
m) and Φd(ζm) = Φd0(ζ

e
m). Hence we

lose no generality in Theorem 1.6 by assuming that def is squarefree.
(2) If χ ∈ Ûm is a character, then a common convention is to set χ(d) = 0

whenever d is not coprime to m. Our identification of Ûn with its image in Ûm

induced by the quotient map Um → Un whenever n divides m suggests a
slight natural variant on this convention which we find convenient: If χ ∈ Ûm

has conductor n and d ∈ Z, then we set χ(d) = 0 if d is not coprime to n and
otherwise set χ(d) to its non-zero value on the residue class of d modulo n.
In particular, the characters on the affine hyperplane Ha

2 defined in Theorem
1.6 must all have conductor dividing m/2. See Caution 2.2.

Example 1.8. Theorem 1.6 allows us to account for the cyclotomic fac-
tors of Md(x) not explained by Theorem 1.1. For example, let m = 8 and
let e = f = 1. If d is odd, then Theorem 1.6 implies that Md(ζ8) = 0 if and
only if

Σ1,8 ⊆
⋃
p|d

Hp.

where Σ1,8 ⊆ Û8 is the set of all characters χ such that v2(cχ) = 3, which is
to say, cχ = 8. There are two such characters χ determined by χ(3) = ±1
and χ(5) = −1. Hence if χ ∈ Σ1,8, then either χ(3) = 1, or χ(3) = −1 and

χ(7) = χ(3)χ(5) = (−1)2 = 1.

Equivalently, Σ1,8 ⊆ H3 ∪H7.Therefore M21(ζ8) = 0.
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In fact, M21(x) factors as

M21(x) = f(x) · Φ8 · Φ6 · Φ3 · Φ2 · Φ1 · x,
where f(x) is irreducible and not cyclotomic. Note that Φ8(x) divides M21(x),
but Φ4(x) does not. This reflects the fact that H3 ∪ H7 covers Σ1,8 but not
Σ1,4, which consists of the character χ such that χ(3) = χ(7) = −1 and
χ(5) = 1.

Example 1.9. If m = 6, then Û6 = {1, χ} contains only two characters.
The non-trivial character χ has cχ = 3 and satisfies χ(2) = −1. Thus the
affine hyperplane Ha

2 = {χ} consists of the one non-trivial character. There-
fore

⋃
p|dHp∪Ha

2 covers Û6 for any d > 1 coprime to 6. Theorem 1.6 implies
that M2d(ζ6) = 0 for all d coprime to 6. For example, this explains the Φ6(x)
factor in M10(x):

M10(x) = g(x) · Φ6 · Φ4 · Φ2 · Φ1 · x,
where g(x) = 1

10(x
3 + x2 − 1) is irreducible and not cyclotomic.

1.1.1. Necklace operators. The connection between the necklace and
shifted cyclotomic polynomials traces back to what we call the necklace op-
erators φd. Let N◦ denote the multiplicative semigroup of natural numbers,
and let Z[N◦] be the integral semigroup ring comprised of all integral lin-
ear combinations of formal expressions [m] with m ∈ N subject only to the
relations [m][n] = [mn]. The dth necklace operator is defined by

φd :=
∑
e|d

µ(e)[d/e] ∈ Z[N◦].

The polynomial ring Q[x] carries a Z[N◦]-module structure where α =∑
m am[m] ∈ Z[N◦] acts on f(x) ∈ Q[x] by

αf(x) :=
∑
m

amf(xm).

Similarly, the non-zero rational functions Q(x)× have a multiplicative action
of Z[N◦] defined on g(x) ∈ Q(x)× by

g(x)α :=
∏
m

g(xm)am .

With respect to these module structures we have the following expressions
for necklace and cyclotomic polynomials in terms of the necklace operator:

Md(x) =
1

d

∑
e|d

µ(e)xd/e =
1

d

∑
e|d

µ(e)[d/e]x =
φdx

d
,

Φd(x) =
∏
e|d

(xd/e − 1)µ(e) =
∏
e|d

(x− 1)µ(e)[d/e] = (x− 1)φd .
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In Section 2 we show how the abundance of pairs (d,m) for which Md(ζm)=0
or Φd(ζm)=1 is ultimately a consequence of the elementary observation that
the dth necklace operator has the following factorization in Z[N◦]:

(1.2) φd =
∏
p

[pmp−1]([p]− 1) = [d]
∏
p|d

(1− [p]−1),

where d =
∏

p p
mp is the prime factorization of d.

If d is coprime to m, then φd determines an element of the group ring
Z[Um]. Hence if v is a vector in a linear Um-representation V , then φdv ∈ V .
Our analysis of the identities Md(ζm) = 0 and Φd(ζm) = 1 hinges on the
following result.

Theorem 1.10. Let d,m ≥ 1 be coprime integers and suppose v ∈ V is
an element of a Q[Um]-module. Let Σv denote the set of Dirichlet characters
that occur in the irreducible decomposition of the cyclic Um-representation
generated by v. Then in C⊗ V we have

φd v =
∑
χ∈Σv

χ(d)
∏
p|d

(1− χ(p))vχ,

where vχ is the χ-isotypic component of the vector v. Thus φd v = 0 if and
only if Σv ⊆

⋃
p|dHp.

1.2. Related work. As noted above, necklace polynomials have many
interpretations. Gauss [10, p. 611] wrote down the necklace polynomials eval-
uated at a prime p to count irreducible polynomials over Fp of a prescribed
degree, and Schönemann [23, Sec. 48, pp. 319–320] later independently re-
discovered this formula. This interpretation accounts for the appearance of
necklace polynomials in the Euler product formula for the Hasse–Weil zeta
function of the affine line over Fq,

ζ1(Fq)(t) =
1

1− qt
=

∏
d≥1

(
1

1− td

)Md(q)

.

Necklace polynomials often appear in connection with Euler products.
See, for example, Moree [20] and Ettahri, Ramaré, Surel [9], in which the
traces of necklace polynomials evaluated at algebraic numbers arise in the
study of fast numerical evaluations of Euler products.

The name “necklace polynomial” comes from the combinatorial interpre-
tation of Md(k) as counting the number of aperiodic necklaces of d beads
chosen from among k colors, which Metropolis and Rota [18, p. 95] attribute
to the French colonel Moreau; the M in the notation is presumably in his
honor. Necklace polynomials also count Lyndon words [2, Sec. 4.2] and the
number of periodic orbits of a prescribed length for a generic polynomial of
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fixed degree [25, Rmk. 4.3]. Metropolis and Rota [18] use necklace polyno-
mials to construct a combinatorial model of the ring of big Witt vectors.

When g ≥ 1 is an integer, Witt [27, Satz 3] showed that Md(g) is the
dimension of the degree d homogeneous component of the free Lie algebra
on g generators. In this context the explicit expression for Md(x) as a di-
visor sum is sometimes called Witt’s formula [2, p. 1005]. Reutenauer [22,
Thm. 4.9, Thm. 5.1] gave a combinatorial proof of this result by constructing
an explicit basis for the free Lie algebra from Lyndon words.

Let PConfd(Rn) denote the space of labeled configurations of d distinct
points in Rn. The symmetric group Sd acts naturally on this space by per-
muting labels and this action endows the cohomology H∗(PConfd(Rn),Q)
with the structure of an Sd-representation. The character values of these
representations are determined by necklace polynomials. See Hyde [13].

In [14], we show that Md(1) = χc(Irrd(C)) and Md(−1) = χc(Irrd(R)),
where χc is the compactly supported Euler characteristic and Irrd(K) is the
space of monic, K-irreducible polynomials in K[x] of degree d. In these cases
the fundamental theorem of algebra gives a higher level explanation for why
Md(±1) = 0 for nearly all d. It would be interesting to find a more conceptual
interpretation of the vanishing of Md(ζm) for m > 2, but we are unaware of
one at this time.

The Euler characteristic interpretation of Md(±1) found in [14] extends
to the family Md,n(x) of higher necklace polynomials introduced by the au-
thor in [12] to enumerate the irreducible polynomials over Fq in nvariables.
Theorem 1.5 in [14] shows that Md,n(ζp) = 0 for certain primes p depending
on n and nearly all d. However, for n > 1, the qualitative behavior of these
cyclotomic factors differs from those of Md(x) and Φd(x) − 1, thus we ex-
pect the cyclotomic factors of Md,n(x) with n > 1 arise for a fundamentally
different reason.

Despite the long history of necklace polynomials, the observation of their
abundance of cyclotomic factors appears to be new.

The identity Φd(ζm) = 1 has received more attention. Note that if
Φd(ζm) = 1, then

(1.3) 1 = Φd(ζm) =
∏

gcd(j,d)=1

(ζm − ζjd).

Algebraic integral units of the form ζm − ζn are called cyclotomic units.
Thus (1.3) may be interpreted as a multiplicative relation between cyclo-
tomic units. Such multiplicative relations are of interest in number theory
and algebraic K-theory; they have been studied by Bass [1], Conrad [6],
Ennola [8], Ramachandra [21], and others. This previous work focuses pri-
marily on finding explicit relations that generate all of the relations amongst
the cyclotomic units; our results provide a natural way of generating such
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relations through the construction of arrangements in Ûm covering a pre-
scribed set.

There is also some literature on classifying the vanishing integral linear
combinations of roots of unity of which Md(ζm) = 0 and Φd(ζm) − 1 = 0
provide examples. See Christie, Dykema, Klep [5] for a recent reference along
with a survey of the previous work on this problem.

Kurshan and Odlyzko [16, 17] made a detailed study of the unit part
of Φd(ζm) which included analyzing situations where Φd(ζm) = 1. Their
work was motivated by problems related to the design of recursive linear
digital filters. Our Theorem 1.6(2), characterizing solutions of Φd(ζm) = 1, is
substantively equivalent to a result they proved in [17]. This can be seen most
clearly in their discussion following Proposition 3.4 where they express the
condition of H−1 being covered by hyperplanes as a disjunction of conditions
on a character χ such that χ(−1) = 1.

For their application, Kurshan and Odlyzko focus on analyzing the case
Φpm(ζm) with p a prime not dividing m. This case is not covered by Theo-
rem 1.6(2) since we assume that m does not divide def .

Through his study of base b expansions of reciprocal primes 1/p, Cald-
well [4] observed that Φd(x)−1 often has an abundance of cyclotomic factors.
Caldwell’s Theorem 1 gives the necessary condition we state as Theorem
1.6(2b). His Theorems 2, 4, 5 and Corollary 3 gives several sufficient con-
ditions which, from our combinatorial geometry perspective, are equivalent
to parametrizing families of hyperplane arrangements in Ûm meeting the
conditions in Theorem 1.6(2). As the number of distinct primes dividing d
increases, so does the number and complexity of possible arrangements cor-
responding to cyclotomic factors of Φd(x) − 1, hence it will not be possible
to find a finite list of such families which account for all Φm(x) dividing
Φd(x)− 1.

The expression for φdv given by Theorem 2.5 below generalizes a result
of Bzdęga, Herrera-Poyatos, Moree [3, Thm. 1] which is the specialization
to the case v = ζm − 1 in the Q-linearization of V = Q(ζm)×. They use
this formula to explicitly evaluate Φd(ζm) for small fixed values of m as a
function of d, which in turn they apply to give a new proof of a result of
Vaughan on the heights of cyclotomic polynomials.

If f(x) ∈ K[x] is a polynomial with coefficients in a field K, then the dth
dynatomic polynomial of f is defined by the product

(1.4) Φf,d(x) :=
∏
e|d

(fe(x)− x)µ(d/e),

where fn(x) denotes the n-fold iterated composition of f(x) with itself. Re-
cently Doyle, Fili, and Hyde [7] discovered a connection between cyclotomic
factors of necklace polynomials and dynatomic factors Φf,m(x) of Φf,d(x)−1.
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This connection also arises via the necklace operator φd, traces of which can
be seen in (1.4).

An earlier version of this paper appeared in the author’s dissertation
[11, Chp. 4].

1.3. Organization. In Section 2 we develop the theory of the necklace
operators and prove Theorem 1.10 as Theorem 2.5, from which we then
deduce Theorem 1.1 as Corollary 2.6 and Theorem 1.5 as Corollary 2.8. The
first part of Theorems 1.6 is proved in Section 3 as Theorem 3.3 and the
second part is proved in Section 4 as Theorem 4.6.

2. Necklace operators. We briefly review the representation theory
of finite abelian groups—see Serre [24] for more background. Given a fi-
nite (multiplicative) abelian group U , let Û denote the dual group or group
of characters χ : U → C×. The groups U and Û are non-canonically iso-
morphic. Each character χ ∈ Û extends linearly to a ring homomorphism
χ : Z[U ] → C. If χi for 1 ≤ i ≤ n are the distinct characters of U , then the
map Z[U ] → Cn given by

α ∈ Z[U ] 7→ (χ1(α), . . . , χn(α)) ∈ Cn

is an embedding of rings. Hence α ∈ Z[U ] is zero if and only if χ(α) = 0 for
all χ ∈ Û . A hyperplane H ⊆ Û is defined to be the (multiplicative) kernel
of a character of Û . The group U is canonically isomorphic to the dual of Û .
In particular, if q ∈ U , then the hyperplane associated to q is

Hq := ker(q) = {χ ∈ Û : χ(q) = 1}.

If q = 1 is the identity, then H1 = Û is the trivial hyperplane. If q ̸= 1, then
Hq is a proper subgroup of Û .

Remark 2.1. While we are primarily interested in multiplicative groups
of units, the geometric terminology is best understood from an additive
perspective. Suppose Û ∼= Fn

p is an n-dimensional vector space over a finite
field Fp. If we choose some isomorphism of the pth roots of unity with the
additive group of the field Fp, then a character q : Û → C× of Û is equivalent
under this isomorphism to an Fp-linear map q : Fn

p → Fp. Thus there is a
homogeneous linear form

hq :=

n∑
i=1

aixi

with Fp-coefficients such that the hyperplane Hq is precisely the set of solu-
tions hq(x) = 0 in Fn

p .

Let Um denote the group of units modulo m,

Um := (Z/(m))×.
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The elements of Ûm are called Dirichlet characters of modulus m. If n divides
m, then the quotient map Um → Un induces an injective map Ûn → Ûm.
Identifying Ûn with its image under this map we say Ûn ⊆ Ûm. If a character
χ ∈ Ûm belongs to the subset Ûn, then we say χ has modulus n. If χ has
modulus n, then the values χ(k) depend only on k modulo n. Note that if χ
has modulus n, it also has modulus m for all multiples m of n. The smallest n
for which χ ∈ Ûm has modulus n is called the conductor of χ and denoted cχ.

Caution 2.2. A common convention in number theory is to distinguish
a character χ ∈ Ûn from the character it naturally induces in Ûm when n |m.
In particular, the convention is to set χ(d) = 0 for all non-trivial χ ∈ Ûm

when d is not coprime to m. Since we are identifying Ûn with a subset of Ûm

whenever n divides m, we use a slight natural variation on this convention: If
d ∈ Z and χ ∈ Ûm has conductor n, then we set χ(d) = 0 if d is not coprime
to n and otherwise set χ(d) to be the well-defined, non-zero value of χ on the
residue class of d modulo n. This gives each character χ a consistent value
independent of which group Ûm it is considered to be an element of.

To illustrate, let m = 10. Note that Û10 = Û5. If χ ∈ Û10, then the
common convention is to say that χ(2) = 0 since 2 divides 10. However,
χ has conductor 5 and as an element of Û5 it has a well-defined non-zero
value at 2 which we take to be the value of χ(2).

This convention will prove to be a useful simplification throughout the
paper.

If R is a semiring, we let R◦ denote the multiplicative semigroup of R.
Let Z[N◦] denote the ring generated by the expressions [m] with m ∈ N
subject to the relations [m][n] = [mn]. We define the dth necklace operator
for d ≥ 1 to be the element φd ∈ Z[N◦] defined by

φd :=
∑
e|d

µ(e)[d/e].

Remark 2.3. The map [n] 7→ n determines a ring homomorphism
Z[N◦] → Z such that

φd 7→
∑
e|d

µ(e)(d/e) = φ(d),

where φ(d) is the Euler totient function, hence our choice of notation.

Necklace polynomials and cyclotomic polynomials are connected through
the necklace operator. Recall from the introduction that with respect to the
natural additive and multiplicative actions of Z[N◦] on Q[x] and Q(x)×,
respectively, we have

Md(x) =
φdx

d
, Φd(x) = (x− 1)φd .
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The map [n] 7→ [n mod m] induces a ring homomorphism Z[N◦]→Z[Z/(m)◦].
If d is coprime to m, then the image of φd under this map belongs to the
subring Z[Um]. The image of φd in Z[Um] factors as

(2.1) φd = [d]
∏
p|d

(1− [p]−1).

The factorization (2.1) is equivalent to families of functional identities sat-
isfied by Md(x) and Φd(x): if p is a prime and d ≥ 1, then

Mdp(x) =

{
1
p(Md(x

p)−Md(x)) p ∤ d,
1
pMd(x

p) p | d,
Φdp(x) =

{
Φd(x

p)/Φd(x) p ∤ d,
Φd(x

p) p | d.

The identities for necklace polynomials were observed and given combinato-
rial interpretations by Metropolis and Rota [18]; the identities for cyclotomic
polynomials are well-known.

Remark 2.4. Let d0 be the product of all distinct primes dividing d.
Thus (2.1) implies that φd = [d/d0]φd0 , hence

(2.2) dMd(x) = d0Md0(x
d/d0), Φd(x) = Φd0(x

d/d0).

We use (2.2) to reduce the analysis of Md(ζm) and Φd(ζm) to the case where
d is squarefree.

Let C[Um] denote the group algebra of Um over C. If χ ∈ Ûm is a char-
acter, let eχ ∈ C[Um] denote the corresponding idempotent,

eχ :=
1

φ(m)

∑
q∈Um

χ(q)[q].

We write vχ := eχv for the projection of a vector v ∈ V onto the χ-isotypic
component of V . Then

v =
∑

χ∈ Ûm

vχ.

The support of v is the set Σv ⊆ Ûm of characters χ such that vχ ̸= 0. In
particular, v = 0 if and only if Σv = ∅.

Theorem 2.5. Let d,m ≥ 1 be coprime integers, let V be a Q[Um]-
module, and let v ∈ V be an element with support Σv. Then φdv has the
following expression in C⊗ V :

φd v =
∑
χ∈Σv

χ(d)
∏
p|d

(1− χ(p))vχ.

Thus φd v = 0 if and only if Σv ⊆
⋃

p|dHp. In particular, φd = 0 in Q[Um]

if and only if Ûm ⊆
⋃

p|dHp.
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Proof. If α ∈ C[Um] and eχ is the idempotent associated to a character χ,
then αeχ = χ(α)eχ. Hence

φdv =
∑
χ∈Σv

φdeχv =
∑
χ∈Σv

χ(φd)vχ(2.3)

=
∑
χ∈Σv

χ(d)
∏
p|d

(1− χ(p))vχ

where the final equality follows from (2.1). The factor 1 − χ(p) vanishes
precisely when χ ∈ Hp, thus the support of φdv is Σv \

⋃
p|dHp. Therefore

φdv = 0 if and only if Σv \
⋃

p|dHp = ∅, which is to say, Σv ⊆
⋃

p|dHp.
Since Q[Um] is cyclic as a module over itself generated by 1, Σ1 = Ûm and
it follows that φd = φd1 = 0 if and only if Ûm ⊆

⋃
p|dHp.

Theorem 2.5 gives us the following simple sufficient condition for both of
the identities Md(ζm) = 0 and Φd(ζm) = 1 to hold simultaneously.

Corollary 2.6. Let d,m > 1 be coprime integers. If Ûm ⊆
⋃

p|dHp,
then xm − 1 divides Md(x) and xm−1

x−1 divides Φd(x)− 1.

Proof. If Ûm ⊆
⋃

p|dHp, then φd = 0 by Theorem 2.5. Thus,

Md(ζ
k
m) =

φdζ
k
m

d
= 0, Φd(ζ

k
m) = (ζkm − 1)φd = 1.

The first identity holds for all k ≥ 0, but in the second identity we need
k ̸≡ 0 mod m in order to have ζkm − 1 ∈ Q(ζm)×. Hence xm − 1 divides
Md(x) and xm−1

x−1 divides Φd(x)− 1.

Example 2.7. Let m= 65 and d= 9372603371 = 47 · 73 · 79 · 151 · 229.
The group Û65 decomposes as Û65

∼= Z/(4)2 × Z/(3), so each hyperplane
Hp factors as Hp

∼= H(4)
p × H(3)

p with H(4)
p ⊆ Z/(4)2 and H(3)

p ⊆ Z/(3). In
this case, each of the hyperplanes Hp with p | d is trivial in the 3-component
H(3)

p = Z/(3). Thus we can visualize the hyperplanes Hp via their 4-com-
ponent H(4)

p as lines in the “plane” Z/(4)2. Each of the five primes dividing
d corresponds to a different colored line in the diagram below with respect
to the choice of coordinates x = ρ(47) and y = ρ(151). Since the five lines
Hp with p | d cover all of Û65, Corollary 2.6 implies that Md(ζ

k
65) = 0 for all

k ≥ 0 and Φd(ζ
k
65) = 1 for all k ̸≡ 0 mod 65.
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By drawing other arrangements of lines covering Z/(4)2 and then finding
primes in the corresponding congruence classes modulo 65 (which exist by
Dirichlet’s theorem on primes in arithmetic progressions) we can construct
several other non-trivial examples of d with Md(ζ65)= 0 and Φd(ζ65)= 1.

Example values of d for each of these arrangements are, respectively,

d1 = 157 · 181 · 337 · 389,
d2 = 79 · 181 · 389,
d3 = 47 · 109 · 151 · 157 · 317 · 337.

The following corollary of Theorem 2.5 proves Theorem 1.5 from the
introduction.

Corollary 2.8. Let d, e,m ≥ 1 be integers and let v ∈ V be an element
of a Q[Um]-module V .

(1) If φdv = 0 and e is coprime to m, then φdev = 0.
(2) If d and e are coprime to m and

(2.4) {p mod m : p | d is prime} = {q mod m : q | e is prime},
then φdv = 0 if and only if φev = 0.
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In particular, if V = Q(ζm) and v = ζm, or if m > 1, V = Q⊗Q(ζm)×, and
v = ζm − 1, then (1) and (2) hold with φdv = Md(ζm) and φdv = Φd(ζm),
respectively.

Proof. (1) The product formula (2.1) for the necklace operator implies
that φd divides φde in Z[N◦] and the assumption that e is coprime to m
implies that φde/φd ∈ Z[Um]. Thus,

φdev = (φde/φd)(φdv) = (φde/φd)0 = 0.

(2) Theorem 2.5 implies that φdv = 0 if and only if Σv ⊆
⋃

p|dHp,
where Σv is the support of v. The hyperplane Hp ⊆ Ûm depends only on
the residue class p mod m. In other words, the equality in (2.4) is equiv-
alent to

⋃
p|dHp =

⋃
q|eHq. Thus, (2.4) implies φdv = 0 if and only if

φev = 0.

Remark 2.9. A quick computation shows that M10(ζ6) = 0 but M20(ζ6)
̸= 0. This example shows that the assumption that e is coprime to m is
necessary in Corollary 2.8(1).

3. Cyclotomic factors of Md(x). In this section we characterize those
pairs (d,m) for which Md(ζm) = 0 in terms of an explicit set of Dirichlet
characters being covered by an arrangement of hyperplanes. If d is coprime to
m, this reduces to determining the support of ζm ∈ Q(ζm) by Theorem 2.5.
When d and m are not coprime, the situation becomes more complicated
and the relevant support depends in a subtle way on the common factors of
d and m.

If m is a positive integer, then the squarefree part of m, denoted m′, is
the product of all primes that divide m exactly once. We say a character
χ ∈ Ûm is supportive if m/m′ divides the conductor cχ of χ. Equivalently,
χ is supportive if and only if

(3.1) vp(cχ) = vp(m) for all primes p such that vp(m) ≥ 2.

Let Û∗
m ⊆ Ûm denote the subset of all supportive characters.

Proposition 3.1. Let m ≥ 1 be an integer and let χ ∈ Ûm be a character
of modulus m. Then χ is in the support of ζm ∈ Q(ζm) if and only if χ is
supportive.

Proof. If m =
∏

p p
mp is the prime factorization of m and χ ∈ Ûm is a

character, then by the Chinese Remainder Theorem there are factorizations

ζm =
∏
p

ζ
ap
pmp , χ =

∏
p

χpmp ,

where ap ∈ Upmp is a unit and χpmp ∈ Ûpmp is a character of modulus pmp .
The factorization of χ induces a factorization of idempotents eχ =

∏
p eχpmp
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such that

(3.2) eχζm =
∏
p

eχpmp ζ
ap
pmp .

Let Σm denote the support of ζm in Q(ζm). Since Σm depends only on the
cyclic Q[Um]-module generated by ζm, it follows that Σm is the support of ζam
for all a ∈ Um. Then (3.2) implies that χ ∈ Σm if and only if χpmp ∈ Σpmp

for all primes p. The conductor of χ is the product of the conductors of
χpmp , hence by the definition of supportive characters, χ ∈ Û∗

m if and only if
χpmp ∈ Û∗

pmp . Thus to prove our claim it suffices to show that Σpk = Û∗
pk

for

all primes p and all k ≥ 1. Note that Û∗
pk

⊆ Ûpk consists of all the primitive
characters if k > 1 and all characters if k = 1.

If k = 1, then the identity ∑
q∈Up

ζqp = −1

implies that Q(ζp) is the cyclic Q[Up]-module generated by ζp. Therefore
Σp = Ûp = Û∗

p .
If k > 1, then {1, ζpk , ζ2pk , . . . , ζ

p−1
pk

} forms a Q(ζpk−1)-basis for Q(ζpk).
Thus Q(ζpk) decomposes as the direct sum of two Q[Upk ]-submodules:

(3.3) Q(ζpk) = Q(ζpk−1)⊕
p−1∑
a=1

Q(ζpk−1)ζapk =: U ⊕ V.

We claim that V is the cyclic Q[Upk ]-module generated by ζpk . If q ∈ Upk ,
then q ≡ a + pb mod pk for some 1 ≤ a ≤ p − 1 and some integer b. Con-
sequently, ζq

pk
= ζb

pk−1ζ
a
pk

∈ Q(ζpk−1)ζapk , and elements of this form span V

by construction. The normal basis theorem implies that Q(ζm) ∼= Q[Um] as
Q[Um]-modules for any m. Recall that Ûpk−1 is identified with its natural
image in Ûpk (see Caution 2.2). Hence, taking supports in (3.3) gives us

Ûpk = Ûpk−1 ⊔Σpk .

Therefore Σpk = Ûpk \ Ûpk−1 = Û∗
pk

consists of the primitive characters of
modulus pk.

Remark 3.2. If χ ∈ Ûm is a non-trivial Dirichlet character of modulus m,
then the Gauss sum of χ is

G(χ) :=
∑
q∈Um

χ(q)ζqm.

Gauss sums are scalar multiples of the isotypic components of ζm ∈ Q(ζm).
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In particular,

G(χ−1) =
∑
q∈Um

χ(q)ζqm = φ(m)eχζm = φ(m)(ζm)χ.

Thus the support of ζm may be interpreted as the set of all characters χ such
that G(χ−1) ̸= 0. Since Û∗

m is closed under taking inverses, Proposition 3.1
is equivalent to the assertion

Û∗
m = {χ ∈ Ûm : G(χ) ̸= 0}.

This characterization of non-vanishing Gauss sums, and hence of the support
of ζm, may also be deduced from the classical theory of Gauss sums. In
particular, it follows from Theorems 9.7 and 9.10 in Montgomery, Vaughan
[19]. We thank Andrew O’Desky for bringing this to our attention.

We now turn to the main result of this section. Note that by Remark 2.4
we lose no generality in assuming that def is squarefree.

Theorem 3.3. Let d, e, f,m≥ 1 be integers, let m′ be the squarefree part
of m, and let Ha

2 ⊆ Ûm be the affine hyperplane Ha
2 := {χ∈ Ûm :χ(2)=−1}.

Suppose that

(i) def is squarefree,
(ii) d is coprime to m,

(iii) e divides m′,
(iv) f divides m/m′.

Let Σf,m ⊆ Ûm be the set of all characters χ such that
(1) vp(cχ) = vp(m) if vp(m) ≥ 2 and vp(f) = 0, and
(2) vp(cχ) ≥ vp(m)− 1 if vp(m) > 2 and vp(f) = 1.
Then Mdef (ζm) = 0 if and only if

Σf,m ⊆

{⋃
p|dHp if e is odd,⋃
p|dHp ∪Ha

2 if e is even.

Proof. Since we assume that d, e, f are pairwise coprime, we may express
Mdef (ζm) as

Mdef (ζm) =
1

def
φd(φeφfζm).

Our strategy is to determine the support of φeφfζm and then apply Theorem
2.5 with v = φeφfζm. Note that Theorem 2.5 does not immediately apply
with v = ζm because def is not coprime to m.

Observe that
φf ζm =

∑
b|f

µ(f/b)ζbm =
∑
b|f

µ(f/b)ζm/b,

where ζm/b := ζbm is a primitive m/bth root of unity and µ(f/b) ̸= 0 since
f is squarefree. Proposition 3.1 implies that the support of ζm/b is Û∗

m/b.
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If b, b′ are distinct divisors of f , then by the definition of f there is some
prime p such that vp(m) ≥ 2 and, say, 1 = vp(b) > vp(b

′) = 0. Thus if
c and c′ are the conductors of characters in Û∗

m/b and Û∗
m/b′ , respectively,

then

vp(c) ≤ vp(m/b) < vp(m) = vp(c
′),

where the last equality follows from Proposition 3.1. In particular, Û∗
m/b and

Û∗
m/b′ are disjoint. Therefore the support of φf ζm is

Σφf ζm =
⋃
b|f

Û∗
m/b.

Let Σf,m ⊆ Ûm be the set of characters defined in the statement of Theo-
rem 3.3. We claim that

(3.4) Σf,m =
⋃
b|f

Û∗
m/b = Σφf ζm .

Suppose χ∈Û∗
m/b for some b | f . Then (3.1) implies vp(cχ)=vp(m/b) when-

ever vp(m/b) ≥ 2. Since b is squarefree, there are two cases: if vp(b) = 0, then
vp(m) = vp(m/b) ≥ 2 and vp(cχ) = vp(m); and if vp(b) = 1, then vp(m) > 2

and vp(cχ) = vp(m)− 1. Hence χ ∈ Σf,m and thus
⋃

b|f Û∗
m/b ⊆ Σf,m.

For the reverse inclusion, suppose that χ ∈ Σf,m. Let b be the product
of all primes p | f such that vp(cχ) < vp(m). Then b is a divisor of f , and
cχ divides m/b. If p is a prime such that vp(b) = 0, then vp(cχ) = vp(m)
by construction. If p is a prime such that vp(b) = 1 and vp(m/b) > 1,
then vp(m) > 2 and vp(cχ) ≥ vp(m) − 1 by the definition of Σf,m. On the
other hand, vp(cχ) < vp(m) since p divides b, hence vp(cχ) = vp(m)− 1. In
either case we have vp(cχ) = vp(m/b) when vp(m/b) ≥ 2, which is equiv-
alent to χ ∈ Û∗

m/b. Therefore Σf,m ⊆
⋃

b|f Û∗
m/b, which finishes the proof

of (3.4).
Now suppose p is a prime dividing e, so that vp(m) = 1. Since m/p is

coprime to p by assumption, we may write ζm = ζam/pζ
b
p for some a ∈ Um/p

and b ∈ Up. Recall that

1 = −
p−1∑
k=1

ζbkp .

For 1 ≤ k ≤ p− 1, let c(p, k) ∈ Um be the unique unit such that

c(p, k) ≡ p mod m/p, c(p, k) ≡ k mod p.
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Then ζ
c(p,k)
m = ζapm/pζ

bk
p . Hence

φp ζm = ζpm − ζm = ζapm/p − ζm

= −
(
ζm +

p−1∑
k=1

ζapm/pζ
bk
p

)
= −

(
1 +

p−1∑
k=1

[c(p, k)]
)
ζm =: −αp ζm.

Recall that any χ ∈ Ûm can be factored as χ = χm/pχp with χn ∈ Ûn

(see the proof of Proposition 3.1). Then

χ(c(p, k)) = χm/p(p)χp(k).

Hence

χ(αp) = 1 + χm/p(p)

p−1∑
k=1

χp(k).

The orthogonality relations for characters imply that
p−1∑
k=1

χp(k) =

{
p− 1 if χp = 1,

0 if χp ̸= 1.

If χp ̸= 1, then χ(αp) = 1 ̸= 0. If χp = 1, then χ(αp) = 0 is equivalent to

0 = χ(αp) = 1 + χm/p(p)(p− 1) =⇒ χm/p(p) =
1

1− p
.

As χm/p(p) is a root of unity, it must be the case that p=2 and χm/p(2)=−1.
In other words, χ(αp)= 0 if and only if χ∈Ha

2. Thus Σφpζm =Σζm= Û∗
m for

each odd prime p | e and Σφ2ζm = Û∗
m\Ha

2. Since e is squarefree, φe=
∏

p|e φp,
hence

Σφeφf ζm =

{
Σf,m if e is odd,
Σf,m \ Ha

2 if e is even.

Thus, invoking Theorem 2.5 makes our proof complete.

Corollary 3.4. Let d, e,m ≥ 1 be as in Theorem 3.3. Suppose that m
is squarefree and e is odd. If Mde(ζm) = 0, then Mde(ζ

k
m) = 0 for all k ≥ 0.

In other words, Φm(x) divides Mde(x) if and only if xm − 1 divides Mde(x).

Proof. If m is squarefree, then Û∗
m = Ûm and f = 1 in the notation of

Theorem 3.3. Since e is odd, Theorem 3.3 implies that Mde(ζm) = 0 if and
only if

⋃
p|dHp covers Ûm, and this is equivalent to φd = 0 by Theorem 2.5.

Thus for all k ≥ 0,
Mde(ζ

k
m) =

φd

d
Me(ζ

k
m) = 0.

Remark 3.5. To see the necessity of the condition that e is odd in
Corollary 3.4 consider the factorization

M10(x) = g(x) · Φ6 · Φ4 · Φ2 · Φ1 · x
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for some non-cyclotomic irreducible polynomial g(x) ∈ Q[x]. Thus Φ6(x)
divides M10(x), but Φ3(x) does not (here m = 6, d = 5, e = 2).

In Example 1.8 we showed that M21(ζ8) = 0 but M21(ζ
2
8 ) ̸= 0, which

shows the necessity of the assumption that m is squarefree.

4. Cyclotomic factors of Φd(x) − 1. In this section we characterize
the pairs (d,m) for which Φd(ζm) = 1 in terms of hyperplane arrangements
covering explicit subsets of Ûm. The structure of this section parallels that
of Section 3.

We will make use of the functions of a real variable x with d ≥ 1 de-
fined by

ζx := exp(2πix), ε(x) := 2|sin(πx)|,

φd⌊x⌋ :=
∑
e|d

µ(d/e)⌊ex⌋ ≡
∑
e|d

⌊ex⌋ mod 2.

Thus ζk/m = ζkm and ε(x) is periodic with period 1 and positive for all
non-integral x. If d ∈ N, let ε(x)[d] := ε(dx).

Lemma 4.1. Let d > 1 and let x be a real variable. Then:

(1) ζx − 1 = i(−1)⌊x⌋ζx/2ε(x).

(2) Φd(ζ
x) = (−1)φd⌊x⌋ζφ(d)x/2ε(x)φd .

Proof. (1) Recall that 2 sin(πx) = −i(ζx/2 − ζ−x/2). Thus,

ζx − 1 = ζx/2(ζx/2 − ζ−x/2) = iζx/2(2 sin(πx))

= i(−1)⌊x⌋ζx/2((−1)⌊x⌋2 sin(πx)).

The functions (−1)⌊x⌋ and 2 sin(πx) are both periodic with period 2. Since

2 sin(π(x+ 1)) = −2 sin(πx), (−1)⌊x+1⌋ = −(−1)⌊x⌋,

it follows that their product has period 1 and

(−1)⌊x⌋2 sin(πx) = 2|sin(πx)| = ε(x).

Therefore,
ζx − 1 = i(−1)⌊x⌋ζx/2ε(x).

(2) We compute

Φd(ζ
x) =

∏
e|d

(ζex − 1)µ(d/e) =
∏
e|d

(i(−1)⌊ex⌋ζex/2ε(ex))µ(d/e)

= (−1)
∑

e|d µ(d/e)⌊ex⌋ζ
∑

e|d µ(d/e)ex/2
∏
e|d

ε(ex)µ(d/e)

= (−1)φd⌊x⌋ζφ(d)x/2ε(x)φd .
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Note that the factor of i cancels in the third equality since
∑

e|d µ(d/e) = 0
for d > 1.

Setting x = 1/m in Lemma 4.1(2) gives us

Φd(ζm) = (−1)φd⌊1/m⌋ζ
φ(d)
2m ε(1/m)φd .

Therefore Φd(ζm) = 1 is equivalent to the following two identities holding
simultaneously:

(−1)φd⌊1/m⌋ζ
φ(d)
2m = 1,(4.1)

ε(1/m)φd = 1.(4.2)

Equation (4.1) is an arithmetic condition. Satisfying (4.2) requires an anal-
ysis of the support of ε(1/m) in the Z[Um]-module Q(ζm)×.

It will be simpler to work with additive notation: let ℓ(x) := log ε(x). We
define the mth cyclotomic module Cm to be the Q[Um]-module spanned by
ℓ(a/m) for a ̸≡ 0 mod m. Let [q]ℓ(a/m) := ℓ(qa/m) for q ∈ Um. Then

φdℓ(1/m) = log |Φd(ζm)| = log ε(1/m)φd .

Since
ℓ(−x) = log |ζ−x − 1| = log |ζ−x(1− ζx)| = ℓ(x),

the action of Um on Cm factors through Um/⟨−1⟩.
Bass [1, Thm. 2] determined the structure of Cm as a Q[Um]-module. The

proof of Theorem 4.2 below is a combination of a Galois equivariant version
of the Dirichlet unit theorem and the fact, due to Kummer [15], that the
cyclotomic units have finite index in the units Z[ζm]× (see Washington [26,
Thm. 8.2] for a modern reference).

Theorem 4.2 (Bass). Given m ≥ 1, let ω(m) denote the number of
distinct prime factors of m, and let 1 denote the trivial representation of Um.
Then

Cm ∼= Q[Um/⟨−1⟩]⊕ 1ω(m)−1.

Therefore the support of Cm is {χ ∈ Ûm : χ(−1) = 1} = H−1.

Remark 4.3. Our definition of the mth cyclotomic module varies slightly
from how Bass defines it. Bass’ (Q-linearized) cyclotomic module C′

m is de-
fined as the Q-extension of scalars of the abelian group multiplicatively
spanned by ζam − 1 with a ̸≡ 0 mod m. There is a natural surjective map
C′
m → Cm given by ζam−1 7→ log |ζam−1| = ℓ(a/m), which we claim is an iso-

morphism. It suffices to show that if u =
∏m−1

a=1 (ζ
a
m − 1)ba ∈ C′

m with ba ∈ Z
has absolute value 1, then u is a root of unity. Since ζam − 1 = −ζ−a

m (ζam−1),
we have

1 = |u| = uu = ζu2,
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for some root of unity ζ. Hence u is a square root of a root of unity, and thus
is itself a root of unity. Therefore Cm ∼= C′

m.

The following lemma establishes several useful relations in Cm.

Lemma 4.4. Let m > 1.

(1) If q > 1 is a natural number not divisible by m, then

([q]− 1)ℓ(1/m) := ℓ(q/m)− ℓ(1/m) =

q−1∑
b=1

ℓ(1/m+ b/q).

(2) Let p be a prime and suppose that q = pe divides m.

(a) If d < e, then ℓ(pd/m) ∈ Q[Um]ℓ(1/m).
(b) If q is the largest power of p dividing m and n = m/q, then φpℓ(1/n)

∈ Q[Um]ℓ(1/m).

Proof. (1) Observe that

|ζqx − 1| =
q−1∏
b=0

|ζx+b/q − 1|.

Evaluating at x = 1/m and taking logarithms (which we can because m ∤ q)
we find

ℓ(q/m) =

q−1∑
b=0

ℓ(1/m+ b/q).

(2a) Part (1) implies that

ℓ(pd/m) =

pd−1∑
b=0

ℓ(1/m+ b/pd) =

pd−1∑
b=0

ℓ

(
1 + b(m/pd)

m

)
.

Since d < e, we see that m/pd is divisible by p. Hence 1 + b(m/pd) is a unit
modulo m. Thus ℓ(pd/m) ∈ Q[Um]ℓ(1/m).

(2b) Let n := m/q, so that n is coprime to p by assumption. From (1)
we have

φpℓ(1/n) =

p−1∑
b=1

ℓ(1/n+ b/p) =

p−1∑
b=1

ℓ

(
p+ bn

np

)
.

Since n and p are coprime and b is a unit modulo p, it follows that p+ bn is
a unit modulo n and modulo p, hence a unit modulo np. Therefore

φpℓ(1/n) ∈ Q[Um]ℓ(1/np) ⊆ Q[Um]ℓ(1/m),

where the last inclusion is a consequence of part (2a).

Recall that by our convention on extending the domains of Dirichlet
characters (see Caution 2.2), if p is a prime dividing m, then χ(p) has a
well-defined, non-zero value if the conductor of χ is not divisible by p, and
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otherwise χ(p) = 0. If q is the largest power of p dividing m, then we have
Hp ⊆ Ûm/q ⊆ Ûm.

Proposition 4.5. Let m > 1 be an integer and let χ ∈ Ûm be a character
of modulus m. Then χ is in the support of ℓ(1/m) if and only if

χ ∈ H−1 \
⋃
p|m

Hp

= {χ ∈ Ûm : χ(−1) = 1 and χ(p) ̸= 1 for all primes p |m}.
Proof. Let m = q1 · · · qk be the factorization of m into prime powers

where qi is a power of the prime pi. If J ⊆ {1, . . . , k} is a subset, let mJ :=∏
j∈J qj and let nJ := m/mJ . Lemma 4.4(2b) implies that for each proper

subset J ⊂ {1, . . . , k},( ∏
p|mJ

φp

)
ℓ(1/nJ) ∈ Q[Um]ℓ(1/m).

Let Σ̃m denote the support of ℓ(1/m). Then the support of the above element
is Σ̃nJ \

⋃
p|mJ

Hp. Hence

Σ̃m ⊇ Σ̃nJ \
⋃
p|mJ

Hp.

Lemma 4.4(2) shows that Cm is generated as a Q[Um]-module by ℓ(1/nJ) as
J ranges over all proper subsets of {1, . . . , k} and Theorem 4.2 shows that
the support of Cm is H−1. Thus

H−1 =
⋃
J

Σ̃nJ .

Therefore
Σ̃m ⊇

⋃
J

(
Σ̃nJ \

⋃
p|mJ

Hp

)
⊇ H−1 \

⋃
p|m

Hp.

Now we show the reverse inclusion. Lemma 4.4 implies that for each i,

φpiℓ(1/ni) =
( pi−1∑

b=1

[pi + bni]
)
ℓ(1/nipi) =

( pi−1∑
b=1

[pi + bni]
)
[qi/pi]ℓ(1/m).

If χ ∈ Hpi , then by definition χ must have modulus ni and χ(pi) = 1. Thus
applying the idempotent eχ to the right hand side of the above identity we
find

eχ

( pi−1∑
b=1

[pi + bni]
)
[qi/pi]ℓ(1/m) =

pi−1∑
b=1

χ(pi + bni)χ(qi/pi)ℓ(1/m)χ

= (pi − 1)ℓ(1/m)χ.
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On the other hand,

eχφpiℓ(1/ni) = (χ(pi)− 1)ℓ(1/ni)χ = 0.

Therefore ℓ(1/m)χ = 0, which is equivalent to saying that χ does not belong
to Σ̃m. Hence

Σ̃m ⊆ H−1 \
⋃
p|m

Hp.

We now prove the main result of this section. Note that by Remark 2.4
we lose no generality by assuming def is squarefree.

Theorem 4.6. Let d, e, f ≥ 1 and m > 1 be integers, let m′ be the
squarefree part of m, and let Ha

3 ⊆ Ûm be the affine hyperplane Ha
3 := {χ ∈

Ûm : χ(3) = −1}. Suppose that

(i) m does not divide
def ,

(ii) def is squarefree,
(iii) d is coprime to m,

(iv) e divides m′,
(v) f divides m/m′.

Then Φdef (ζm) = 1 if and only if

(1) H−1 ⊆

{⋃
p|md/eHp if 3 ∤ e,⋃
p|md/eHp ∪Ha

3 if 3 | e,

(2) m divides φ(def), and

(3)
∑
a|def

⌊a/m⌋ ≡ φ(def)

m
mod 2.

Proof. As we observed following Lemma 4.1, Φdef (ζm) = 1 is equivalent
to the triviality of both the phase (4.1) and the radial (4.2) components of
Φdef (ζm). Suppose that the phase component of Φdef (ζm) is trivial,

(−1)⌊φ⌋def (1/m)ζ
φ(def)
2m = 1.

Thus ζ
φ(def)
2m = ±1, which is equivalent to m dividing φ(def). If m does

divide φ(def), then comparing exponents of −1 in the above identity we
conclude that ∑

a|def

⌊a/m⌋ ≡ φ(def)

m
mod 2.

Triviality of the radial component of Φdef (ζm) is equivalent to

φdef ℓ(1/m) = 0.

Following the same strategy as in the proof of Theorem 3.3, we determine
the support of φef ℓ(1/m) and then appeal to Theorem 2.5.
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Let χ ∈ H−1 ⊆ Ûm be a character. If ẽ is the product of all primes p
dividing e such that χ(p) = 1 and ñ := m/ẽ, then we claim that there is
some non-zero constant c such that

(4.3) (φef ℓ(1/m))χ =

{
0 if 3 | e and χ ∈ Ha

3,

cℓ(1/ñ)χ otherwise.

First we finish the proof supposing that we have shown (4.3). Proposition
4.5 implies that ℓ(1/ñ)χ = 0 if and only if χ(p) = 1 for some prime p | ñ,
and any such prime must divide the factor m/e of ñ by the definition of ñ.
Therefore, the support Σ of φef ℓ(1/m) is

Σ =

{
H−1 \

⋃
p|m/eHp if 3 ∤ e,

H−1 \ (
⋃

p|m/eHp ∪Ha
3) if 3 | e.

Thus Theorem 2.5 implies φdef ℓ(1/m) = 0 if and only if

H−1 ⊆

{⋃
p|dm/eHp if 3 ∤ e,⋃
p|dm/eHp ∪Ha

3 if 3 | e.

All that remains is to prove (4.3). We use the factorization φef =
∏

p|ef φp

(which uses (ii)) to analyze (φef ℓ(1/m))χ one prime at a time.
Let p be a prime dividing f and let n := m/p. Then p divides n by (v).

Lemma 4.4(1) implies that

φp ℓ(1/m) =
∑
k∈Up

[1 + kn]ℓ(1/m).

If χ has conductor dividing n, then

(φp ℓ(1/m))χ =
∑
k∈Up

χ(1 + kn)ℓ(1/m)χ = (p− 1)ℓ(1/m)χ.

If the conductor of χ does not divide n, then write χ = χnχp where χn has
conductor dividing n and χp has conductor pmp with mp = vp(m) > 1 (the
inequality uses (v)). Thus

(φp ℓ(1/m))χ =
∑
k∈Up

χ(1 + kn)ℓ(1/m)χ

=
∑
k∈Up

χp(1 + kpmp−1)ℓ(1/m)χ = −ℓ(1/m)χ,

where the last equality follows from the observation that χp(1 + kpmp−1)
ranges over the non-trivial pth roots of unity as k ranges over Up. Hence in
either case there is some non-zero constant c such that

(4.4) (φp ℓ(1/m))χ = cℓ(1/m)χ.
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Next let p be a prime dividing e, so that n := m/p is coprime to p by (iv)
and n > 1 by (i). Observe that

(φp ℓ(1/m))χ = ℓ(1/n)χ − ℓ(1/m)χ.

If the conductor of χ does not divide n, then

(φp ℓ(1/m))χ = −ℓ(1/m)χ.

Suppose the conductor of χ divides n. Lemma 4.4(1) implies that

(χ(p)− 1)ℓ(1/n)χ = (φp ℓ(1/n))χ =
∑
k∈Up

χ(p+ kn)ℓ(1/m)χ(4.5)

= χ(p)(p− 1)ℓ(1/m)χ.

If χ(p) ̸= 1, then

(φp ℓ(1/m))χ = ℓ(1/n)χ − ℓ(1/m)χ =

(
p− 1

1− χ(p)
− 1

)
ℓ(1/m)χ.

The coefficient of ℓ(1/m)χ vanishes if and only if χ(p) = 1/(2 − p). Since
χ(p) is a root of unity, it must be the case that p = 3 and χ(3) = −1.

If χ(p) = 1, then ℓ(1/m)χ = 0 by (4.5) and thus

(φp ℓ(1/m))χ = ℓ(1/n)χ.

Hence if p | e and n = m/p, then

(4.6)

(φpℓ(1/m))χ =


ℓ(1/n)χ if χ ∈ Hp,
0 if p = 3 and χ ∈ Ha

3,
cℓ(1/m)χ otherwise, for some non-zero constant c.

Together (4.4) and (4.6) prove our claim (4.3).

Example 4.7. Let m = 24 and suppose we want to find an integer d
coprime to 24 such that Φ3d(ζ24) = 1. The group Û24 of Dirichlet charac-
ters is a 3-dimensional F2-vector space. Let ρ : U24 → F̂3

2 be the choice of
coordinates such that

ρ(13) = x, ρ(17) = y, ρ(19) = z.

Following Theorem 4.6, we begin by looking for some d such that the plane
H−1 : x + y + z = 0 is covered by H2, Ha

3, and the union of the Hp with
p | d. Since 13 ≡ 19 ≡ 1 mod 3 and 17 ≡ 1 mod 8, it follows that Û3 is the
subspace x = z = 0 and Û8 is the subspace y = 0. Then H2 ⊆ Û3 consists
of the single point (0, 0, 0), and Ha

3 ⊆ Û8 is the subspace x = 1, y = 0,
which intersects x+ y + z = 0 at the point (1, 0, 1). Therefore it suffices for⋃

p|dHp to cover the two points (1, 1, 0) and (0, 1, 1). For example, the lines
H5 = H13·17 : x+ y = 0 and H11 = H17·19 : y + z = 0 suffice.
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If d = 55 = 5 · 11, then φ(3d) = 80 is not divisible by 24, hence
Φ3·5·11(ζ24) ̸= 1 by Theorem 4.6. On the other hand, if d = 385 = 5 · 7 · 11,
then φ(3 · 5 · 7 · 11) = 480 is divisible by 24 and∑

a|3d

⌊a/m⌋ = 90 ≡ 20 =
φ(3d)

m
mod 2.

Thus Theorem 4.6 implies that Φ3d(ζm) = Φ3·385(ζ24) = 1.
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