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Abstract. Let Ld be the Lattès map associated to the multiplication-by-d endomorphism
of an elliptic curve E defined over a finite field Fq. We determine the density δ(Ld, q) of
periodic points for Ld in P1(Fq). We show that the periodic point densities δ(Ld, q

n) converge
as n → ∞ along certain arithmetic progressions, and compute simple explicit formulas for
δ(L`, q) when ` is a prime and E belongs to a special family of supersingular elliptic curves.

1. Introduction

Let Fq be a finite field with q elements and suppose that f(x) ∈ Fq(x) is a rational function.
The projective line P1(Fq) is a finite set closed under iteration of a 7→ f(a). We say that a
point a ∈ P1(Fq) is periodic under f if fm(a) = a for some m, where fm denotes the m-fold
composition of f with itself.

Question 1.1. What is the probability δ(f, q) that a randomly chosen element of P1(Fq) is
periodic under iteration of f?

In this paper we answer Question 1.1 for semiconjugates of elliptic curve endomorphisms,
also known as Lattès maps. See Section 2 for background on elliptic curves and Lattès maps.
Our first result determines the density of periodic points for Lattès maps over an arbitrary
finite field Fq. Some notation: Let Per(f,Fq) denote the subset of points in P1(Fq) that are
periodic under the rational function f(x). If ` is a prime and k is an integer, then v`(k)
denotes the multiplicity of ` as a factor of k.

Theorem 1.2. Let E be an elliptic curve defined over Fq and let τ be the integer defined by
#E(Fq) = q + 1 − τ . If d is an integer coprime to q and Ld : P1 → P1 is the Lattès map
associated to the multiplication-by-d map on E, then

δ(Ld, q) :=
#Per(Ld,Fq)
#P1(Fq)

=
1

2

( 1

π+
+

1

π−

)
+

τ

2(q + 1)

( 1

π+
− 1

π−

)
,

where
π± :=

∏
`|d

`v`(q+1±τ),

and the product is taken over all primes ` dividing d. Furthermore,∣∣∣δ(Ld, q)− 1

2

( 1

π+
+

1

π−

)∣∣∣ < 1

q1/2 + q−1/2
.

Using Theorem 1.2 we study the behavior of the periodic point density δ(Ld, q
n) as n

varies. Our second result shows that δ(Ld, qn) converges as n→∞ along certain arithmetic
progressions.
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Theorem 1.3. Let E be an elliptic curve defined over Fq, let d be an integer coprime to q,
and let τn be the sequence of integers such that #E(Fqn) = qn+1− τn. Then for each n ≥ 1
there exists some N depending on q, τ1, d, n such that

lim
m→∞

m≡n mod cdN

δ(Ld, q
m) =

1

2

( 1

πn,+
+

1

πn,−

)
,

where
πn,± :=

∏
`|d

`v`(q
n+1±τn),

the product is taken over all primes ` dividing d, c := lcm(`2 − 1 : ` | d is prime), and the
limit is taken over all positive integers m such that m ≡ n mod cdN .

Then N in Theorem 1.3 is, in principle, effectively computable as it comes from the
modulus of continuity of several explicit exponential functions n 7→ γm with respect to the
`-adic metric for primes ` dividing d. Theorem 1.3 implies that any density that occurs for
at least one n must occur infinitely often.

Our final result applies Theorem 1.2 to E in a special family of supersingular elliptic curves
to get even more explicit formulas for the density δ(L`, qn) with ` prime.

Theorem 1.4. Let E be an elliptic curve over Fq such that #E(Fq) = q + 1. If ` > 2 is a
prime not dividing q and e is the multiplicative order of q modulo `, set

wn := v`(q
e − 1) + v`(n).

Then

δ(L`, q
n) =


`−wn if n is odd, e | 2n, and e - n,
1
2
(1 + `−2wn) + ε

qn/2+q−n/2 (1− `−2wn) if n is even and e | n,
1 otherwise,

where ε is a sign determined by

ε =

{
+1 if n ≡ 2 mod 4 and e - n/2, or n ≡ 0 mod 4 and e | n/2,
−1 if n ≡ 2 mod 4 and e | n/2, or n ≡ 0 mod 4 and e - n/2.

Hence if e does not divide 2n, then L` induces a permutation on P1(Fqn).

1.1. Related work. The most tractable cases of Question 1.1 are when the rational function
f is a semiconjugate of an endomorphism of an algebraic group. In this case, one can
translate questions about the dynamics of f into questions about the underlying group
structure, which are easier to analyze. Such semiconjugates include power maps, Chebyshev
polynomials, Dickson polynomials, and Lattès maps. Periodic densities for power maps
(and monomial maps more generally) were studied in Hu, Sha [8], and for power maps and
Chebyshev polynomials by Manes, Thompson [7]. In this paper we treat the Lattès case.

Juul, Kurlberg, Madhu, Tucker [2] studied the density of periodic points for the modulo p
reduction of a fixed rational function f(x) defined over a global field K as p varies through
the primes in OK . They show that the limsup of the density of periodic points of f can
be made arbitrarily small as the norm of p tends to infinity by choosing f from a Zariski
dense open set of degree d rational functions [2, Thm. 1.2]. In their Example 7.3 they fix an
elliptic curve E defined over Q and a Lattès map L` with ` prime and show that in many
cases the liminf of the periodic density of L` modulo p converges to 0 as the norm of p tends
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to infinity. Note that these limits are in a different direction from those we take in Theorem
1.3. See also the earlier work of Madhu [6] and the subsequent work of Juul [1].

Ugolini [11] studied the phase portraits of Lattès maps associated to ordinary elliptic
curves over finite fields. The methods of [11] are substantively equivalent to those we use to
prove Theorem 1.2, but there appears to be no direct overlap in results.

Küçüksakalli [4] analyzed the value sets of Lattès maps over finite fields, arriving at a
characterization of when a given Lattès map Ld induces a permutation of P1(Fq), which is
equivalent to our Corollary 2.6 (see Remark 2.7.)

1.2. Acknowledgements. This project began as part of the Summer@ICERM 2019 REU.
We thank ICERM for hosting us and providing us access to their computational resources.
We thank Joe Silverman for generously sharing insights that led us to the proof of Theorem
1.2. We also wish to thank Women in Sage: Sagedays 90, where this project was originally
developed. Trevor Hyde is partially supported by the NSF MSPRF and the Jump Trading
Mathlab Research Fund.

2. Density of periodic points for Lattès maps

The goal of this section is to prove the following theorem.

Theorem 2.1. Let E be an elliptic curve defined over Fq with trace of Frobenius τ . If d is an
integer coprime to q and Ld : P1 → P1 is the Lattès map associated to the multiplication-by-d
map on E, then

δ(Ld, q) :=
#Per(Ld,Fq)
#P1(Fq)

=
1

2

( 1

π+
+

1

π−

)
+

τ

2(q + 1)

( 1

π+
− 1

π−

)
,

where
π± :=

∏
`|d

`v`(q+1±τ),

and the product is taken over all primes ` dividing d. Furthermore,∣∣∣δ(Ld, q)− 1

2

( 1

π+
+

1

π−

)∣∣∣ < 1

q1/2 + q−1/2
.

We begin by reviewing some of the basics of elliptic curves over finite fields and their Lattès
maps. For a more complete treatment we refer the reader to Silverman [9], and Chapter V
in particular.

2.1. Elliptic curves. An elliptic curve defined over a field K, denoted E/K, is a smooth,
projective, algebraic curve E of genus 1 defined over K together with a prescribed base point
O ∈ E(K). There is a natural commutative algebraic group law on E defined over K with
O as the identity element. In particular, if L/K is any field extension, the L-points of E
form a group. If P,Q ∈ E(K) are points on E, then we write P + Q and −P for the sum
and inverse, respectively.

We say two elliptic curves E1, E2 defined over K are isomorphic if there is an invertible
map f : E1 → E2 of algebraic curves that respects base points f(O1) = O2. If f is an
isomorphism, then f : E1(M)

∼−→ E2(M) gives a group isomorphism between the M -points
on the curves for any extension M/K [9, Thm. III.4.8].
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Every elliptic curve E over a field K has a model as a plane curve given by a Weierstrass
equation of the form

(1) E : y2 + A1xy + A3y = x3 + A2x
2 + A4x+ A6,

where Ai ∈ K [9, §III.1]. If the characteristic of K is at least 5, then there is a reduced
Weierstrass equation of the form

E : y2 = x3 + Ax+B.

However, since we are primarily interested in elliptic curves over arbitrary finite fields, we
use the Weierstrass equations of the form (1) for full generality.

Weierstrass curves intersect the line at infinity in P2(K) at exactly one point expressed in
homogeneous coordinates as (0 : 1 : 0). By convention, we let the base point O of E be this
unique point at infinity.

If P = (a, b) is a point on E expressed in affine coordinates, then the additive inverse of
P is

(2) −P := (a,−b− A1a− A3).

Let x : E → P1 be the x-coordinate projection x(a, b) = a. Since there are clearly at most 2
points on E with the same x-coordinate, it follows that x(P ) = x(Q) if and only if P = ±Q
[9, §III.2].

2.2. Elliptic curves over Fq. Let Fq be a finite field with q elements, where q is a prime
power. The Frobenius automorphism F : P2(Fq)→ P2(Fq) is the map defined on projective
coordinates by

F (a : b : c) = (aq : bq : cq).

If E ⊆ P2 is an elliptic curve defined over Fq, then F restricts to an automorphism of
E. Furthermore, Galois theory implies that P ∈ E(Fq) belongs to E(Fqn) if and only if
F n(P ) = P .

If E is an elliptic curve over Fq, then E(Fq) is a finite abelian group. Let τ be the unique
integer such that

#E(Fq) = q + 1− τ.
The integer τ is called the trace of Frobenius for E over Fq. This name comes from the fact
that τ may be realized as the trace of the action of F as a linear endomorphism of the `-adic
Tate module associated to E [9, Rmk. V.2.6].

2.3. Lattès maps. For each d ∈ Z, the multiplication-by-d map [d] : P 7→ dP is a group
endomorphism of E(Fq). Since E(Fq) is abelian, [d] commutes with the inverse map [−1].
Galois theory implies that there exists a rational function Ld(x) ∈ Fq(x) such that the
following diagram commutes,

E E

P1 P1.

x

[d]

x

Ld

That is, for all points P ∈ E(Fq),

Ld(x(P )) = x(dP ).
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Since every a ∈ P1(Fq) is the x-coordinate of some point P ∈ E(Fq), this identity completely
determines Ld(x). If d, e ∈ Z, then [de] = [d] ◦ [e], hence the above diagram implies that
Lde = Ld ◦ Le.

The rational function Ld is called the dth Lattès map associated to E. We are interested in
the dynamics of Lattès maps. The conjugacy class of Ld is determined by the isomorphism
class of E. Hence the dynamical properties of Ld are independent of our choice of model for
E over Fq. For simplicity, when we talk about Lattès maps for an elliptic curve E, we will
always mean with respect to a Weierstrass model for E as in (1). For more background on
Lattès maps and their dynamics, see Silverman [10, Chp. 6].

The following lemma characterizes the periodic points of Ld in terms of the group structure
on E.

Lemma 2.2. Let E/Fq be an elliptic curve and let Ld : P1 → P1 be the dth Lattès map
associated to E. Then a ∈ P1(Fq) is periodic under Ld if and only if there is some point
P ∈ E(Fq2) such that a = x(P ) and P has order coprime to d.

Proof. Since∞ ∈ P1(Fq) is the x-coordinate of the identity O on E(Fq) (which has order 1),
it follows from the definition of Lattès maps that

L(∞) = L(x(O)) = x(dO) = x(O) =∞.
Hence ∞ is always periodic under L.

Suppose that E has a Weierstrass equation as in (1). Then for each a ∈ Fq, the quadratic
equation

y2 + A1ay + A3y = a3 + A2a
2 + A4a+ A6,

splits completely in Fq2 . Hence every a ∈ Fq is the x-coordinate of some point on E(Fq2).
Note that since Fq2 is a finite field, E(Fq2) is a finite abelian group. Suppose that a = x(P )
where P ∈ E(Fq2) has order n. Then a is periodic under L if and only if there is some k
such that Lk(a) = a, which is equivalent to

a = Lk(a) = Lk(x(P )) = x(dkP ).

Thus dkP = ±P , hence d2kP = P , which is equivalent to d2k ≡ 1 mod n. Such an integer
k exists if and only if d is a unit modulo n, which is to say that P is a point with order
coprime to d. �

2.4. Quadratic twists. Let E be an elliptic curve over Fq. The quadratic twist of E is an
elliptic curve E ′ over Fq characterized up to isomorphism defined over Fq by the following
property: There exists an isomorphism ι : E → E ′ defined over Fq2 , and for all such
isomorphisms ι and points P ∈ E(Fq2) we have

(3) F (ι(P )) = −ι(F (P )).
If the characteristic of Fq is at least 5 and

E : y2 = x3 + Ax+B

is a reduced Weierstrass equation for E, then

E ′ : α2y2 = x3 + Ax+B

is an explicit formula for the quadratic twist E ′, where α is a primitive element of Fq2 such
that α2 ∈ Fq. An isomorphism ι : E → E ′ is given in affine coordinates by

ι(a, b) = (a, b/α).
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Note that by construction, αq = −α. Hence if P = (a, b) ∈ E(Fq2), then

F (ι(P )) = F (a, b/α) = (aq, bq/αq) = (aq,−bq/α) = −ι(F (P )).

There are similar explicit formulas for E ′ in characteristics 2 and 3, but for our purposes the
simplest way to work with quadratic twists in arbitrary characteristic is via the characteri-
zation (3). For the general theory of twists see Silverman [9, §X.2], and for quadratic twists
of elliptic curves in particular, see [9, Ex. X.2.4].

Lemma 2.3. Let E be an elliptic curve defined over Fq with quadratic twist E ′. Let A,A′ ⊆
E(Fq2) be the subgroups

A := {P ∈ E(Fq2) : F (P ) = P} = E(Fq)
A′ := {P ∈ E(Fq2) : F (P ) = −P},

where F is the Frobenius automorphism.
(1) If ι : E → E ′ is an isomorphism defined over Fq2, then the restriction of ι to A′ gives

a group isomorphism ι : A′ → E ′(Fq).
(2) #E(Fq) + #E ′(Fq) = 2(q + 1).
(3) If τ is the trace of Frobenius of E/Fq, then the trace of Frobenius for E ′/Fq is −τ .

Proof. (1) It suffices to show that ι(A′) ⊆ E ′(Fq) and ι−1(E ′(Fq)) ⊆ A′.cIf P ∈ A′, then (3)
implies

F (ι(P )) = −ι(F (P )) = −ι(−P ) = ι(P ),

hence ι(P ) ∈ E ′(Fq) by Galois theory. If Q ∈ E ′(Fq), then

F (ι−1(Q)) = −ι−1(F (Q)) = −ι−1(Q),

where the first equality is equivalent to (3) and the second equality follows from F (Q) = Q.
Hence ι−1(Q) ∈ A′.

(2) Consider the map x̃ : A t A′ → P1(Fq) from the disjoint union of A and A′ to P1(Fq)
induced by the x-coordinate projection map. We claim that x̃ is exactly 2-to-1. Since
A = E(Fq) and A′ ∼= E ′(Fq) by (1), this will imply that

#E(Fq) + #E ′(Fq) = 2#P1(Fq) = 2(q + 1).

If a ∈ P1(Fq), then as we argued in the proof of Lemma 2.2, there exists some P ∈ E(Fq2)
such that x(P ) = a. Since F (P ) is another point in E(Fq2) with x(F (P )) = aq = a, it
follows that F (P ) = ±P . Thus P ∈ A or A′, hence x̃ is surjective. If P 6= −P , then ±P
both belong to exactly one of A or A′, and these are precisely the two points in A t A′
mapping to a under x̃. If P = −P , then P is the only point on E(Fq2) with x-coordinate a.
Since P ∈ A∩A′, there are two copies of P in AtA′ and these are precisely the two points
mapping to a under x̃. Hence x̃ is exactly 2-to-1.

(3) Since #E(Fq) = q + 1− τ , it follows from (2) that

#E ′(Fq) = 2(q + 1)− (q + 1− τ) = q + 1 + τ.

Therefore the trace of Frobenius for E ′/Fq is −τ . �

We now turn to the proof of Theorem 2.1.
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Proof of Theorem 2.1. Lemma 2.2 implies that a ∈ P1(Fq) is periodic under Ld if and only
if there exists some point P ∈ E(Fq2) with order coprime to d such that a = x(P ). Let
A,A′ ⊆ E(Fq2) be the subgroups defined in Lemma 2.3. Then any point P ∈ E(Fq2) with
x(P ) ∈ P1(Fq) must belong to A ∪ A′.

Let Ad and A′d denote the subsets of A and A′, respectively, of elements with order coprime
to d. Lemma 2.3 implies that #A = #E(Fq) = q + 1− τ and #A′ = #E ′(Fq) = q + 1 + τ .
If G is a finite abelian group, then the number of elements of G with order coprime to d is
the largest factor of #G coprime to d. Hence

#A′d =
q + 1 + τ

π+
, #Ad =

q + 1− τ
π−

,

where
π± :=

∏
`|d

`v`(q+1±τ).

Suppose that A′d ∩Ad consists of r points. The involution P 7→ −P acts freely on A′d ∪Ad \
(A′d ∩ Ad) and fixes each point of A′d ∩ Ad. Thus,

#Per(Ld,Fq) = #x(A′d ∪ Ad)
= #x(A′d \ (A′d ∩ Ad)) + #x(Ad \ (A′d ∩ Ad)) + #x(A′d ∩ A′d)

=
(q + 1 + τ)/π+ − r

2
+

(q + 1− τ)/π− − r
2

+ r

=
q + 1

2

( 1

π+
+

1

π−

)
+
τ

2

( 1

π+
− 1

π−

)
.

Dividing by #P1(Fq) = q + 1 we conclude that

δ(Ld, q) :=
#Per(L,Fq)
#P1(Fq)

=
1

2

( 1

π+
+

1

π−

)
+

τ

2(q + 1)

( 1

π+
− 1

π−

)
.

Hasse proved the following bound on the trace of Frobenius,

(4) |τ | ≤ 2
√
q.

See, for example, [9, Thm. V.1.1]. Since |π−1+ − π−1− | < 1 it follows that∣∣∣δ(Ld, q)− 1

2

( 1

π+
+

1

π−

)∣∣∣ = |τ |
2

∣∣∣ 1
π+
− 1

π−

∣∣∣ < 2q1/2

2(q + 1)
=

1

q1/2 + q−1/2
. �

Example 2.4. Let E/F5 be the elliptic curve with Weierstrass equation y2 = x3 + x + 1
over F5. We quickly count the number of points in E(F5) by an exhaustive search and find

9 = #E(F5) = q + 1− τ = 5 + 1 + 3,

hence the trace of Frobenius is τ = −3. Thus q+1+ τ = 5+ 1− 3 = 3. Therefore Theorem
2.1 implies that the density of periodic points for Ld with d coprime to 5 depends only on
whether or not d is divisible by 3. In particular,

δ(Ld, 5) =

{
1 if 3 - d
1
6

if 3 | d.
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Example 2.5. Let E/F7 be the elliptic curve with Weierstrass equation y2 = x3 + x − 1
over F7. We compute

11 = #E(F7) = q + 1− τ = 7 + 1 + 3.

Hence τ = −3 and q + 1 + τ = 5. Thus Theorem 2.1 implies that the there are 4 cases for
the density of periodic points of Ld on P1(F7) with 7 - d depending on the greatest common
divisor (d, 55) of d and 55.

δ(Ld, 7) =


1 if (d, 55) = 1,
3
4

if (d, 55) = 5,
3
8

if (d, 55) = 11,
1
8

if (d, 55) = 55.

Corollary 2.6. Let E/Fq be an elliptic curve with trace of Frobenius τ . Then the dth Lattès
map associated to E induces a permutation of P1(Fq) if and only if (q + 1)2 − τ 2 is coprime
to d.

Proof. Note that Ld induces a permutation of P1(Fq) if and only if every point in P1(Fq) is
periodic. Theorem 2.1 implies that

δ(Ld, q) =
1

2

( 1

π+
+

1

π−

)
+

τ

2(q + 1)

( 1

π+
− 1

π−

)
≤ 1,

with equality achieved if and only if

1 = π± =
∏
`|d

`v`(q+1±τ),

which is equivalent to (q + 1)2 − τ 2 = (q + 1− τ)(q + 1 + τ) being coprime to d. �

Remark 2.7. Küçüksakalli [4] studied the value sets of Lattès maps associated to elliptic
curves over Fq which arise by starting with an elliptic curve with complex multiplication
(CM) by the ring of integers in an imaginary quadratic field and reducing modulo a prime
ideal π of good reduction with norm N(π) = q. Their Corollary 2.8 gives a necessary
and sufficient condition for such Lattès maps to induce permutations on P1(Fq) which is
essentially equivalent to our Corollary 2.6: Any elliptic curve E/Fq which is not supersingular
has endomorphism ring isomorphic to an order in an imaginary quadratic field [9, Thm.
V.3.1] and thus may be realized as the reduction of a CM elliptic curve defined over a
number field at a prime of good reduction. While their result is stated for elliptic curves
with CM by the full ring of integers in an imaginary quadratic field, the arguments appear
to hold in greater generality.

3. Lattès periodic density in towers

In this section we use Theorem 2.1 to prove the following result on the density of periodic
points for a fixed Lattès map in P1(Fqn) as n varies.

Theorem 3.1. Let E/Fq be an elliptic curve, let τn be the trace of Frobenius of E as an
elliptic curve over Fqn, and let d be an integer coprime to q. For each positive integer n,
there exists some N depending on q, τ1, d, n such that

lim
m→∞

m≡n mod cdN

δ(Ld, q
m) =

1

2

( 1

πn,+
+

1

πn,−

)
,
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where
πn,± :=

∏
`|d

`v`(q
n+1±τn),

the product is taken over all primes ` dividing d, c := lcm(`2 − 1 : ` | d is prime), and the
limit is taken over all positive integers m such that m ≡ n mod cdN .

Proof. Recall that the Hasse-Weil zeta function of E over Fq is the formal power series

Z(E/Fq, x) := exp
(∑
m≥1

#E(Fqm)
m

xm
)
.

The zeta function of E may be expressed as a rational function [9, Thm. V.2.4] given
explicitly by

Z(E/Fq, x) =
1− τx+ qx2

(1− x)(1− qx)
.

Let α, β be the algebraic integers such that

1− τx+ qx2 = (1− αx)(1− βx).

Then by taking a logarithm of Z(E/Fq, x) and comparing coefficients we see that

#E(Fqm) = qm + 1− αm − βm.

Thus the trace of Frobenius of E viewed as an elliptic curve over Fqm is τm = αm + βm.
Suppose ` is a prime dividing d. Let | · |` be the `-adic absolute value on Q, let Q` be

the `-adic completion of Q, and let K/Q` be a finite extension. Every unit γ ∈ K may
be expressed as γ = ζ(1 + δλ) for some root of unity ζ, some δ with |δ|` ≤ 1, and some
uniformizer λ. Furthermore the order of ζ divides `f − 1 where f is the residue degree of
K/Q` (see Koblitz[3, §III.3].) The binomial theorem implies that m 7→ (1 + δλ)m is an
`-adically continuous function of m [3, §II.2]. Hence m 7→ γm = ζm(1 + δλ)m is `-adically
continuous when restricted to m in a residue class modulo `f − 1.

Now let K := Q`(α, β) be the splitting field of 1 − τx + qx2 over Q`. Since α, β are
algebraic integers such that αβ = q and q is coprime to ` by assumption, it follows that
|q|` = |α|` = |β|` = 1. The residue degree of K/Q` is at most 2. Therefore, with n fixed, the
functions

ε+(m) := qm + 1 + αm + βm, ε−(m) := qm + 1− αm − βm

are `-adically continuous on the set of all integers m such that m ≡ n mod `2 − 1. Thus
there exists some N` depending on q, τ, ` such that m ≡ n mod (`2 − 1)`N` implies

|ε±(m)− ε±(n)|` < |ε±(n)|`.

The ultrametric property of | · |` implies that |ε±(m)|` = |ε±(n)|` for all such m. This is
equivalent to

v`(q
m + 1± τm) = v`(q

n + 1± τn).
Let N := max`|dN` and let c : lcm(`2 − 1 : ` | d is prime). Hence if m ≡ n mod cdN , then

m ≡ n mod (`2 − 1)`N` for each prime ` | d. Therefore, Theorem 2.1 implies that for any
such m, ∣∣∣δ(Ld, qm)− 1

2

( 1

πn,+
+

1

πn,−

)∣∣∣ < 1

qm/2 + q−m/2
.
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We conclude that
lim
m→∞

m≡n mod cdN

δ(Ld, q
m) =

1

2

( 1

πn,+
+

1

πn,−

)
. �

4. Lattès periodic densities when τ = 0

In this section we consider a special family of elliptic curves where the periodic density
in P1(Fqn) of L`, with ` prime, may be computed in terms of the `-adic valuation of n and
qe − 1, where e is the multiplicative order of q modulo `.

Theorem 4.1. Let E/Fq be an elliptic curve with trace of Frobenius τ = 0. If ` > 2
is a prime not dividing q and e is the multiplicative order of q modulo `, then set wn :=
v`(q

e − 1) + v`(n). Then

δ(L`, q
n) =


`−wn if n is odd, e | 2n, and e - n,
1
2
(1 + `−2wn) + ε

qn/2+q−n/2 (1− `−2wn) if n is even and e | n,
1 otherwise,

where ε is a sign determined by

ε =

{
+1 if n ≡ 2 mod 4 and e - n/2, or n ≡ 0 mod 4 and e | n/2,
−1 if n ≡ 2 mod 4 and e | n/2, or n ≡ 0 mod 4 and e - n/2.

Hence if e does not divide 2n, then L` induces a permutation on P1(Fqn).

Remark 4.2. Recall that if Fq has characteristic p, then an elliptic curve E over Fq is said
to be supersingular if τ is divisible by p. Supersingular elliptic curves have many exceptional
properties, see Silverman [9, §V.3]. In particular, if τ = 0, then E must be supersingular. On
the other hand, if E is supersingular and q = p ≥ 5, then the Hasse bound |τ | ≤ 2

√
p implies

that τ = 0. Thus Theorem 4.1 applies to all Lattès maps L` associated to supersingular
elliptic curves over Fp when p ≥ 5.

Lemma 4.3. Suppose that q ∈ Q` is an element such that v`(q − 1) > 1
`−1 . Then

v`(q
n − 1) = v`(q − 1) + v`(n).

In particular, this holds when q is an integer such that q ≡ 1 mod `.

Proof. Let ζn denote a primitive nth root of unity. Recall that

|N(1− ζn)| =

{
p if n = pk for some prime p and k ≥ 1,
1 if n is not a prime power,

where N : Q(ζn)→ Q is the norm function (see, for example, Lang [5, Chp. IV, §1].) Recall
that the degree of the field extension Q(ζ`m)/Q is ϕ(`m) := `m − `m−1. Thus if n is coprime
to `, then v`(1− ζkn) = 0 for all k 6≡ 0 mod n, and

v`(1− ζk`m) =
1

[Q(ζ`m) : Q]
v`(N(1− ζk`m)) =

1

ϕ(`m)
v`(N(1− ζ`m)) =

1

ϕ(`m)
,

for any k 6≡ 0 mod `. Thus, v`(1− ζkn) ≤ 1
`−1 for all k 6≡ 0 mod n and for all m ≥ 1,∑

k∈(Z/(`m))×

v`(1− ζk`m) = 1.
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If n ≥ 1, the factorization qn − 1 =
∏n−1

k=0(q − ζkn) implies that

v`(q
n − 1)− v`(q − 1) =

n−1∑
k=1

v`(q − ζkn) =
n−1∑
k=1

min(v`(q − 1), v`(1− ζkn)) =
n−1∑
k=1

v`(1− ζkn),

where the second and third equalities follow from our assumption that v`(q − 1) > 1
`−1 ≥

v`(1 − ζkn). Observe that each ζkn has a unique expression as ζjd where d | n and j is a unit
modulo d. Thus, if v`(n) = m, then

v`(q
n − 1)− v`(q − 1) =

∑
d|n

∑
j∈(Z/(d))×

v`(1− ζjd) =
m∑
i=1

∑
j∈(Z/(`i))×

v`(1− ζj`i) = m. �

Proof of Theorem 4.1. Let E be an elliptic curve over Fq with τ = 0. Let τn be the trace of
Frobenius of E over Fqn . Then as discussed in the proof of Theorem 3.1, we have τn = αn+βn

where
(1− αx)(1− βx) = 1− τx+ qx2 = 1− qx2.

Hence α, β = ±i√q and

τn = (in + (−i)n)qn/2 =

{
0 if n is odd,

2(−1)n/2qn/2 if n is even.

Therefore,

qn + 1± τn =

{
qn + 1 if n is odd,
(qn/2 ± (−1)n/2)2 if n is even.

If n is odd, then Theorem 2.1 implies that

δ(L`,Fqn) =
1

2

(
`−v`(q

n+1+τn) + `−v`(q
n+1−τn)

)
+

τn
qn + 1

(
`−v`(q

n+1+τn) − `−v`(qn+1−τn)
)

= `−v`(q
n+1).

Since ` > 2 and (qn+1)+(qn−1) = 2qn, at most one of v`(qn+1) and v`(qn−1) is positive.
Note that

v`(q
n + 1) + v`(q

n − 1) = v`(q
2n − 1),

and v`(q2n − 1) > 0 if and only if e | 2n. Similarly, v`(qn − 1) > 0 if and only if e | n. Hence
v`(q

n + 1) > 0 is equivalent to e | 2n and e - n. In that case Lemma 4.3 implies that

v`(q
n + 1) = v`(q

2n − 1)− v`(qn − 1)

= v`(q
2n − 1)

= v`(q
e − 1) + v`(2n/e)

= v`(q
e − 1) + v`(n)

= wn.

The fourth equality follows from the fact that e is a divisor of ϕ(`) = `− 1, hence v`(e) = 0.
Therefore, if n is odd,

δ(L`, q
n) =

{
`−wn if e | 2n and e - n,
1 otherwise.
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Next suppose that n is even. Then by Theorem 2.1,

δ(L`, q
n) =

1

2

(
`−2a

+
n + `−2a

−
n

)
+

(−1)n/2

qn/2 + q−n/2

(
`−2a

+
n − `−2a

−
n

)
,

where a±n = v`(q
n/2 ± (−1)n/2). Since

(qn/2 − (−1)n/2) + (qn/2 + (−1)n/2) = 2qn/2,

and ` > 2 by assumption, it follows that at most one of a±n is positive. Then

a+n + a−n = v`(q
n − 1)

is positive if and only if e | n. Suppose that e | n. Lemma 4.3 implies that

v`(q
n − 1) = v`(q

e − 1) + v`(n/e) = wn.

Furthermore, we have v`(qn/2 − 1) > 0 if and only if e | n/2, hence v`(qn/2 + 1) > 0 if and
only if e - n/2. Putting it all together, for n even and e | n we have

δ(L`, q
n) =

1

2

(
1 + `−2wn

)
+

ε

qn/2 + q−n/2

(
1− `−2wn

)
,

where

ε =

{
+1 if n ≡ 2 mod 4 and e - n/2, or n ≡ 0 mod 4 and e | n/2,
−1 if n ≡ 2 mod 4 and e | n/2, or n ≡ 0 mod 4 and e - n/2.

In all other cases, δ(L`, qn) = 1. For example, this holds when e does not divide 2n. �
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