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ABSTRACT. In this paper we study two questions related to exceptional behavior of preperiodic points
of polynomials in Q[x]. We show that for all d ≥ 2, there exists a polynomial fd(x) ∈ Q[x] with
2 ≤ deg(fd) ≤ d such that fd(x) has at least d + blog2(d)c rational preperiodic points. Furthermore,
we show that for infinitely many integers d, the polynomials fd(x) and fd(x) + 1 have at least d2 +
dblog2(d)c − 2d+ 1 common complex preperiodic points.

1. INTRODUCTION

Let K be a field and let f(x) ∈ K[x] be a polynomial. We write fn(x) to denote the n-fold composi-
tion of f with itself. A point α ∈ K is preperiodic under f(x) if the orbit {fn(α) : n ≥ 0} is finite. Let
PrePer(f,K) denote the set of K-rational preperiodic points of f ,

PrePer(f,K) := {α ∈ K : α is preperiodic under f}.
The following questions arise naturally in arithmetic and complex dynamics:

Question 1.1. How many rational preperiodic points can a degree-d polynomial f(x) ∈ Q[x] have?

Question 1.2. How many complex preperiodic points can degree-d polynomials f(x), g(x) ∈ C[x] have
in common?

Both questions are conjectured to have answers in the form of uniform upper bounds depending only
on d (subject to some minor caveats described below). Our main result proves the existence of a sequence
of polynomials fd(x) ∈ Q[x] of degree at most d which simultaneously exhibit extremal behavior for
both questions: fd(x) has many rational preperiodic points, and the polynomials fd(x) + i and fd(x) + j
have many common complex preperiodic points for small integers i and j.

Theorem 1.3. For all integers d ≥ 2 there exists a polynomial fd(x) ∈ Q[x] such that 2 ≤ deg(f) ≤ d
and

(1) fd(x) has at least d+ blog2(d)c rational preperiodic points,
(2) for all 0 ≤ i < j ≤ log2(d),∣∣∣PrePer(fd(x) + i,C) ∩ PrePer(fd(x) + j,C)

∣∣∣ <∞,
(3) and ∣∣∣∣∣∣

blog2(d)c⋂
i=0

PrePer(fd(x) + i,C)

∣∣∣∣∣∣ ≥ deg(fd)(d− 1) + 1.

Remark. Using Lagrange interpolation one may easily construct degree-d polynomials with d+ 1 ratio-
nal preperiodic points. Each rational preperiodic point beyond d + 1 imposes an additional constraint.
Theorem 1.3 shows that it is possible to get an improvement on the order of (at least) log(d) on the
Lagrange interpolation construction.

Given an integer d ≥ 2, let

Bd := sup
f
|PrePer(f,Q)| ∈ [0,∞],

Cd := sup
f,g
|PrePer(f,C) ∩ PrePer(g,C)| ∈ [0,∞],
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where the supremum defining Bd is taken over all polynomials f(x) ∈ Q[x] with 2 ≤ deg(f) ≤ d, and
the supremum defining Cd is taken over all f(x), g(x) ∈ C[x] with 2 ≤ deg(f),deg(g) ≤ d such that
PrePer(f,C) 6= PrePer(g,C). Both Bd and Cd are conjectured to be finite for all d ≥ 2.

Northcott [18] proved that if deg(f) ≥ 2, then PrePer(f,Q) is finite. The Morton-Silverman Uniform
Boundedness Conjecture [17, p. 100] asserts, in part, that Bd < ∞. This conjecture has motivated a
substantial volume of work in arithmetic dynamics (see Silverman [20, Sec. 3.3]). While it is widely
believed to be true, the Uniform Boundedness Conjecture has yet to be proved unconditionally in any
degree. Looper [14] recently gave a conditional proof that Bd < ∞, assuming a generalization of the
abc conjecture.

DeMarco, Krieger, and Ye [8, Conj. 1.4] conjecture that Cd < ∞ for all d ≥ 2; they prove this
conjecture when f and g are restricted to the family of quadratic polynomials of the form x2 +c [8, Thm.
1.1]. Mavraki and Schmidt [15] recently proved an analogous uniform bound on the number of common
preperiodic points along 1-parameter families in Ratd×Ratd, where Ratd denotes the space of degree-d
rational functions.

The polynomials asserted to exist in Theorem 1.3 combined with an explicit family described below
in Theorem 1.10 lead to the following lower bounds on Bd and Cd.

Corollary 1.4. For all integers d ≥ 2,
(1) Bd ≥ d+ max(6, blog2(d)c),
(2) Cd ≥ d2 + 4d+ 1.

Furthermore, there are infinitely many d ≥ 2 for which

Cd ≥ d2 + dblog2(d/4)c+ 1.

One may compare Corollary 1.4(1) to known lower bounds on Ag := supX |X(Q)|, where X ranges
over all smooth irreducible genus-g curves defined over Q. In this setting, the best known lower bound
for Ag that holds for all g ≥ 2 is linear in g (see [5]), though it is unknown whether the correct upper
bound should also be linear. In that spirit, we pose the following question:

Question 1.5. What is the order of growth of Bd as d→∞? Is it true that

Bd = d+O(log(d))?

Remark. Our proof of Theorem 1.3(3) (hence also Corollary 1.4(2)) actually shows something stronger:
Given a set P of polynomials, we say that a finite set S ⊆ C has a finite orbit under P if f(S) ⊆ S
for every f ∈ P . (See [3] for a detailed study of finite orbits for pairs of quadratic and cubic polynomi-
als.) Note that if S has a finite orbit under P , then S ⊆

⋂
f∈P PrePer(f,C), but, in general, common

preperiodic points of the elements of P need not have a finite orbit under P .
With this setup, we prove that for the polynomials fd(x) ∈ Q[x] provided by Theorem 1.3, the set of

maps P := {fd(x) + i : 0 ≤ i ≤ blog2(d)c} has a finite orbit with at least deg(fd)(d− 1) + 1 elements.
As a result, it follows that Corollary 1.4(2) holds when Cd is replaced with

C̃d := sup
f,g

sup
S
|S| ≤ Cd,

where f and g range over all polynomials of degree 2 ≤ deg(f), deg(g) ≤ d such that PrePer(f,C) 6=
PrePer(g,C) and S ranges over all finite orbits of P = {f, g}.

Remark. The two uniform boundedness conjectures stated above for polynomials are believed to hold
more generally for rational functions on P1. However, the methods of this paper appear to be constrained
to polynomials. Note that ifB′d and C ′d are defined analogously toBd and Cd, but with rational functions
instead of polynomials, then we have Bd < B′d and Cd < C ′d for all d ≥ 2. This inequality follows from
the simple observation that every polynomial is a rational function, plus the fact that we are not counting
∞ as a preperiodic point, though it is a fixed point for every polynomial map when considered as an
endomorphism of P1.
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Remark. Fu and Stoll [10] recently proved a result analogous to Corollary 1.4(2), giving lower bounds
on the maximal number of common torsion x-coordinates for pairs of elliptic curves E1, E2 such that
x(E1,tors) 6= x(E2,tors). Their results have the following dynamical interpretation: If fi(x) denotes the
degree-4 flexible Lattès map associated to multiplication by 2 on the elliptic curve Ei, then x(Ei,tors) =
PrePer(fi(x),C). Hence [10, Thm. 2] implies that there are infinitely many pairs of elliptic curves E1,
E2 for which

22 ≤ |PrePer(f1(x),C) ∩ PrePer(f2(x),C))| <∞,
and [10, Thm. 3] implies that there exists an explicit pair of elliptic curves E1, E2 such that

|PrePer(f1(x),C) ∩ PrePer(f2(x),C))| = 34. (1.1)

Using the notation of the previous remark, (1.1) implies that C ′4 ≥ 34. On the other hand, in Section 5
we provide an example that shows that C4 ≥ 36, hence that C ′4 ≥ 37.

Remark. Despite the considerable interest in proving Bd < ∞, we are unaware of any previous work
explicitly proving nontrivial lower bounds on Bd outside of finitely many low degree cases. However,
motivated by problems in complexity theory, Cohen, Shpilka, and Tal prove a result ([7, Thm. 1.5]; see
also [7, p. 458]) that implies the following: For all 0 < ε < 1, there exists dε such that for all d ≥ dε,
we have

Bd ≥ d+ bε log2(d)c.
Our improvement on this lower bound in Corollary 1.4(1) stems from an exact evaluation of a certain
lattice discriminant (see Theorem 2.1) that was only bounded in [7]. We thank Yan Sheng Ang for
bringing [7] to our attention.

1.1. Dynamical compression. For a positive integer m, let [m] := {1, 2, 3, . . . ,m}. We say a degree-
d polynomial g(x) ∈ C[x] exhibits dynamical compression if g(x) is conjugate to some polynomial
f(x)—that is, f = ` ◦ g ◦ `−1 for some linear polynomial `(x) ∈ C[x]—which satisfies

f([m]) ⊆ [n]

for some m ≥ n > d+ 1. In this case, [m] ⊆ PrePer(f(x),Q). The polynomials fd(x) asserted to exist
in Theorem 1.3 all exhibit dynamical compression.

Example 1.6. Let f(x) := x2−9x+22
2 . One may check that

f([8]) ⊆ [7]. (1.2)

Therefore, both f(x) and f(x)+1 exhibit dynamical compression and have at least 8 rational preperiodic
points, namely the elements of [8]. In fact, it may be shown that f(x) and f(x)+1 have exactly 8 rational
preperiodic points. Hence B2 ≥ 8; in fact, Poonen [19] has conjectured that B2 = 8. The polynomials
f(x) and f(x) + 1 are simultaneously conjugate to x2 − 29

16 and x2 − 21
16 , respectively. These quadratic

polynomials appear several times in the literature for their exceptional properties, including in DeMarco,
Krieger, and Ye [8], Doyle, Faber and Krumm [9], Hindes [13], Morton and Raianu [16], and Poonen
[19].

Example 1.7. The cubic polynomial f(x) := x3−18x2+89x−66
6 satisfies f([11]) ⊆ [11]. Thus both f(x)

and 12 − f(x) exhibit dynamical compression and have at least 11 rational preperiodic points. These
examples share the current record with 8 other cubics, found by computational search in Benedetto et
al. [2, Table 2], for the cubic polynomial with the most rational preperiodic points. Of the 10 record-
holding cubics found by Benedetto et al., only the two conjugate to f(x) and 12−f(x) exhibit dynamical
compression.

The following proposition, proved in Section 3, makes explicit the connection between dynamical
compression and polynomials with many common preperiodic points.
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Proposition 1.8. Suppose that f(x) ∈ C[x] is a degree d ≥ 2 polynomial such that

f([m]) ⊆ [n],

for some integers m > n ≥ 1. Then

d(n− 1) + 1 ≤
∣∣∣m−n⋂

i=0

PrePer(f(x) + i,C)
∣∣∣ <∞.

Example 1.9. Returning to Example 1.6, let f(x) := x2−9x+22
2 . Then (1.2) and Proposition 1.8 imply

that
|PrePer(f(x),C) ∩ PrePer(f(x) + 1,C)| ≥ 13.

However, by comparing the preperiodic points with small forward orbit for f(x) and f(x) + 1 directly,
we find that PrePer(f(x),C)∩PrePer(f(x)+1,C) actually contains at least 26 points. HenceC2 ≥ 26.
That is, dynamical compression accounts for half of the known preperiodic points shared by f(x) and
f(x) + 1. To the best of our knowledge, this is the current record for a lower bound on C2. See Table 3
in Section 5 for more lower bound records on Cd for 2 ≤ d ≤ 15.

The proof of Theorem 1.3 uses a geometry of numbers approach to show the existence of polynomials
which compress exceptionally large intervals of integers but does not produce explicit examples. Thus it
remains an interesting problem to construct explicit polynomials which surpass the trivial lower bounds
on Bd and Cd. Our last result provides one such family rd(x). Formulas for rd(x) are given in Section
4.

Theorem 1.10. For all d ≥ 2, there is an explicit degree-d polynomial rd(x) such that

rd([d+ 6]) ⊆

{
[d+ 5] if d is even,
[d+ 4] if d is odd.

1.2. Acknowledgements. We thank Laura DeMarco for a helpful correspondence which prompted this
work. We thank Hang Fu for pointing out that (1.1) follows from [10, Thm. 3]. We thank Joseph
Silverman for several helpful comments on an earlier draft, as well as for suggesting that we include the
discussion and question immediately following Corollary 1.4. We thank Yan Sheng Ang for bringing
the article [7] to our attention. And we thank the University of Chicago Research Computing Center for
access to their high performance computing cluster. John Doyle was partially supported by NSF grant
DMS-2112697. Trevor Hyde was partially supported by the NSF Postdoctoral Research Fellowship
DMS-2002176 and the Jump Trading Mathlab Research Fund.

2. RATIONAL PREPERIODIC POINTS

The goal of this section is to prove Theorem 1.3, which is stated in a refined form below as Theorem
2.5. Our strategy is to consider the lattice Λd,e generated by vectors of the form (f(0), f(1), . . . , f(d+e))
where f(x) is a degree-at-most-d integer-valued polynomial and e > 0 is an integer. (Fecall that g(x) ∈
Q[x] is said to be integer-valued if g(Z) ⊆ Z.) There is a natural bijection between vectors in Λd,e

contained within a small box near the origin and degree-at-most-d polynomials exhibiting dynamical
compression. We use a classical geometry-of-numbers theorem of Minkowski to prove the existence of
lattice points in this box by analyzing the discriminant of Λd,e.

2.1. Lattices and their discriminants. Let m ≥ 1 be an integer. By a lattice Λ ⊆ Rm we mean a
discrete free abelian subgroup of Rm. If Λ is a rank n lattice with basis v1, v2, . . . , vn, then we call the
compact set {

∑n
i=1 civi : 0 ≤ ci ≤ 1} a fundamental domain of Λ. The discriminant of Λ, which we

denote by δ(Λ) is the square of the n-dimensional volume of a fundamental domain of Λ. If M is the
matrix with rows vi, then

δ(Λ) = det(MMT ).

Note that δ(Λ) is independent of the choice of basis for Λ.
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Given integers d, e ≥ 0, let Λd,e be the lattice in Rd+e+1 spanned by the d+ 1 vectors

ui :=

((
0

i

)
,

(
1

i

)
, . . . ,

(
d+ e

i

))
∈ Zd+e+1

for 0 ≤ i ≤ d. (Note that
(
j
i

)
= 0 if j < i.) The lattice Λd,e has rank d + 1: Indeed, if

∑d
i=0 aiui = 0,

then the degree-at-most-d polynomial
∑d

i=0 ai
(
x
i

)
vanishes at more than d points (namely, the points

0, 1, 2, . . . , d + e), hence all of the coefficients must be zero. We now provide an explicit formula for
δ(Λd,e).

Theorem 2.1. The discriminant of Λd,e is given by

δ(Λd,e) =
d∏

i=0

e∏
j=1

d+ i+ j + 1

i+ j
.

Proof. Let Md,e =
((

j
i

))
be the (d+ 1)× (d+ e+ 1) matrix with rows ui. Thus,

δ(Λd,e) = det(Md,eM
T
d,e).

To evaluate δ(Λd,e) we use the Lindström-Gessel-Viennot lemma [12, Thm. 1] to interpret det(Md,eM
T
d,e)

as the number of plane partitions which fit inside a (d+ 1)× (d+ 1)× e box. The number of such plane
partitions is given by MacMahon’s formula, which provides the desired product formula for δ(Λd,e).

A plane partition Π is a finite, weakly increasing sequence of partitions λ1 ≤ λ2 ≤ · · · ≤ λk. More
intuitively, a plane partition may be thought of us a finite set of boxes stacked in the corner of a room.
For example, the plane partition in Figure 1 may be visualized as the stack of boxes in Figure 2.

Given positive integers r, s, t, we say a plane partition Π : λ1 ≤ λ2 ≤ · · · ≤ λk fits inside the r×s× t
box if k ≤ t and if the Young diagram of λk fits inside an r × s box. Equivalently, the box diagram of
Π fits inside an r × s × t box. Let N(r, s, t) denote the number of plane partitions which fit inside an
r × s× t box. We claim that δ(Λd,e) = N(d+ 1, d+ 1, e).

Let I be the Z-lattice in R2 spanned by the vectors v1 := (−
√

3, 1) and v2 := (
√

3, 1). Let v3 :=
v1 + v2 = (0, 2) ∈ I. Given positive integers a, b, c, let H(a, b, c) denote the convex hull of the six
points

{0, av1, bv2, av1 + cv3, bv2 + cv3, av1 + bv2 + cv3} ⊆ I.

See Figure 3 for an illustration. There is a simple and well-known correspondence between plane parti-
tions that fit inside a box of dimensions a× b× c and rhombic tilings of H(a, b, c) (see Figure 4). This
correspondence comes from the interpretation of a plane partition as a stack of cubical blocks in a the
first quadrant of R3 and viewing this stack of blocks from along the ray spanned by (1, 1, 1).

FIGURE 1. Example of a plane partition, illustrated using Young diagrams.

Now consider a plane partition Π contained in a box of size (d+ 1)× (d+ 1)× e viewed as a rhombic
tiling ofH(d+1, d+1, e). There are three types of rhombic tiles Ti, characterized by which vi is parallel
to the short diagonal of Ti; see Figure 7.
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FIGURE 2. Plane partition as
stack of boxes FIGURE 3. H(3, 4, 2) and a

portion of the lattice I.

FIGURE 4. Rhombic tiling of
H(3, 3, 5) corresponding to the
plane partition from Figure 2.

FIGURE 5. Plane partition in
3×3×5 box with corresponding
rhombic paths highlighted.

For each 0 ≤ i ≤ d, let ei denote the line segment from iv1 to (i + 1)v1 and let fi denote the line
segment from iv2 to (i + 1)v2. If 0 ≤ i, j ≤ d, then we define a rhombic path from ei to fj to be a
sequence of rhombic tiles starting at ei, ending at fj , such that to the left of the v3-axis, each of the tiles
is of type T2 or T3, and to the right of the v3-axis each of the tiles is of type T1 or T3 (see Figure 8).
Equivalently, to each (d + 1) × (d + 1) × e box we may associate an acyclic directed graph Gd,e with
disjoint sets of vertices labelled ei and fj such that rhombic paths from ei to fj correspond to directed
paths from ei to fj in Gd,e (see Figure 6.)

A plane partition Π determines a sequence of non-crossing rhombic paths Pi(Π) from ei to fi. Figure
5 illustrates the collection of rhombic paths associated to a plane partition contained in the 3×3×5 box.
Conversely, any sequence P0, P1, . . . , Pd of non-intersecting rhombic paths Pi from ei to fi determines
a unique plane partition contained in a (d+ 1)× (d+ 1)× e box.
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FIGURE 6. The acyclic digraph G2,5.

Note that any path Pi crosses the v3-axis at a unique type T3 tile Rk with lowest point kv3 for some
0 ≤ k ≤ d+ e. Every rhombic path from ei to Rk consisting only of tiles of type T2 and T3 has length k
and contains exactly i tiles of type T3. Hence there are

(
k
i

)
such rhombic paths. Therefore, the ikth entry

of Md,e counts the number of rhombic paths from ei to Rk, and by symmetry it follows that the ijth
entry of Md,eM

T
d,e counts the number of rhombic paths from ei to fj . Therefore the Lindström-Gessel-

Viennot lemma [12, Cor. 2] applied to the acyclic digraphGd,e implies that δ(Λd,e) = det(Md,eM
T
d,e) =

N(d + 1, d + 1, e) is the total number of non-crossing rhombic paths, hence the total number of plane
partitions which fit inside a box of dimension (d + 1) × (d + 1) × e. On the other hand, MacMahon’s
theorem [21, p. 378] implies that

N(d+ 1, d+ 1, e) =
d∏

i=0

e∏
j=1

d+ i+ j + 1

i+ j
. �

FIGURE 7. Three rhombic tiles.
FIGURE 8. Example of rhombic
path from e2 to f2.

Remark. The use of the Lindström-Gessel-Viennot lemma to count plane partitions and to evaluate deter-
minants of matrices with binomial coefficient entries is not new; however, we did not find the evaluation
of δ(Λd,e) among the known results. Many variations on this idea may be found in the literature (see, for
example, [11, 12, 22]).

The following corollary extracts an upper bound on δ(Λd,e) from the product formula in Theorem 2.1
that will be used in the proof of Theorem 2.5.
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Corollary 2.2. Let d, e be integers such that d ≥ 33 and 1 ≤ e ≤ log2(d/2). Then

log2(δ(Λd,e)) < 2(d− 1) log2(d/2)− e log2(d+ e+ 1). (2.1)

Proof. Theorem 2.1 shows that δ(Λd,e) is an increasing function of e. Thus, it suffices to fix e :=
blog2(d/2)c and show that

log2(δ(Λd,e)) < 2(d− 1)e− e log2(d+ e+ 1). (2.2)

Taking the logarithm of the product formula

δ(Λd,e) =

d∏
i=0

e∏
j=1

d+ 1 + i+ j

i+ j

yields

log2(δ(Λd,e)) =
d∑

i=0

e∑
j=1

log2

(
d+ 1 + i+ j

i+ j

)

=
d+e∑
n=1

#{(i, j) : 0 ≤ i ≤ d, 1 ≤ j ≤ e, i+ j = n} · log2

(
d+ 1 + n

n

)

=
e∑

n=1

n log2

(
1 +

d+ 1

n

)
+

d+e∑
n=d+1

(d+ e+ 1− n) log2

(
1 +

d+ 1

n

)

+ e

d∑
n=e+1

log2

(
1 +

d+ 1

n

)
.

(2.3)

Note that log2
(
1 + d+1

n

)
is a positive, decreasing function of n. Hence,

e∑
n=1

n log2

(
1 +

d+ 1

n

)
+

d+e∑
n=d+1

(d+ e+ 1− n) log2

(
1 +

d+ 1

n

)
≤
(
e+ 1

2

)
(log2(d+ 2) + 1).

Note that for any ε > 0 and for all sufficiently large d (depending on ε),(
e+ 1

2

)
(log2(d+ 2) + 1) =

(
e+ 1

2

)
log2(d) +

(
e+ 1

2

)
log2

(
1 +

2

d

)
+

(
e+ 1

2

)
<
(1

2
+ ε
)
e2 log2(d) + e2.

In particular, for if we take ε = .03, then for all d ≥ 256 we have
e∑

n=1

n log2

(
1 +

d+ 1

n

)
+

d+e∑
n=d+1

(d+ e+ 1− n) log2

(
1 +

d+ 1

n

)
< .53e2 log2(d) + e2. (2.4)

Interpreting the third sum in (2.3) as a right hand Riemann sum gives us
d∑

n=e+1

log2

(
1 +

d+ 1

n

)
≤
∫ d

e
log2

(
1 +

d+ 1

x

)
dx

= (2d+ 1) log2(2d+ 1)− d log2(d)− (d+ e+ 1) log2(d+ e+ 1) + e log2(e).

Observe that for d ≥ 2,

(2d+ 1) log2(2d+ 1) = 2d+ 1 + (2d+ 1) log2(d) + (2d+ 1) log2

(
1 +

1

2d

)
≤ 2d+ (2d+ 1) log2(d) + 3,
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and

(d+ e+ 1) log2(d+ e+ 1) = (d+ e+ 1) log2(d) + (d+ e+ 1) log2

(
1 +

e+ 1

d

)
≥ (d+ e+ 1) log2(d) + e+ 1.

Hence for d ≥ 2,
d∑

n=e+1

log2

(
1 +

d+ 1

n

)
≤ 2d+ (2d+ 1) log2(d) + 3− d log2(d)

− (d+ e+ 1) log2(d)− e− 1 + e log2(e)

= 2d− e log2(d) + e log2(e)− e+ 2. (2.5)

Combining the estimates (2.4) and (2.5) for d ≥ 256 we have

log2(δ(Λd,e)) < (2de− e2 log2(d) + e2 log2(e)− e2 + 2e) + .53e2 log2(d) + e2

= 2de− .47e2 log2(d) + e2 log2(e) + 2e.

It therefore suffices to prove that

2de− .47e2 log2(d) + e2 log2(e) + 2e ≤ 2(d− 1)e− e log2(d+ e+ 1),

which is equivalent to

e2 log2(e) + e log2(d+ e+ 1) + 4e ≤ .47e2 log2(d), (2.6)

which can be shown to hold for all d ≥ 1079. One may then check by computation that the inequality
(2.1) holds for 33 ≤ d ≤ 1079, completing the proof. �

Remark. Cohen, Shpilka, and Tal [7, Lem. 6.4] proved, in our notation, that

log2(δ(Λd,e)) ≤ (2d+ e+ 1)e.

If e ≤ log2(d/2), this gives the bound

log2(δ(Λd,e)) ≤ 2d log2(d/2) + log2(d)2 − log2(d). (2.7)

This bound has the same leading term as the bound we prove in Corollary 2.2, but the lower order terms
in (2.7) do not suffice to prove Theorem 2.5.

2.2. Minkowski’s theorem on successive minima. Suppose that K ⊆ Rm is a compact, convex, cen-
trally symmetric set. If Λ ⊆ Rm is a rank-m lattice, then for 1 ≤ i ≤ m the ith successive minimum of
Λ with respect to K, denoted λi(Λ,K), is defined by

λi(Λ,K) := min{r ∈ R≥0 : span(rK ∩ Λ) has rank at least i}.
Note that the λi(Λ,K) are positive and weakly increasing with i. The following classical theorem of
Minkowski relates the successive minima, the volume of K, and the discriminant of Λ. See [6, Chp.
VIII, Thm. V].

Theorem 2.3 (Minkowski). Let m ≥ 1, let K ⊆ Rm be a compact, convex, centrally symmetric set, and
let Λ ⊆ Rm be a rank-m lattice. Then

Vol(K)

m∏
i=1

λi(Λ,K) ≤ 2m
√
δ(Λ).

Suppose that K = [−1, 1]m ⊆ Rm. Observe that, for v ∈ Rm and r ≥ 0, v ∈ rK if and only if
||v||∞ ≤ r where

||(a1, a2, . . . , am)||∞ := max
i
|ai|

is the usual max norm on Rm. We define λi(Λ) := λi(Λ, [−1, 1]m). Since Vol([−1, 1]m) = 2m, we
have the following useful direct corollary of Theorem 2.3.
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Corollary 2.4. If Λ ⊆ Rm is a rank-m lattice with discriminant δ(Λ), then
m∏
i=1

λi(Λ) ≤
√
δ(Λ).

2.3. Main Result. We now prove the first main result. Recall that for d ≥ 2,

Bd := sup
f
|PrePer(f,Q)| ∈ [0,∞],

where the supremum is taken over all f(x) ∈ Q[x] with 2 ≤ deg(f) ≤ d.

Theorem 2.5. Let d ≥ 2 be an integer. Then there exists a polynomial fd(x) ∈ Q[x] with 2 ≤ deg(fd) ≤
d such that

fd([d+ blog2(d)c]) ⊆ [d].

Hence for all d ≥ 2,
Bd ≥ d+ blog2(d)c.

Proof. Let d ≥ 2 and e ≥ 0 be integers. Recall the rank-(d + 1) lattice Λd,e ⊆ Rd+e+1 constructed in
Section 2.1 spanned by the d+ 1 vectors

ui :=

((
0

i

)
,

(
1

i

)
, . . . ,

(
d+ e

i

))
∈ Zd+e+1

for 0 ≤ i ≤ d. Let M be a real number such that M > d
√
d+e+1
2 and let v1, v2, . . . , ve be an orthogonal

basis for the orthogonal complement of Λd,e in Rd+e+1 such that ||vj || = M for all j. Define Λ̃d,e to be
the rank-(d + e + 1) lattice spanned by the ui and vj with 0 ≤ i ≤ d and 1 ≤ j ≤ e. Note that for any
vector w ∈ Λ̃d,e supported on some vj we have

||w||∞ ≥
||w||√
d+ e+ 1

≥ ||vj ||√
d+ e+ 1

=
M√

d+ e+ 1
>
d

2
. (2.8)

We claim that for d ≥ 33 and e := blog2(d/2)c = blog2(d)c − 1 we have

λ3(Λ̃d,e) <
d

2
. (2.9)

First we finish the proof of the theorem assuming (2.9), and then we return to prove the claim.
If (2.9) holds, then there are three linearly independent vectors w1, w2, w3 ∈ Λ̃d,e such that ||wi||∞ <

d
2 . Thus (2.8) implies that each wi is supported only on the uj with 0 ≤ j ≤ d. Linear independence
implies that at least one wi must be supported on a uj with j ≥ 2. Suppose without loss of generality
that w1 =

∑d
i=0 aiui where ai ∈ Z and ai 6= 0 for some i ≥ 2. If g(x) :=

∑d
i=0 ai

(
x
i

)
, then

w1 = (g(0), g(1), . . . , g(d+ e)). Hence |g(i)| ≤ ||w1||∞ < d/2 for 0 ≤ i ≤ d+ e. Note that g(x) is an
integer-valued polynomial. Thus fd(x) := g(x − 1) + bd/2c + 1 is an integer-valued polynomial with
2 ≤ deg(fd) ≤ d such that for all i ∈ [d+ e+ 1] = [d+ blog2(d)c],

0 ≤ bd/2c − d/2 + 1 < fd(i) < bd/2c+ d/2 + 1 ≤ d+ 1.

Therefore fd([d+ blog2(d)c]) ⊆ [d], as we wished to show.
Now we turn to proving (2.9). By construction, we have

δ(Λ̃d,e) = δ(Λd,e)M
2e.

If i > d + 1, then any set of i independent vectors in Λ̃d,e must contain at least one vector w supported
on some vj . Hence ||w||∞ ≥M/

√
d+ e+ 1 by (2.8). Thus for i > d+ 1,

λi(Λ̃d,e) ≥
M√

d+ e+ 1
>
d

2
.
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The vectors ui all have integer entries, hence λ1(Λ̃d,e) ≥ 1. The monotonicity of the λi(Λ̃d,e) gives us
d+e+1∏
i=1

λi(Λ̃d,e) ≥ λ3(Λ̃d,e)
d−1
( M√

d+ e+ 1

)e
.

Therefore, Corollary 2.4 implies that

λ3(Λ̃d,e)
d−1
( M√

d+ e+ 1

)e
≤

d+e+1∏
i=1

λi(Λ̃d,e) ≤
√
δ(Λ̃d,e) =

√
δ(Λd,e) ·M e,

from which we conclude that

log2(λ3(Λ̃d,e)) ≤
log2(δ(Λd,e)) + e log2(d+ e+ 1)

2(d− 1)
.

Corollary 2.2 implies that

log2(δ(Λd,e)) < 2(d− 1) log2(d/2)− e log2(d+ e+ 1)

for d ≥ 33, hence
log2(λ3(Λ̃d,e)) < log2(d/2),

which is equivalent to (2.9).
Now suppose that 2 ≤ d ≤ 32. If 2 ≤ d ≤ 7, then blog2(d/2)c ≤ 1. Lagrange interpolation

immediately implies the existence of polynomials fd(x) ∈ Q[x] with degree d such that fd([d+1]) ⊆ [d].
If 8 ≤ d ≤ 32, then log2(d/2) ≤ 4 and the sequence of polynomials td(x) constructed in Corollary 4.3
satisfies

td([d+ 4]) ⊆ [5] ⊆ [d],

which suffices to complete the proof. �

Remark. The idea of augmenting the lattice Λd,e by arbitrary long vectors is borrowed from the proof of
[7, Theorem 1.5]. This strategy greatly simplifies our original approach.

3. COMMON PREPERIODIC POINTS

In this section we prove Proposition 1.8 and part of Corollary 1.4(2), restated as Proposition 3.2 and
Theorem 3.4 below.

Lemma 3.1. If f(x) ∈ C[x] is a degree-d polynomial and S ⊆ C is a set with n elements, then

|f−1(S)| ≥ dn− d+ 1.

Proof. Let ep denote the ramification index of f(x) at p ∈ C. Then for all q ∈ C,

d =
∑

p∈f−1(q)

ep = |f−1(q)|+
∑

p∈f−1(q)

(ep − 1).

A point p ∈ C has ep > 1 if and only if p is a root of f ′(x) with multiplicity ep − 1, hence

d− 1 =
∑
p∈C

(ep − 1).

Thus,
|f−1(S)| =

∑
q∈S
|f−1(q)| = dn−

∑
p∈f−1(S)

(ep − 1) ≥ dn− d+ 1. �

Proposition 3.2. Suppose that f(x) ∈ Q[x] is a degree d ≥ 2 polynomial such that

f([m]) ⊆ [n]

for some integers m > n ≥ 0. Then
(1) f−1([n]) ⊆

⋂m−n
i=0 PrePer(f(x) + i,C),
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(2) |f−1([n])| ≥ dn− d+ 1, and
(3) PrePer(f(x) + i,C) 6= PrePer(f(x) + j,C) for all 0 ≤ i < j ≤ m− n.

Hence

d(n− 1) + 1 ≤

∣∣∣∣∣
m−n⋂
i=0

PrePer(f(x) + i,C)

∣∣∣∣∣ <∞.
Proof. Let 0 ≤ i ≤ m− n. If f([m]) ⊆ [n], then

f(f−1([n])) + i ⊆ [n+ i] ⊆ [m] ⊆ f−1([n]).

Hence f−1([n]) ⊆ PrePer(f(x) + i,C), proving (1). The lower bound |f−1([n])| ≥ dn− d+ 1 follows
immediately from Lemma 3.1 since [n] contains n points.

For (3) it suffices to prove that for any polynomial h(x) and any positive integer i, PrePer(h(x),C) 6=
PrePer(h(x) + i,C). Since h(x) is a polynomial, ∞ is a superattracting fixed point, and thus the set
PrePer(h(x),C) of finite complex preperiodic points of h(x) is bounded. Therefore, there exists some
q ∈ PrePer(h(x),C) such that q+i 6∈ PrePer(h(x),C). Let p ∈ h−1(q). Then p ∈ PrePer(h(x),C) by
construction. If p ∈ PrePer(h(x)+i,C), then h(p)+i = q+i ∈ PrePer(h(x)+i,C)\PrePer(h(x),C).
Otherwise, p ∈ PrePer(h(x),C) \ PrePer(h(x) + i,C). In either case, we have PrePer(h(x),C) 6=
PrePer(h(x) + i,C).

Finally, Baker and DeMarco [1, Thm. 1.2] proved that if f(x), g(x) ∈ C(x) are rational functions of
degree at least 2, then PrePer(f(x),C) 6= PrePer(g(x),C) implies PrePer(f(x),C)∩PrePer(g(x),C)
is finite. Therefore,

d(n− 1) + 1 ≤
∣∣∣m−n⋂

i=0

PrePer(f(x) + i,C)
∣∣∣ <∞. �

Example 3.3. Consider the degree-6 polynomial

f(x) =
x6 − 45x5 + 775x4 − 6375x3 + 25504x2 − 45060x+ 30960

720
.

One may check that
f([14]) ⊆ [10].

Therefore Proposition 3.2 implies that
⋂4

i=0 PrePer(f(x) + i,C) is finite and contains at least 55 points.

Recall that Cd for d ≥ 2 is defined by

Cd := sup
f,g
|PrePer(f,C) ∩ PrePer(g,C)|,

where the supremum is taken over all f(x), g(x) ∈ C[x] with 2 ≤ deg(f), deg(g) ≤ d such that
PrePer(f,C) 6= PrePer(g,C).

Theorem 3.4. Let d ≥ 2 be an integer. There exists a polynomial fd(x) ∈ Q[x] with 2 ≤ deg(fd) ≤ d
such that ∣∣∣PrePer(fd(x) + i,C) ∩ PrePer(fd(x) + j,C)

∣∣∣ <∞ for all 0 ≤ i < j ≤ log2(d)

and ∣∣∣ blog2(d)c⋂
i=0

PrePer(fd(x) + i,C)
∣∣∣ ≥ deg(fd)(d− 1) + 1. (3.1)

Furthermore, there exist infinitely many d such that

Cd ≥ d2 + dblog2(d)c − 2d+ 1. (3.2)
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Proof. Theorem 2.5 implies that for d ≥ 2 there exists a polynomial fd(x) ∈ Q[x] with 2 ≤ deg(fd) ≤ d
such that

fd([d+ blog2(d)c]) ⊆ [d].

Hence (3.1) follows from Proposition 3.2.
Let ed := blog2(d)c, then

fd([d+ ed]) ⊆ [d] ⊆ [d+ ed − 1].

Hence applying Proposition 3.2 with m = d+ ed and n = d+ ed − 1, we have

deg(fd)(d+ ed − 2) + 1 ≤ |PrePer(fd(x),C) ∩ PrePer(fd(x) + 1,C)| <∞.

Cohen, Shpilka, and Tal [7, Cor. 1.2] prove that for all m sufficiently large, if f(x) ∈ Q[x] is a polyno-
mial with deg(f) ≥ 2 such that f([m]) ⊆ [m− 1], then

deg(f) ≥ m
(

1− 4

log2 log2(m)

)
.

Hence, for all d sufficiently large,

deg(fd) ≥ (d+ ed)
(

1− 4

log2 log2(d+ ed)

)
≥ d
(

1− 4

log2 log2(d)

)
.

Note that the quantity on the right-hand side tends to∞ with d; thus, the same is true for deg(fd).
Now, let d′ ≥ 2, and let d := deg fd′ ≤ d′. By the conclusion of the previous paragraph, there are

infinitely many integers d arising in this way. In this case, we have

Cd ≥ d(d′ + blog2(d)c − 2) + 1 ≥ d2 + dblog2(d)c − 2d+ 1.

Thus (3.2) holds for infinitely many d. �

4. EXAMPLES OF EXCEPTIONAL PREPERIODIC BEHAVIOR IN EVERY DEGREE

In Theorem 2.5 we showed that for all sufficiently large degrees d, there exists a degree-at-most-d
polynomial with at least d+blog2(d)c rational preperiodic points. However, the proof is not constructive,
in the sense that it does not allow us to provide an explicit formula for such a polynomial. In this section
we construct a family of polynomials rd(x) ∈ Q[x] such that, for all d ≥ 2, rd is a degree-d polynomial
with at least d+6 rational preperiodic points. For d < 64, this improves the lower bound onBd obtained
from Theorem 2.5.

First we introduce a doubly periodic sequence ρ(m, d) and use its values to interpolate an auxiliary
sequence of polynomials sd(x).

Lemma 4.1. There is a unique function ρ : Z2 → Z satisfying the following properties:

(i) ρ(m+ 3, d) = −ρ(m, d) for all (m, d) ∈ Z2,
(ii) ρ(m, d+ 1) = −ρ(m+ 1, d) for all (m, d) ∈ Z2, and

(iii) ρ(0, 0) = ρ(1, 0) = 1, and ρ(2, 0) = 0.

Furthermore, for all (m, d) ∈ Z2,

(1) ρ(m, d+ 3) = ρ(m, d),
(2) ρ(m+ 1, d+ 1) = ρ(m, d) + ρ(m, d+ 1),
(3) ρ(m, d) = (−1)dρ(d+ 1−m, d).

Proof. The initial values together with (i) imply that ρ(m, 0) is well-defined for all m ∈ Z. Then (ii)
implies that ρ(m, d) = (−1)dρ(m+ d, 0). Hence these three properties uniquely determine ρ(m, d) for
all (m, d) ∈ Z2.
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m 0 1 2 3 4 5

ρ(m, 0) 1 1 0 −1 −1 0
TABLE 1. Initial values that determine ρ(m,n)

(1) Properties (i) and (ii) imply that

ρ(m, d+ 3) = (−1)3ρ(m+ 3, d) = −ρ(m+ 3, d) = ρ(m, d).

(2) Since ρ(m+ 6, d) = ρ(m, d), we can check the following identity by inspection:

ρ(m+ 2, 0) = ρ(m+ 1, 0)− ρ(m, 0).

Replacing m by m+ d yields

ρ((m+ 1) + (d+ 1), 0) = ρ(m+ (d+ 1), 0)− ρ(m+ d, 0),

and repeatedly applying (ii) gives

(−1)d+1ρ(m+ 1, d+ 1) = (−1)d+1ρ(m, d+ 1) + (−1)d+1ρ(m, d);

dividing by (−1)d+1 yields (2).
(3) Using ρ(m+ 6, d) = ρ(m, d) we may verify that for all m ∈ Z,

ρ(m, 0) = ρ(1−m, 0). (4.1)

Thus, if d = 2n is even, then

ρ(m, 2n) = ρ(m+ 2n, 0) = ρ(m− 4n, 0) = ρ(4n+ 1−m, 0) = ρ(2n+ 1−m, 2n).

Similarly, if d = 2n+ 1 is odd, then (4.1) implies that

ρ(m, 2n+ 1) = −ρ(m+ 2n+ 1, 0) = −ρ(m− 4n+ 1, 0) = −ρ(4n−m, 0) = ρ(2n− 1−m, 2n+ 1).

Finally, (i) implies
ρ(2n− 1−m, 2n+ 1) = −ρ(2n+ 2−m, 2n+ 1).

Hence in either case,
ρ(m, d) = (−1)dρ(d+ 1−m, d). �

Let sd(x) ∈ Q[x] be the unique degree-at-most-d polynomial such that

sd(m− d+1
2 ) = ρ(m, d),

for 0 ≤ m ≤ d. Lemma 4.2 establishes some basic properties of sd(x). Let δ denote the centered
difference operator defined by

δf(x) := f(x+ 1
2)− f(x− 1

2).

Lemma 4.2. Let d ≥ 0.
(1) sd(−x) = (−1)dsd(x),
(2) δsd+1(x) = sd(x),
(3) deg(sd) = d,
(4) sd(d+ 1− d+1

2 ) = ρ(d+ 1, d),
(5) sd(d+ 2− d+1

2 ) = ρ(d+ 2, d) + 1,
(6) sd(d+ 3− d+1

2 ) = ρ(d+ 3, d) + d+ 2.

Proof. (1) Suppose f(x) ∈ R[x] is a degree-at-most-d polynomial. Then f(x) − (−1)df(−x) has
degree at most d − 1. Hence if there are at least bd+1

2 c distinct pairs ±a of real numbers for which
f(a) = (−1)df(−a), then it follows that the identity f(x) = (−1)df(−x) holds in R[x].

Lemma 4.1(3) implies that for 1 ≤ m ≤ d,

sd(m− d+1
2 ) = ρ(m, d) = (−1)dρ(d+ 1−m, d) = (−1)dsd(d+ 1−m− d+1

2 ) = (−1)dsd(d+1
2 −m),
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since 1 ≤ m ≤ d is equivalent to 1 ≤ d+ 1−m ≤ d. The set {m− d+1
2 : 1 ≤ m ≤ d} contains at least

bd+1
2 c pairs ±a, hence it follows that sd(x) = (−1)dsd(−x) for all d ≥ 0.
(2) Let f(x) be the degree-at-most-d polynomial

f(x) := det sd+1(x) = sd+1(x+ 1
2)− sd+1(x− 1

2).

If 0 ≤ m ≤ d, then by Lemma 4.1(2),

f(m− d+1
2 ) = sd+1(m+ 1− d+2

2 )− sd+1(m− d+2
2 )

= ρ(m+ 1, d+ 1)− ρ(m, d+ 1)

= ρ(m, d)

= sd(m− d+1
2 ).

Hence f(x) = sd(x).
(3) If f(x) has degree d ≥ 1, then δf(x) has degree d − 1. Since s0(x) = 1 has degree 0 by

construction, it follows from (2) that deg(sd) = d for all d ≥ 0.
(4) By (1) and Lemma 4.1(3),

sd(d+ 1− d+1
2 ) = (−1)dsd(0− d+1

2 ) = (−1)dρ(0, d) = ρ(d+ 1, d).

(5) We prove this identity by induction on d. Since s0(x) = 1 is constant,

s0(0 + 2− 0+1
2 ) = 1 = ρ(2, 0) + 1.

Now let d ≥ 1 and suppose that the identity (5) holds for d− 1. By (2), (4), and Lemma 4.1(2),

sd(d+ 2− d+1
2 ) = sd(d+ 1− d+1

2 ) + sd−1(d+ 1− d
2)

= ρ(d+ 1, d) + ρ(d+ 1, d− 1) + 1

= ρ(d+ 2, d) + 1.

(6) Following the induction in (5) we first observe that

s0(0 + 3− 0+1
2 ) = 1 = ρ(3, 0) + 0 + 2.

If d ≥ 1 and we suppose that (6) holds for d− 1, then by (2), (5), and Lemma 4.1(2),

sd(d+ 3− d+1
2 ) = sd(d+ 2− d+1

2 ) + sd−1(d+ 2− d
2)

= ρ(d+ 2, d) + 1 + ρ(d+ 2, d− 1) + d− 1 + 2

= ρ(d+ 3, d) + d+ 2. �

After a change of coordinates, the polynomials sd(x) provide explicit examples of a family of poly-
nomial that compress many consecutive integers into an interval of fixed length. These examples cover
the low degree cases needed to complete the proof of Theorem 2.5.

Corollary 4.3. For d ≥ 0 let td(x) ∈ Q[x] be the degree d polynomial defined by

td(x) := sd(x− 2− d+1
2 ) + 3.

Then

td([d+ 4]) ⊆ [5].

Proof. Lemma 4.2 and the definition of sd(x) implies that sd(m− d+1
2 ) ∈ [−2, 2]∩Z for all integers m

such that −2 ≤ m ≤ d+ 2. Hence it follows that td([d+ 4]) ⊆ [5]. �
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4.1. Constructing rd(x). For d ≥ 0, let rd(x) ∈ Q[x] be the polynomial sequence defined by

rd(x) :=

{
sd(x− 3− d+1

2 ) + 2 if d is even,
sd(x− 3− d+1

2 )− x+ d+ 6 if d is odd.

Theorem 4.4. For all d ≥ 2, rd(x) is a degree-d, integer-valued polynomial such that if d is even, then

rd([d+ 6]) ⊆ [d+ 5],

and if d is odd, then
rd([d+ 6]) ⊆ [d+ 4].

Thus,
(1) Bd ≥ d+ 6 for all d ≥ 2, and
(2) Cd ≥ d2 + 4d+ 1 for all d ≥ 2.

Proof. Lemma 4.2(3) implies that rd(x) has degree d, and the fact that sd(y − d+1
2 ) is an integer for all

0 ≤ y ≤ d, and therefore rd(x) is an integer for all 3 ≤ x ≤ d+ 3, implies that rd is integer-valued for
all d ≥ 0.

Suppose that d ≥ 2 is even. If 3 ≤ k ≤ d+ 4, then the definition of sd(x) and Lemma 4.2(4) gives us,

rd(k) = sd(k − 3− d+1
2 ) + 2 = ρ(k − 3, d) + 2 ∈ [1, 3].

From sd(x) even we find that

rd(d+ 7− x) = sd(d+7
2 − x) + 2 = sd(x− d+7

2 ) + 2 = rd(x).

Hence by Lemma 4.2(5) and (6),

rd(1) = rd(d+ 6) = sd(d+ 3− d+1
2 ) + 2 = ρ(d+ 3, d) + d+ 4 ∈ [d+ 3, d+ 5],

rd(2) = rd(d+ 5) = sd(d+ 2− d+1
2 ) + 2 = ρ(d+ 2, d) + 3 ∈ [2, 4].

Thus if d is even,
rd([d+ 6]) ⊆ [d+ 5],

from which it follows that Bd ≥ |PrePer(rd(x),Q)| ≥ d+ 6.
Next suppose that d ≥ 2 is odd. If 3 ≤ k ≤ d+ 4, then as above we have

rd(k) = sd(k − 3− d+1
2 )− k + d+ 6 = ρ(k − 3, d)− k + d+ 6 ∈ [1, d+ 4].

Lemma 4.2(5) and (6) gives us

rd(d+ 5) = sd(d+ 2− d+1
2 ) + 1 = ρ(d+ 2, d) + 2 ∈ [1, 3],

rd(d+ 6) = sd(d+ 3− d+1
2 ) = ρ(d+ 3, d) + d+ 2 ∈ [d+ 1, d+ 3].

Since sd(x) is odd,

d+ 5− rd(d+ 7− x) = d+ 5− sd((d+ 7− x)− 3− d+1
2 ) + (d+ 7− x)− d− 6

= −sd(−x+ 3 + d+1
2 )− x+ d+ 6

= sd(x− 3− d+1
2 )− x+ d+ 6

= rd(x).

Thus,

rd(1) = d+ 5− rd(d+ 6) ∈ [2, 4]

rd(2) = d+ 5− rd(d+ 5) ∈ [d+ 2, d+ 4].

Therefore,
rd([d+ 6]) ⊆ [d+ 4],
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and it follows that Bd ≥ d+ 6 for all d ≥ 2. Since for either parity of d we have

rd([d+ 6]) ⊆ [d+ 5],

Proposition 3.2 implies that for all d ≥ 2,

|PrePer(rd(x),C) ∩ PrePer(rd(x) + 1,C)| ≥ d(d+ 4) + 1 = d2 + 4d+ 1.

Hence Cd ≥ d2 + 4d+ 1 for all d ≥ 2. �

Figure 9 illustrates the typical behavior of the polynomials rd(x) in the interval [1, d+ 6].

5 10 15

5

10

15

5 10 15

5

10

15

FIGURE 9. The graphs of r12(x) and r13(x)

4.2. Explicit formulas for sd(x). We suspect there is more of interest to say about the dynamical prop-
erties of the sequence of polynomials rd(x). Thus to facilitate their future study we end this section by
deriving explicit formulas for the polynomials sd(x), which then allow for direct calculation of rd(x).

For d ≥ 0, let cd(x) ∈ Q[x] be the polynomial sequence defined by

c2k(x) :=
1

(2k)!

k∏
j=1

(
x2 − (2j−1)2

4

)
c2k+1(x) :=

1

(2k + 1)!
x

k∏
j=1

(x2 − j2).

Note that, by construction, cd(x) is even when d is even and cd(x) is odd when d is odd. A straightforward
comparison of roots and leading coefficients implies that

δcd+1(x) = cd(x)

for d ≥ 0, and δc0(x) = δ 1 = 0. Furthermore, c2k(x) is integer-valued on Z + 1
2 and c2k+1(x) is

integer-valued on Z.

Proposition 4.5. For all k ≥ 0,

s2k(x) :=

k∑
j=0

(−1)k−jc2j(x) and s2k+1(x) :=

k∑
j=0

(−1)k−jc2j+1(x).

Proof. First observe that {c2k : k ≥ 0} forms a basis for the vector space of even polynomials in Q[x].
Therefore there are rational numbers αj such that

s2k(x) :=

k∑
j=0

αjc2j(x).
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Since

c2k(12) =

{
1 if k = 0,
0 otherwise,

it follows from Lemma 4.1 and Lemma 4.2 that

αj = δ2js2k(12) = s2(k−j)(
1
2) = ρ(k − j, 2(k − j)) = ρ(3(k − j), 0) = (−1)k−jρ(0, 0) = (−1)k−j .

The expansion for s2k+1(x) follows by applying δ to the expansion of s2k+2(x). �

5. LOW DEGREE EXAMPLES

In this final section we provide lower bounds for Bd and Cd in low degrees found by computation.
Table 2 gives examples of polynomials f(x) and integers m,n such that

f([m]) ⊆ [n]. (5.1)

These are the polynomials with the largest m for each degree d that we found by computer search. Thus
the entries in the column labeled m also provide the best known lower bounds on Bd for 2 ≤ d ≤ 9.

d m n f(x)

2 8 7 x2−9x+22
2

3 11 11 x3−18x2+89x−66
6

4 10 8 x4−22x3+167x2−506x+552
24

5 13 9 x5−35x4+445x3−2485x2+5794x−3600
120

6 14 10 x6−45x5+775x4−6375x3+25504x2−45060x+30960
720

7 15 15 x7−56x6+1246x5−14000x4+83629x3−258104x2+373764x−151200
5040

8 16 16 x8−68x7+1918x6−29036x5+254989x4−1309952x3+3765012x2−5343984x+2862720
20160

8 16 15 x8−68x7+1946x6−30464x5+282569x4−1559852x3+4836124x2−7320336x+4273920
40320

9 19 17 x9−90x8+3426x7−71820x6+904449x5−7002450x4+32752124x3−87183720x2+116300160x−55520640
181440

TABLE 2

One fast method to find these examples in low degree is to use the LLL basis reduction algorithm to
find short vectors in the lattice Λd,e defined in Section 2.1. Using this method we surveyed up to degree
d = 400 and found examples giving Bd ≥ d+ 8 for all 11 ≤ d ≤ 283 except for

d ∈ {21, 219, 221, 235, 237, 241, 244, . . . , 247, 249, 251, 255, . . . , 266, 268, 269, 271}.
For all other degrees 11 ≤ d ≤ 400 the examples showed that Bd ≥ d + 6, which we already knew by
Theorem 4.4.

When n < m in Table 2, Proposition 3.2 applied to f([m]) ⊆ [m − 1] allows us to extract lower
bounds on Cd. Note that the lower bound on C2 in Table 3 comes from Example 1.9.

In Table 3 we collect the best lower bounds on Cd for small d that we found through computational
experiment. All of our examples came from common preperiodic points of f(x) and f(x) + 1 for some
polynomial f(x) exhibiting dynamical compression.

d 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cd ≥ 26 27 40 60 78 84 120 162 190 198 228 260 294 330
TABLE 3
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For degrees d = 2, 4, 5, 6, 8, 9, the polynomials giving the lower bound on Cd come from Table 2.
For degrees d = 3, 7, the polynomials rd(x) constructed in Section 4.1 give the lower bound. For
10 ≤ d ≤ 15, the polynomials fd(x) giving the lower bounds on Cd are too large to print explicitly.
Instead, Table 4 lists d+ 1 interpolating values (fd(1), fd(2), . . . , fd(d+ 1)) which uniquely determine
the polynomial fd(x).

d (fd(1), fd(2), . . . , fd(d+ 1))

10 (14, 6, 14, 6, 1, 6, 14, 17, 14, 10, 10)
11 (17, 1, 15, 3, 4, 14, 17, 12, 8, 9, 10, 6)
12 (17, 1, 17, 3, 4, 14, 17, 12, 6, 3, 3, 6, 12)
13 (17, 1, 17, 1, 3, 13, 16, 13, 10, 9, 9, 9, 8, 5)
14 (20, 4, 20, 4, 20, 14, 1, 8, 21, 18, 6, 6, 18, 21, 8)
15 (21, 1, 2, 20, 4, 1, 9, 10, 5, 3, 6, 11, 16, 19, 17, 12)

TABLE 4
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