
  Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American 
Mathematical Monthly.

http://www.jstor.org

A Wallis Product on Clovers 
Author(s): Trevor Hyde 
Source:   The American Mathematical Monthly, Vol. 121, No. 3 (March), pp. 237-243
Published by:  Mathematical Association of America
Stable URL:  http://www.jstor.org/stable/10.4169/amer.math.monthly.121.03.237
Accessed: 03-08-2015 17:38 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/
 info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content 
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. 
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 141.211.4.224 on Mon, 03 Aug 2015 17:38:15 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/action/showPublisher?publisherCode=maa
http://www.jstor.org/stable/10.4169/amer.math.monthly.121.03.237
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


A Wallis Product on Clovers
Trevor Hyde

Abstract. The m-clover is the plane curve defined by the polar equation rm/2 = cos
(

m
2 θ
)
. In

this article we extend a well-known derivation of the Wallis product to derive a generalized
Wallis product for arc lengths of m-clovers.

1. INTRODUCTION. The Wallis product,

π = 4 · 2 · 4
3 · 3 ·

4 · 6
5 · 5 ·

6 · 8
7 · 7 ·

8 · 10

9 · 9 · · ·

= 4
∞∏

n=1

2n(2n + 2)

(2n + 1)2
, (1.1)

is a well-known infinite product expression for π by rational factors and was derived
by John Wallis in his 1655 treatise [10]. One proof of (1.1) considers the sequence of
definite integrals

I (n) =
∫ π

0
sin(x)n dx,

and computes the limit of I (2k − 1)/I (2k) in two ways. See [2] for a nice exposition
of this argument. For a positive integer m, let {$m} be the sequence of real numbers
defined by

$m = 2
∫ 1

0

dt√
1− tm

. (1.2)

The goal of this paper is to prove the generalized Wallis product formula

$m = 2(m + 2)

m

∞∏
n=1

n (2(mn + 1)+ m)

(mn + 1)(2n + 1)
. (1.3)

In Section 2, we recall the theory of clover curves introduced in [6] and realize $m as
an arc length on the m-clover. We define the m-clover function ϕm(x) and develop its
properties. Section 3 considers the sequence of definite integrals

Im(n) =
∫ $m

0
ϕm(x)

n dx .

To complete the derivation, we compute the limit of Im(mk − 1)/Im(mk) in two ways.
Section 4 relates our generalized Wallis product to the work of Euler and the product
formula for the beta function.
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2. CLOVERS. For a positive integer m, we define the m-clover to be the locus of the
polar equation

rm/2 = cos
(m

2
θ
)
.

Examples of m-clovers are displayed in Figure 1 for small m. The m-clover has m
identical leaves for m odd and m

2 leaves for m even. The principal leaf is defined as
the points on the m-clover satisfying (r, θ) ∈ [0, 1] × [− π

m ,
π

m ].

(a) Cardioid (b) Circle (c) Clover (d) Lemniscate

Figure 1. m-clovers for m = 1, 2, 3, 4

Consider the polar arc length integral for a segment of the principal leaf in the
upper-half plane, beginning at the origin and terminating at the unique point with radial
component r ∈ [0, 1] (see Figure 2):

λm(r) =
∫ r

0

dt√
1− tm

.

r
θ
= π

/m

θ = −
π
/m

λm(r )

Figure 2. Principal leaf of the m-clover

A derivation of this identity from the definition of an arc length integral in polar
coordinates may be found in [6, Prop. 1]. The constant $m defined in (1.2) may be
expressed as

$m = 2
∫ 1

0

dt√
1− tm

= 2λm(1).
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Thus, $m denotes the arc length of an m-clover leaf. The integral λm(r) has an ele-
mentary closed form only when m = 1 or 2:

λ1(r) = 2
(
1−√1− r

)
,

λ2(r) = sin−1(r).

Thus, it follows that sin(x) = λ−1
2 (x). Motivated by this example, we define the m-

clover function ϕm(x) for x ∈ [0, 1
2$m] by

ϕm(x) = λ−1
m (x).

Symmetry suggests that we consider the functional equation ϕm($m − x) = ϕm(x),
which allows us to extend the domain of ϕm to [0,$m]. There is a natural geometric
interpretation of ϕm(x). If Px = (r, θ) is the point at arc distance x from the origin
along the principal leaf, then ϕm(x) = r is the radial component of Px .

Note that ϕm(x) is differentiable on [0,$m]. The m-clover function may also be
characterized by the differential equation ϕm(x)m + ϕ′m(x)2 = 1 and the initial values

ϕm(0) = ϕm($m) = 0, and

ϕ′m(0) = −ϕ′m($m) = 1.

Proposition 2.1. For all positive integers m and x ∈ [0,$m], we have

1. ϕ′m(x)
2 = 1− ϕm(x)m , and

2. ϕm(x)m−1 = − 2
mϕ
′′
m(x).

Proof. The first equation is obtained by differentiating the defining identity,

x =
∫ ϕm (x)

0

dt√
1− tm

,

which is valid for all x ∈ [0,$m]. Then (2) follows from (1) by differentiation and the
observation that ϕ′m(x) only vanishes at x = 1

2$m in [0,$m].
When m = 2, the m-clover is the circle r = cos(θ) with ϕ2(x) = sin(x), $2 = π ,

and hence (1.3) reduces to the classic Wallis product. When m = 4, the m-clover is the
lemniscate r 2 = cos(2θ) and ϕ4(x) is Abel’s lemniscate function. The number

$4 = 2.6220575549 . . .

is known as the lemniscate constant. More information on the lemniscate, including
its connections to number theory, may be found in [3], [4, Chap. 15], [5], and [9].

3. A SEQUENCE OF INTEGRALS. In this section, we fix a positive integer m.
For n a nonnegative integer, we define

Im(n) =
∫ $m

0
ϕm(x)

n dx .

Each integral is finite and positive. When m = 2, {I2(n)} reduces to the sequence of
definite integrals used in the proof of the classic Wallis product. We first establish a
recursive relation among the elements of {Im(n)}n≥1.
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Lemma 3.1. For all nonnegative integers n,

Im(n + m)

Im(n)
= 2(n + 1)

2(n + 1)+ m
.

Proof. Our strategy is to transform Im(n + m) with integration by parts. Let

u = ϕm(x)
n+1, and

dv = ϕm(x)
m−1 dx .

Since ϕm(x)m−1 = − 2
mϕ
′′
m(x) by Proposition 2.1, we have

du = (n + 1)ϕm(x)
nϕ′m(x) dx, and

v = − 2

m
ϕ′m(x).

Thus,

Im(n + m) =
∫ $m

0
ϕm(x)

n+m dx

= 2(n + 1)

m

∫ $m

0
ϕm(x)

nϕ′m(x)
2 dx (since ϕm(0) = ϕm($m) = 0)

= 2(n + 1)

m

∫ $m

0
ϕm(x)

n(1− ϕm(x)
m) dx (by Prop. 2.1(1))

= 2(n + 1)

m
(Im(n)− Im(n + m)) .

Rearranging leads to

Im(n + m)

Im(n)
= 2(n + 1)

2(n + 1)+ m
.

To derive the generalized Wallis product, we consider the following limit,

lim
k→∞

Im(mk − 1)

Im(mk)
. (3.1)

First we compute (3.1) analytically, then express the limit as an infinite product using
the recurrence of Lemma 3.1.

For x ∈ [0,$m] and n ≥ 0, we have

0 ≤ ϕm(x) ≤ 1 =⇒ ϕm(x)
n+1 ≤ ϕm(x)

n =⇒ Im(n + 1) ≤ Im(n).

Therefore, {Im(n)}n≥1 is a decreasing sequence. It follows that

0 < Im(n) ≤ Im(n − 1) ≤ Im(n − m).

Dividing through by Im(n), we obtain

1 ≤ Im(n − 1)

Im(n)
≤ Im(n − m)

Im(n)
= 2(n − m + 1)+ m

2(n − m + 1)
,
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where the last equality is an application of Lemma 3.1. As n→∞, we conclude that
Im(n − 1)/Im(n)→ 1. Then, for the subsequence n = mk, it follows that

lim
k→∞

Im(mk − 1)

Im(mk)
= 1. (3.2)

Next, we express the limit (3.1) as an infinite product.

Lemma 3.2. For all positive integers k,

1. Im(mk) = 2$m
m+2

∏k−1
n=1

2(mn+1)
2(mn+1)+m , and

2. Im(mk − 1) = 4
m

∏k−1
n=1

2n
2n+1 .

Proof. We proceed inductively. Clearly, Im(0) = $m , so

Im(m) = 2

m + 2
Im(0) = 2

m + 2
$m

by Lemma 3.1. To compute Im(m − 1), we use ϕm(x)m−1 = − 2
mϕ
′′
m(x) and ϕ′m(0) =−ϕ′m($m) = 1 to conclude that

Im(m − 1) =
∫ $m

0
ϕm(x)

m−1 dx = − 2

m

∫ $m

0
ϕ′′m(x) dx = 4

m
.

These computations establish the base case. The inductive step is a consequence of
Lemma 3.1:

Im(m(k + 1)) = 2(mk + 1)

2(mk + 1)+ m
Im(mk), and

Im(m(k + 1)− 1) = 2mk

2mk + m
Im(mk − 1) = 2k

2k + 1
Im(mk − 1).

Theorem 3.3 (Wallis Product on Clovers). For any positive integer m, we have

$m = 2(m + 2)

m

∞∏
n=1

n (2(mn + 1)+ m)

(mn + 1)(2n + 1)
.

Proof. From Lemma 3.2, we have

Im(mk − 1)

Im(mk)
= 2(m + 2)

m$m

k−1∏
n=1

n (2(mn + 1)+ m)

(mn + 1)(2n + 1)
.

Taking the limit as k →∞, we have limk→∞ Im (mk−1)
Im (mk) = 1 by (3.2). Therefore,

1 = lim
k→∞

Im(mk − 1)

Im(mk)
= 2(m + 2)

m$m

∞∏
n=1

n (2(mn + 1)+ m)

(mn + 1)(2n + 1)
.

Multiplying the final identity by $m results in the Wallis product.
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4. EULER AND THE BETA FUNCTION. We conclude this article by suggesting
how Euler may have derived Theorem 3.3. On page 33 of De fractionibus continuis
Wallisii [7], Euler recalls an eighteenth century “identity:”∫ 1

0

x M−1 dx

(1− x N )1−
K
N

= M + K

M
· M + K + N

M + N
· M + K + 2N

M + 2N
· · ·
∫ 1

0

x∞ dx

(1− x N )1−
K
N

.

To a modern reader, the infinite exponent in the integrand may cause concern. How-
ever, following Euler’s lead, we consider the ratio of the two cases (M, N , K ) =
(1,m,m/2) and (m,m,m/2),∫ 1

0
1√

1−xm dx∫ 1
0

xm−1√
1−xm dx

= (m + 2) · 2(3m + 2)

3(m + 1)
· 3(5m + 2)

5(2m + 1)
· 4(7m + 1)

7(3m + 1)
· · · .

The integrals with dubious integrands naı̈vely cancel. The left-hand side evaluates to
m
4$m after substituting x = ϕm(t) into each integral. Scaling by 4/m recovers the
generalized Wallis product. In [7], Euler uses this technique to show that the values
of certain continued fractions may be expressed by ratios of integrals. Earlier in the
treatise, Euler notes a connection between infinite products and continued fractions.
He chooses to focus on values expressed by continued fractions, but was surely aware
of the corresponding products.

Euler’s product identity is closely related to a product formula [1] for the beta func-
tion B(x, y) = 0(x)0(y)/0(x + y),

B(x, y) =
(

1

x
+ 1

y

) ∞∏
n=1

1+ x+y
n

(1+ x
n )(1+ y

n )
.

Then, in terms of the beta function, we have $m = 2
m B

(
1
2 ,

1
m

)
. The authors of [6]

derive this expression for$m via a change of coordinates in the defining integral (1.2),
suggesting a succinct proof of the Wallis product on clovers without reference to the
clover functions. In [8], the authors further explore the connection between lengths of
curves defined by polar equations and values of the beta function.

As a final remark, it would be interesting to see which, if any, other proofs of the
classic Wallis product may be generalized to the Wallis product on clovers.
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Anagrams of “American Mathematical Monthly”

Loyal mamma, enchant arithmetic.

Teach an immortal, mythical, mean.

I am a healthy, carnal, commitment.

A nice, timely, mammoth charlatan.

Halt, I’m the maniacal commentary.

Mythical, rotten, mammalian ache.

A macho charm, mentally intimate.

The crotchety mammalian animal.

Hmmm: an ethical, amoral tenacity.

Hmm, I am a catty, incoherent llama.

—Submitted by Vadim Ponomarenko
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