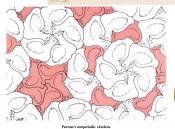
What is Aperiodic Order? Some examples.

Natalie P. FRANK 1

¹Department of Mathematics and Statistics, Vassar College, Poughkeepsie, NY

Mini Summer School on Aperiodic Order Macewan University, July 25, 2025.

- 1 Introduction
- 2 Symbolic and tiling dynamical systems, briefly
- 3 Substitution constructions
 - 1. Symbolic substitutions
 - 2. One-dimensional self-similar tilings
 - 3. Direct Products and DPVs
 - 4. Self-similar tilings
 - 5. Pseudo-self-similar tilings
 - 6: Digit substitutions in \mathbb{Z}^d



What I hope to accomplish

The field of Aperiodic Order is highly multidisciplinary, with many sides to every coin. I'll talk about

- The kinds of objects we tend to consider
- The spaces they tend to occupy, and
- How to construct some of your own examples using "substitution".
- I hope this provides an overall perspective and base of examples for the rest of the talks here.

In order to understand aperiodic things, we should understand periodic things first.

Periodic sequences

For $j \in \mathbb{Z}$, let

$$\mathbf{x}(j) = \begin{cases} a & j \text{ even} \\ b & j \text{ odd} \end{cases}$$

We use the decimal point to designate the j = 0 entry.

$$\mathbf{x} = \cdots ababab.ababab \cdots$$

Applying the "shift operator" to move one unit to the left:

$$\mathbf{x} - 1 = \cdots abababa.babab \cdots$$

Applying the shift operator again:

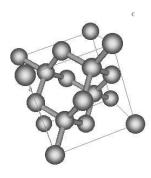
$$\mathbf{x} - 2 = \cdots abababab.abab \cdots = \mathbf{x}$$

 \Rightarrow Period 2

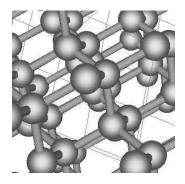
Periodic tilings

There is a lattice of translations under which the horsemen are invariant.

Crystalline Structure



The unit cell of a diamond. Each atom forms a perfect tetrahedron with four of its neighbors.



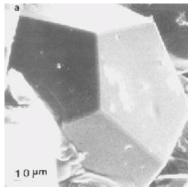
The diamond's atomic structure is composed of translations of the unit cell along coordinate axes.

The Crystallographic Restriction

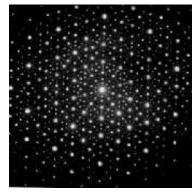
"Rotational symmetry of order *greater than six*, and also *five-fold* rotational symmetry, are impossible for a periodic pattern in the plane or in three-dimensional space."

Quasicrystals and Geometry, page 7
Marjorie Senechal

Discovery of Quasicrystals

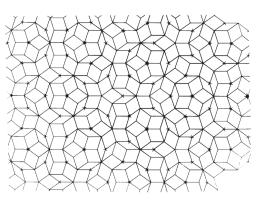


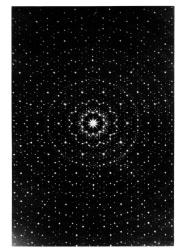
Single grain of icosahedral Al–Pd–Mn phase source: A. P. Tsai



Diffraction image of Al6Mn www.ph.melb.edu.au/diffraction/image/fivefold.html

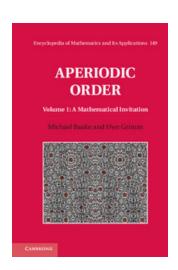
Alan Mackay's 1982 optical diffraction of Penrose tilings





Defining Aperiodic Order

"Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry in 2011. The underlying mathematics, known as the theory of Aperiodic Order, ..."



- 1 Introduction
- 2 Symbolic and tiling dynamical systems, briefly
- 3 Substitution constructions
 - 1. Symbolic substitutions
 - 2. One-dimensional self-similar tilings
 - 3. Direct Products and DPVs
 - 4. Self-similar tilings
 - 5. Pseudo-self-similar tilings
 - 6: Digit substitutions in \mathbb{Z}^d

Whirlwind review of symbolic dynamical systems

- \blacksquare $\mathcal{A} = \text{some finite set} = alphabet.$
- sequence $\mathbf{x} : \mathbb{Z} \to \mathcal{A}$ (I'm doing two-sided today)
- Master space: the set of all sequences is denoted $A^{\mathbb{Z}}$.
- We study "subshifts" $\mathbb{X} \subset \mathcal{A}^{\mathbb{Z}}$ satisfying:
 - \blacksquare X is invariant under the action of the shift, and
 - ${\bf 2}$ X is closed in an appropriate metric topology

Three subshifts to ponder

Example

If
$$\mathbf{x}_1 = ...0101.0101...$$
 and $\mathbf{x}_2 = ...1010.1010...$,

then $\mathbb{X} = \{\mathbf{x}_1, \mathbf{x}_2\}$ is a subshift.

Example

The space \mathbb{X} of all sequences of 0s and 1s with no consecutive ones is a subshift.

Example

Let \mathbf{x} be a sequence with a 1 at the origin and 0s elsewhere, and let \mathbb{X} be the smallest subshift containing \mathbf{x} .

■ Metric (a "big ball" metric)

$$N({f x},{f y})=\min\{n\geq 0 ext{ such that } {f x}(j)
eq {f y}(j) ext{ for some } |j|=n\}$$

$$d({f x},{f y})=\exp(-N({f x},{f y}))$$

Idea: \mathbf{x} and \mathbf{y} are close if they agree on a large ball centered at the origin.

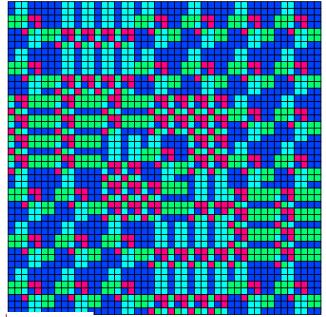
Sequences in \mathbb{Z}^d

- (Multidimensional) sequence \mathbf{x} : $\mathbb{Z}^d \to \mathcal{A}$, where $\mathbf{x}(i_1, i_2, \dots, i_d) \in \mathcal{A}$.
 - \blacksquare Imagine coloring all the dots in \mathbb{Z}^d with one of $|\mathcal{A}|$ colors.
 - Or, use colored *d*-cubes centered at the dots.
- Master space: $\mathcal{A}^{\mathbb{Z}^d}$ is the set of all sequences in \mathbb{Z}^d (the "full shift")
- Shift **x** by \vec{j} to get $\mathbf{x} \vec{j} \in \mathcal{A}^{\mathbb{Z}^d}$

$$(\mathbf{x} - \vec{j})(\vec{k}) = \mathbf{x}(\vec{k} + \vec{j})$$

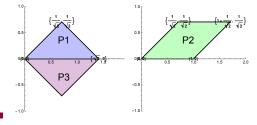
■ $(A^{\mathbb{Z}^d}, \mathbb{Z}^d)$ is the *full shift*; a closed translation-invariant subset \mathbb{X} is a *subshift*

Often we visualize \mathbb{Z}^2 sequences as tilings...



Tilings from an 'alphabet' of prototiles

- A *prototile p* is a nice compact subset of \mathbb{R}^d , possibly labelled. The subset is called the "support" of p.
- A finite set \mathcal{P} of prototiles will act as our alphabet.

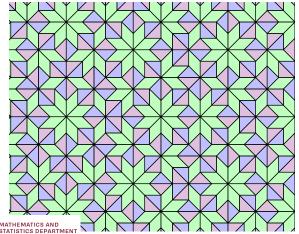


- *Tiles* (or \mathcal{P} -tiles) are translated copies of prototiles $p \in \mathcal{P}$, we may write $t = p \vec{v}$, where $\vec{v} \in \mathbb{R}^d$.
- To make a tiling, we 'cover' and 'pack' \mathbb{R}^d with \mathcal{P} -tiles.

Definition

A P-tiling or just tiling is a countably infinite set of P-tiles $\mathcal{T} = \{t_i \mid i \in \mathbb{Z}\}$ such that

- II If $i \neq j$, t_i and t_j intersect at most on their boundaries
- **2** Supports of the t_i s cover all of \mathbb{R}^d



The action of translation

We have

$$\mathcal{T} = \{t_i \, | \, i \in \mathbb{Z}\}$$

 $\mathbf{T} - \vec{v}$ is the new tiling

$$\mathcal{T} - \vec{v} = \{t_i - \vec{v} \mid t_i \in \mathcal{T}\}.$$

- Note the origin in $\mathcal{T} \vec{v}$ corresponds to \vec{v} in \mathcal{T}
- \mathcal{T} is *nonperiodic* if there is no $\vec{v} \neq 0$ for which $\mathcal{T} \vec{v} = \mathcal{T}$
 - If d > 1, \mathcal{T} can be periodic but not *fully periodic*, if the directions of periodicity do not form a basis for \mathbb{R}^d .

Tiling spaces

- Master space: X_P = the space of all P-tilings
 - Note: Elements of $\mathcal{A}^{\mathbb{Z}}$ are infinite sequences, likewise elements of $\mathbb{X}_{\mathcal{P}}$ are infinite tilings of \mathbb{R}^d .
- A tiling space X is a closed, translation-invariant subset of X_{P} .
- We write (X, \mathbb{R}^d) for the dynamical system under the action of translation
- In Aperiodic Order you'll typically see
 - The "hull" X_T of a tiling T, or
 - The set of all tilings made of specified patches.

Dynamical Systems for Aperiodic Order TLDR:

- \blacksquare We define a space \mathbb{X} that is invariant under translation.
 - We require the elements of \mathbb{X} to be locally identical to one another, like crystals formed on different days.
- We have a "big ball" metric that says how similar two elements of the space are, at least near the origin.
- The action of translation and the big ball metric work together allow us to pull disparate regions of an object 'into view' at the origin.
- Periodic objects are invariant under nontrivial translations, i.e. there's some $\vec{v} \neq 0$ such that

$$T - \vec{v} = T$$
.

- 1 Introduction
- 2 Symbolic and tiling dynamical systems, briefly
- 3 Substitution constructions
 - 1. Symbolic substitutions
 - 2. One-dimensional self-similar tilings
 - 3. Direct Products and DPVs
 - 4. Self-similar tilings
 - 5. Pseudo-self-similar tilings
 - 6: Digit substitutions in \mathbb{Z}^d

- 1 Introduction
- 2 Symbolic and tiling dynamical systems, briefly
- 3 Substitution constructions
 - 1. Symbolic substitutions
 - 2. One-dimensional self-similar tilings
 - 3. Direct Products and DPVs
 - 4. Self-similar tilings
 - 5. Pseudo-self-similar tilings
 - 6: Digit substitutions in \mathbb{Z}^d

Symbolic substitutions

Definition

A substitution is a map $S: A \to A^+$, where A^+ is the set of non-empty words on \mathcal{A} .

(A constant-length substitution.) Let S(a) = abb and S(b) = aaa.

Definition

If $w = a_1...a_k \in \mathcal{A}^+$, then $S(w) = S(a_1)...S(a_k)$. In particular An *n-superword* is a word of the form $S^n(a)$ for some $a \in A$.

(A constant-length substitution, superwords.)

 $a \rightarrow abb \rightarrow abb$ aaa aaa $\rightarrow abb$ aaa aaa abb abb abb abb abb abb

Example

(Non-constant length) Let S(a) = abbb and S(b) = a.

$$b \rightarrow a \rightarrow abbb \rightarrow abbb$$
 a a $a \rightarrow abbb$ a a a a abbb abbb abbb $\rightarrow \cdots$,

The subshift associated to the substitution S

Definition

 $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$ is said to be admitted by S if every subword of \mathbf{x} is a subword of $S^n(a)$ for some n and a. The substitution subshift $\mathbb{X}_S \subset \mathcal{A}^{\mathbb{Z}}$ is defined to be

$$\mathbb{X}_S = \{ \mathbf{x} \in \mathcal{A}^{\mathbb{Z}} \text{ such that } \mathbf{x} \text{ is admitted by } S \}.$$

- We are using the set of superwords $S^n(a)$ as a sort of "language" for X_S .
- It is clear that X_S is a shift-invariant subset of A^Z

Example

For our constant length example the superwords are:

 $a, b, abb, aaa, abbaaaaaa, abbabbabb, abbaaaaaaabbaabaabbabbabbabb, abbaaaaaaabbaaaaaaabbaaaaaaa, . . . If <math>\mathbf{x}$ is admitted by S, then we expect it to look locally like these words.

Conclusion: The dynamical system (X_S, \mathbb{Z}) is ready for study.

Properties commonly found in substitution subshifts

- Under mild conditions they display aperiodic order in this sense:
 - If a word appears in $\mathbf{x} \in \mathbb{X}$, then it appears elsewhere in \mathbf{x} and in all other elements of \mathbb{X} with "bounded gaps"
- Most substitutions do not have any periodic elements in their subshifts.

- 1 Introduction
- 2 Symbolic and tiling dynamical systems, briefly
- 3 Substitution constructions
 - 1. Symbolic substitutions
 - 2. One-dimensional self-similar tilings
 - 3. Direct Products and DPVs
 - 4. Self-similar tilings
 - 5. Pseudo-self-similar tilings
 - 6: Digit substitutions in \mathbb{Z}^d

1D self-similar tilings from substitutions

Example

$$S(a) = abbb$$
 and $S(b) = a$

■ Define interval prototiles $t_a = [0, |t_a|]$ and $t_b = [0, |t_b|]$

$$\mathcal{P}=\{t_a,t_b\}.$$

- We define a tile substitution S:
 - $S(t_a)$ is the tile t_a followed by 3 copies of t_b .
 - lacksquare $\mathcal{S}(t_b)$ is just t_a .
- The lengths of the supertiles are $|S(t_a)| = |t_a| + 3|t_b|$ and $|S(t_b)| = |t_a|$.
- The ideal situation would be if there was an *inflation factor* $\lambda > 1$ such that $|S(t_a)| = \lambda |t_a|$ and $|S(t_b)| = \lambda |t_b|$.

Solving for 'natural' tile lengths

If we know

$$|\mathcal{S}(t_a)| = |t_a| + 3|t_b|$$
 $|\mathcal{S}(t_b)| = |t_a|$

and we want

$$|\mathcal{S}(t_a)| = \lambda |t_a|$$
 $|\mathcal{S}(t_b)| = \lambda |t_b|$

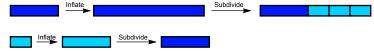
we quickly see that λ must satisfy $3 = \lambda^2 - \lambda$. So we can let

$$\lambda = \frac{1 + \sqrt{13}}{2}, \quad |t_a| = \lambda, \quad |t_b| = 1.$$

(In general this process boils down to a quick eigenvalue/eigenvector computation on an easily obtained "substitution matrix".)

Inflate-and-subdivide rule

The symbolic substitution becomes a tiling *inflate-and-subdivide* rule:



Extend $\mathcal S$ to be a map on $\mathbb X_{\mathcal P}$ as follows

- Let $\mathcal{T} \in \mathbb{X}_{\mathcal{P}}$ be a tiling and let $t \in \mathcal{T}$ be any tile
- S(t) = patch given by the substitution of the prototile of t, translated so that it occupies the set $\lambda \operatorname{supp}(t)$
- lacksquare Apply ${\mathcal S}$ to all tiles in ${\mathcal T}$ simultaneously to get ${\mathcal S}({\mathcal T})$

$$S(T) = \bigcup_{t \in T} S(t)$$

If S(T) = T, then T is called a *self-similar tiling*.

Self-similar tiling for our example

Part of a self-similar tiling for our example:

Suppose the origin is at the far left, so $\lambda(\mathcal{T})$ looks like:

When you subdivide this to compute
$$S(T)$$
, you once again get

when you subdivide this to compute S(T), you once again ge

$$\mathcal{S}(\mathcal{T}) = \mathcal{T}$$
, so \mathcal{T} is self-similar.

The "hull" of ${\mathcal T}$

 $\mathbb{X}_{\mathcal{T}}=$ the smallest closed, translation-invariant subset of $\mathbb{X}_{\mathcal{P}}$ containing $\mathcal{T}.$

- 1 Introduction
- 2 Symbolic and tiling dynamical systems, briefly
- 3 Substitution constructions
 - 1. Symbolic substitutions
 - 2. One-dimensional self-similar tilings
 - 3. Direct Products and DPVs
 - 4. Self-similar tilings
 - 5. Pseudo-self-similar tilings
 - 6: Digit substitutions in \mathbb{Z}^d

A direct product substitution

$$S(a) = abb, S(b) = aa$$

$$\mathcal{P} = \mathcal{A} \times \mathcal{A} = \{(a, a), (a, b), (b, a), (b, b)\}$$

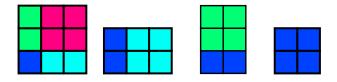
$$\mathcal{S}((a,a)) = \begin{matrix} (a,b) & (b,b) & (b,b) \\ (a,b) & (b,b) & (b,b), \\ (a,a) & (b,a) & (b,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (b,a) & (b,a) \\ (a,a) & (b,a) & (b,a) \end{matrix} \qquad \mathcal{S}((b,a)) = \begin{matrix} (a,b) & (a,b) \\ (a,a) & (a,b) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((b,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,a)) \qquad \mathcal{S}((a,b)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,a)) \qquad \mathcal{S}((a,a)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,a)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,a)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,a)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,a)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{matrix} \qquad \mathcal{S}((a,a)) = \begin{matrix} (a,a) & (a,a) \\ (a,a) & (a,$$

Substitute the first coordinate horizontally and the second coordinate vertically.

Direct product tiling

$$\mathcal{P} = \{(a, a), (a, b), (b, a), (b, b)\} =$$

and the 1-supertiles look like



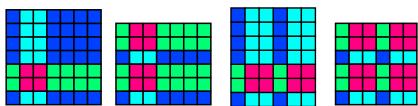
1-D subs for reference:

$$S(a) = abb, S(b) = aa$$

Template for DP concatenation

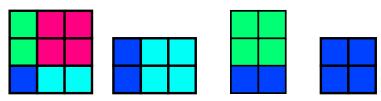
$P_n(b)$	$P_n(d)$	$P_n(d)$				P _n (b)	P _n (b)		
$P_n(b)$	$P_n(d)$	$P_n(d)$	$P_n(a)$	$P_n(c)$	$P_n(c)$	P _n (b)	$P_n(b)$	$P_n(a)$	$P_n(a)$
P _n (a)	P(c)	P(c)	P _n (a)	P(c)	P(c)	P _n (a)	P _n (a)	P _n (a)	$P_n(a)$

The 2-supertiles come out to be

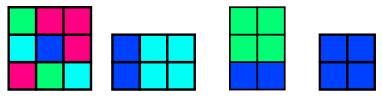


DP Variations: breaking the direct product structure

Start with the direct product:



The tile on the left has been carefully rearranged:



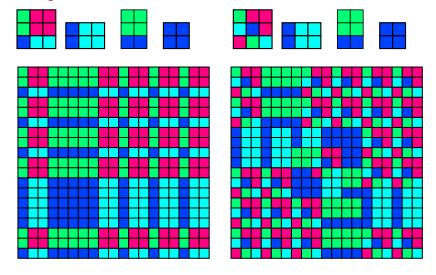
Template for DPV concatenation

P _n (b)	$P_n(d)$	$P_n(d)$				P _n (b)	$P_n(b)$		
P(c)	$P_n(a)$	$P_n(d)$	$P_n(a)$	$P_n(c)$	$P_n(c)$	P _n (b)	$P_n(b)$	$P_n(a)$	$P_n(a)$
$P_n(d)$		P _n (c)	P _n (a)	$P_n(c)$	P _n (c)	P _n (a)	P _n (a)	P _n (a)	$P_n(a)$

The 2-supertiles come out to be



A comparison of the DP and DPV



Tiling space construction

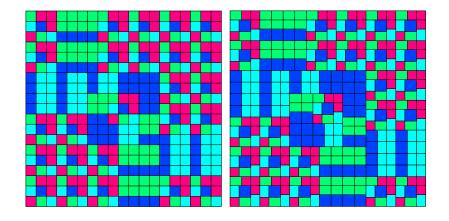
Consider the set of all possible supertiles

$$\mathcal{R}_{\mathcal{S}} = \{ S^n(a) \mid a \in \mathcal{A} \text{ and } n \in \mathbb{N} \}$$

We say that $\mathcal{T} \in \mathbb{X}_{\mathcal{P}}$ is *admitted* by \mathcal{S} if every patch in \mathcal{T} is translation-equivalent to a subpatch of an element of \mathcal{S} .

The tiling space $\mathbb{X}_{\mathcal{S}}$ is the set of all admitted tilings.

'Natural' tile shapes \Rightarrow infinite local complexity

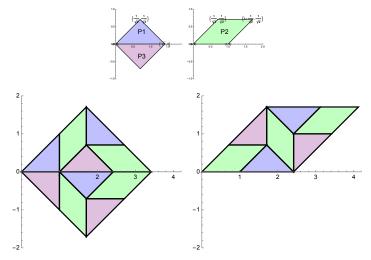


- 1 Introduction
- 2 Symbolic and tiling dynamical systems, briefly

3 Substitution constructions

- 1. Symbolic substitutions
- 2. One-dimensional self-similar tilings
- 3. Direct Products and DPVs
- 4. Self-similar tilings
- 5. Pseudo-self-similar tilings
- 6: Digit substitutions in \mathbb{Z}^d

A famous inflate-and-subdivide rule.



('Octagonal' or 'Ammann-Beenker' tiling; expansion factor is $1 + \sqrt{2}$.)

Self-similar tilings

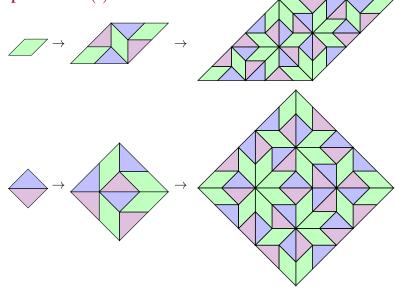
Definition

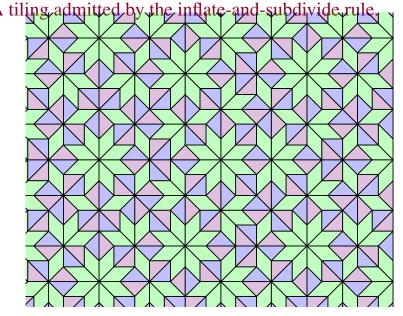
Let \mathcal{P} be a prototile set in \mathbb{R}^d and let ϕ be an expanding linear similarity of \mathbb{R}^d . A function $S: \mathcal{P} \to \mathcal{P}^*$ is called an *inflate-and-subdivide rule with inflation map* ϕ if for every $p \in \mathcal{P}$,

$$\phi(\operatorname{supp}(p)) = \operatorname{supp}(\mathcal{S}(p)).$$

Expanded support of p = Union of supports of its subtiles

Supertiles $S^n(t)$





Tiling self-similarity

We can extend *S* to tiles, patches, and tilings:

■ If $t = p - \vec{v}$ for $p \in \mathcal{P}$ and $\vec{v} \in \mathbb{R}^d$ we define

$$S(t) := S(p) - \phi(\vec{v})$$

 \blacksquare \mathcal{T} tiling:

$$S(\mathcal{T}) = \bigcup_{t \in \mathcal{T}} S(t)$$

A tiling \mathcal{T} is said to be **self-similar** if $\mathcal{S}(\mathcal{T}) = \mathcal{T}$.

- 1 Introduction
- 2 Symbolic and tiling dynamical systems, briefly

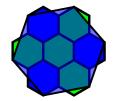
3 Substitution constructions

- 1. Symbolic substitutions
- 2. One-dimensional self-similar tilings
- 3. Direct Products and DPVs
- 4. Self-similar tilings
- 5. Pseudo-self-similar tilings
- 6: Digit substitutions in \mathbb{Z}^d

$$\phi = \begin{pmatrix} \frac{5/2}{-\sqrt{3}/2} & \frac{\sqrt{3}/2}{5/2} \end{pmatrix}$$

$$\phi = \begin{pmatrix} \frac{5/2}{-\sqrt{3}/2} & \frac{\sqrt{3}/2}{5/2} \end{pmatrix}$$

An inflate-and-replace rule for a hexagonal pseudo-self-similar tiling.



The 'local derivation rule' taking $\phi(\mathcal{P})\text{-tiles}$ back to $\mathcal{P}\text{-patches}.$

Pseudo-self-similar tilings

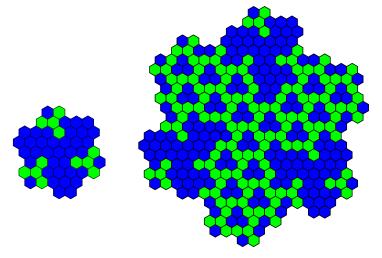
Definition

Let \mathcal{P} be a finite prototile set in \mathbb{R}^d and let $\phi: \mathbb{R}^d \to \mathbb{R}^d$ be an expanding linear similarity. We say a tiling $\mathcal{T} \in \mathbb{X}_{\mathcal{P}}$ is *pseudo-self-similar with expansion* ϕ if \mathcal{T} is locally derivable from $\phi(\mathcal{T})$.

Note: $\phi(\mathcal{T}) = \{\phi(t) | t \in \mathcal{T}\}$ is a tiling made of inflated \mathcal{P} -tiles.

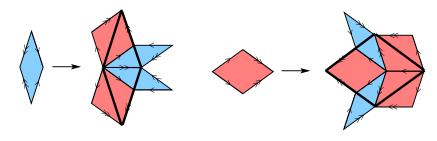
The local derivation rules tell you how to *replace* the *inflated* tiles with tiles from the original scale..

Use your supertiles to define a language for a tiling space



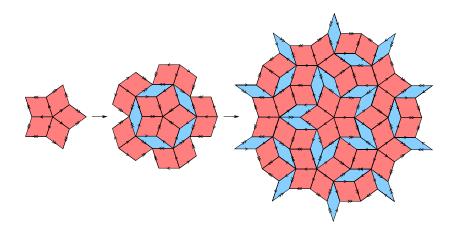
2- and 3-supertiles for the blue prototile.

A particularly famous pseudo-self-similar tiling



The Penrose rhombuses!

A particularly famous pseudo-self-similar tiling



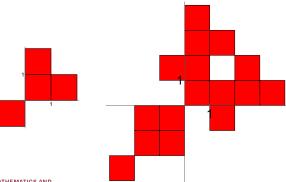
- 1 Introduction
- 2 Symbolic and tiling dynamical systems, briefly

3 Substitution constructions

- 1. Symbolic substitutions
- 2. One-dimensional self-similar tilings
- 3. Direct Products and DPVs
- 4. Self-similar tilings
- 5. Pseudo-self-similar tilings
- 6: Digit substitutions in \mathbb{Z}^d

Example of a digit system
$$Q = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad \mathcal{D} = \{(0,0), (1,0), (0,1), (-1,-1)\}.$$

$$\begin{split} \mathcal{QD} + \mathcal{D} &= \{(0,0), (1,0), (0,1), (-1,-1), \\ &(2,0), (3,0), (2,1), (1,-1) \\ &(0,2), (1,2), (0,3), (-1,1) \\ &(-2,-2), (-1,-2), (-2,-1), (-3,-3)\} \end{split}$$



Digit systems: the underlying 'shape'

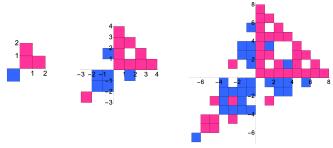
- expansive endomorphism Q of \mathbb{Z}^m
- lacktriangle complete set $\mathcal D$ of coset representatives of $\mathbb Z^m/Q\mathbb Z^m$ called a *digit set*
- Iterate: $\mathcal{D}^{(k)} = Q\mathcal{D}^{(k-1)} + \mathcal{D}$

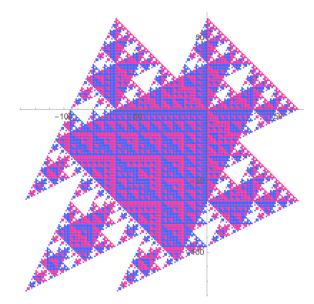
Digit substitutions

- Let (Q, \mathcal{D}) be a digit system and let \mathcal{A} be the *alphabet*.
- Let $\mathcal{A}^{\mathcal{D}}$ be the set of finite words over \mathcal{A} whose support is \mathcal{D} .
- A *digit substitution* is a map $S : A \to A^D$.
- The *n-supertiles* are defined recursively as $S^{n+1}(\mathbf{a}) = \bigcup_{\vec{d} \in \mathcal{D}} S^n(\mathcal{S}_{\vec{d}}(\mathbf{a})) + Q^n(\vec{d}).$

$$Q = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad \mathcal{D} = \{(0,0), (1,0), (0,1), (-1,-1)\}$$
$$\mathcal{A} = \{\mathbf{a}, \mathbf{b}\}.$$

- Let S(a) take the four digits to a, a, a and b respectively
- Let S(b) take the digits to b, b, b, and a, the opposite of S(a). (This type of substitution is called *bijective*).

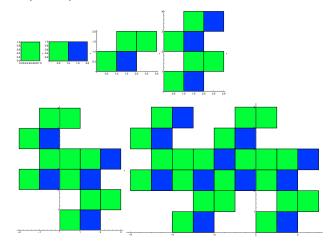




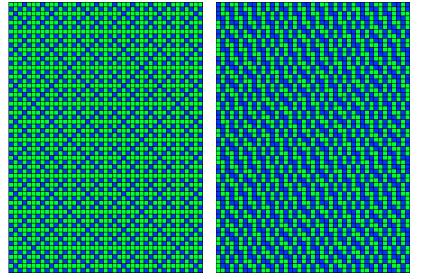
A 2×2 block substituted many times contains a large contiguous region.

Substitutions based on the "twindragon" fractal

$$Q = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \quad \mathcal{D} = \{(0,0), (1,0)\}, \quad S(a) = ab, S(b) = aa.$$



Comparing the PDdragon and TMdragon



References

- ★ Michael Baake and Uwe Grimm, *Aperiodic Order. Vol. 1: A Mathematical Invitation*, Cambridge Univ. Press, Cambridge, 2013.
- ★ N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics, and Combinatorics, *Lecture Notes in Mathematics* **1794**, Springer-Verlag, Heidelberg, 2002.
- ★ Dirk Frettlöh, More Inflation Tilings. In: Baake M, Grimm U, eds. Aperiodic Order. Vol 2: Crystallography and Almost Periodicity. Encyclopedia of Mathematics and its Applications. Cambridge University Press; 2017:1-38.
- ★ B. Grünbaum and G. C. Shephard, *Tilings and Patterns*, W. H. Freeman and Co., New York, 1987.
- ★ Marjorie Senechal, *Quasicrystals and Geometry*, Cambridge University Press, 1995.