# Approaches to the study of substitutive quasicrystals

Natalie P. Frank

Vassar College Department of Mathematics and Statistics

U. Sao Paulo, March 15, 2023

#### Historical introduction

Fundamental approach to aperiodic systems (for today's talk) Making aperiodic order using 'substitution' processes The "hull": a dynamical systems approach

Matrices and the information they carry Beginning bookkeeping: The substitution matrix Intermediate bookkeeping: The digit matrix

Renormalization approach to diffraction analysis A whirlwind review of mathematical diffraction theory Advanced bookkeeping: the Fourier matrix

#### Setting

- ▶ Our objects: a class of aperiodic tilings of Euclidean space
- These tilings display hierarchical structure that is highly ordered yet not periodic.
- The way we study them originates in fields as disparate as logic, geometry, and chemistry.
- ▶ I offer a story from each field for motivation.

# Story 1 (Logic): The domino problem

- Imagine square tiles whose edges come in given combinations of labelfs.
- You are only allowed to put two tiles next to each other if the edge labels match.



Figure: Jeandel and Rao's aperiodic set (2019).

▶ Immediate question: Can you make an infinite tiling of the plane with these tiles? (That's the "domino problem".)

# Story 1 (Logic): The domino problem



Figure: Jeandel and Rao's aperiodic set (2019).

Deep question: can you make a Turing machine that answers that question for any finite tile set?

This is the question logician Hao Wang was considering in 1961 [Wang].

# Undecidability of the domino problem

- Can you make a machine that answers that question for any finite tile set?
- ▶ The answer depended on whether an *aperiodic prototile set* exists, i.e. a set of tiles that can tile the plane, but only nonperiodicaly.
- ▶ In 1966 Wang's student Rober Berger found an aperiodic set of tiles with over 20000 tiles.
- In 1971 Raphael Robinson published an aperiodic set with only 6 tiles.

## Robinson's aperiodic tile set



## Robinson's aperiodic tile set



# Story 2 (Geometry): Penrose's aperiodic set of two tiles

- Roger Penrose began to develop an interest in tiling questions in part because of Hilbert's Problem 18.
- Also he (and his father) began a collaboration with M. C. Esher.
- Penrose was trying to create a hierarchical tiling and found his original tiling by experimentation.
- He succeeded! There are several equivalent versions of Penrose tilings.
- I recommend Penrose's foreword to Baake/Grimm's
   Aperiodic Order for his telling of the history.



Natalie P. Frank Substitution tilings

Vassar College



Story 3 (Chemistry): Physical quasicrystals

#### The 2011 Nobel Prize in Chemistry



#### Daniel Shechtman



#### "For the discovery of quasicrystals"

- Shechtman's colleague at U.S. NIST made an aluminum-magnesium alloy
- Shechtman did a diffraction analysis and found contradictory properties
  - it had bright spots indicative of a periodic (crystal) atomic structure
  - ▶ had symmetries impossible for such a structure

# Original diffraction image



FIG. 2. Selected-area electron diffraction patterns taken from a single grain of the icosahedral phase. Rotations match those in Fig. 1.

## Shechtman's original notebook

|                                                 | 1                     |      |                     |
|-------------------------------------------------|-----------------------|------|---------------------|
| istantes are                                    | PITI                  | 1720 | 510                 |
| 1 1                                             | art                   | 1251 | SAD                 |
|                                                 | 2157                  | 1722 | 254                 |
| 17 26                                           | 1717                  | 1123 | 1710                |
| EL 12                                           | 810                   | 1724 | 9 36k               |
| - 1127                                          | 17(9                  | 1725 | + SAD (10 Fold ???) |
| :                                               | 1. 1. 1. 1.           | 1126 | 1 36k DF            |
| 0;*                                             |                       | 1727 | 1 36k Of            |
| • • 172 \$                                      | S 1001                | 128  | \$346 DF            |
|                                                 |                       | 1729 | 1-366 DE            |
| 1121                                            | 1. 2                  | 1730 | 7 SAD 2300          |
|                                                 | 1                     | 1331 | e 11 1600           |
|                                                 |                       | 1332 | 936K BF             |
|                                                 |                       | 1333 | \$ 100 h B.S        |
|                                                 | A State               | 1334 | & lotk Br           |
| 사실 집 전 전 것 같은 것 같은 것 같은 것 같은 것 것 같은 것 같이 많이 있다. | and the second second | 1000 |                     |

## Discovery of Quasicrystals



Single grain of icosahedral Al-Pd-Mn phase

source: A. P. Tsai



Diffraction image of Al6Mn www.ph.melb.edu.au/diffraction/image/fivefold.html



Image source: Oxford Dept. of Chemistry http://www.xtl.ox.ac.uk/tag/penrose-tiling.html Left: A patch of a Penrose tiling. Right: An electron diffraction pattern of Zn-Mg-Ho alloy.

## Connections

- Diffraction image of Penrose tiling (computed by Mackay in 1982) looked like Shechtman's images
- Tilings like the Penrose tiling might be good models for quasicrystals
- ▶ Penrose tiles have matching rules like the Robinson tiling
- (Note: there was already a field of one-dimensional supertile construction methods: substitution)
- Some of us analyze the diffraction and/or dynamical spectrum of tilings

- Mathematical physicists
- ▶ Theoretical computer scientists
- Mathematicians with training in ergodic theory and dynamical systems, topology, discrete geometry, functional analysis, and more

#### Historical introduction

#### Fundamental approach to aperiodic systems (for today's talk) Making aperiodic order using 'substitution' processes The "hull": a dynamical systems approach

Matrices and the information they carry Beginning bookkeeping: The substitution matrix Intermediate bookkeeping: The digit matrix

Renormalization approach to diffraction analysis A whirlwind review of mathematical diffraction theory Advanced bookkeeping: the Fourier matrix

Alphabet  $\mathcal{A} = \{1, 2\}.$ 

Define  $S: \mathcal{A} \to \mathcal{A}^*$  by  $S(1) = 1222; \quad S(2) = 1$ 

Alphabet  $\mathcal{A} = \{1, 2\}.$ 

Define 
$$S : A \to A^*$$
 by  
 $S(1) = 1222; \quad S(2) = 1$ 

Iterate to obtain an aperiodically ordered infinite sequence:

$$1 \rightarrow 1222$$

Alphabet  $\mathcal{A} = \{1, 2\}.$ 

Define 
$$S : A \to A^*$$
 by  
 $S(1) = 1222; \quad S(2) = 1$ 

Iterate to obtain an aperiodically ordered infinite sequence:

 $1 \rightarrow 1222 \rightarrow 1222\,111$ 

Alphabet  $\mathcal{A} = \{1, 2\}.$ 

Define 
$$S : A \to A^*$$
 by  
 $S(1) = 1222; \quad S(2) = 1$ 

Iterate to obtain an aperiodically ordered infinite sequence:

# A simple tiling substitution rule





Lengths are 
$$\gamma = \frac{1+\sqrt{13}}{2}$$
 and 1.

Expansion is by  $\gamma$ .

Natalie P. Frank Substitution tilings Vassar College

#### Definition Let $\mathcal{A}$ be an alphabet of tiles in $\mathbb{R}^d$ and let $\gamma > 1$ .

#### Definition

Let  $\mathcal{A}$  be an alphabet of tiles in  $\mathbb{R}^d$  and let  $\gamma > 1$ . A function  $\mathcal{S} : \mathcal{A} \to \mathcal{A}^*$  is called a *tiling inflation rule with inflation map*  $\gamma$  if for every  $\mathfrak{t} \in \mathcal{A}$ ,

 $\gamma \operatorname{supp}(\mathfrak{t}) = \operatorname{supp}(\mathcal{S}(\mathfrak{t})).$ 

#### Definition

Let  $\mathcal{A}$  be an alphabet of tiles in  $\mathbb{R}^d$  and let  $\gamma > 1$ . A function  $\mathcal{S} : \mathcal{A} \to \mathcal{A}^*$  is called a *tiling inflation rule with inflation map*  $\gamma$  if for every  $\mathfrak{t} \in \mathcal{A}$ ,

$$\gamma \operatorname{supp}(\mathfrak{t}) = \operatorname{supp}(\mathcal{S}(\mathfrak{t})).$$

(Expanded support of  $\mathfrak{t} =$  Union of supports of its subtiles)

### Danzer's "T2000" inflate-and-subdivide rule.



#### Tiling self-similarity

We can extend  $\mathcal{S}$  to tiles, patches, and tilings:

• If  $t = \mathfrak{t} - x$  for  $\mathfrak{t} \in \mathcal{A}$  and  $x \in \mathbb{R}^d$  we define

$$\mathcal{S}(t) := \mathcal{S}(\mathfrak{t}) - \phi(x)$$

 $\blacktriangleright \mathcal{Q}$  patch or tiling:

$$\mathcal{S}(\mathcal{Q}) = \bigcup_{t \in \mathcal{Q}} \mathcal{S}(t)$$

• Lingo: an *n*-supertile is a patch of the form  $S^n(t)$ 

A tiling  $\mathcal{T}$  is said to be **self-similar** if  $\mathcal{S}(\mathcal{T}) = \mathcal{T}$ .



## Outline

#### Historical introduction

#### Fundamental approach to aperiodic systems (for today's talk) Making aperiodic order using 'substitution' processes The "hull": a dynamical systems approach

Matrices and the information they carry Beginning bookkeeping: The substitution matrix Intermediate bookkeeping: The digit matrix

Renormalization approach to diffraction analysis A whirlwind review of mathematical diffraction theory Advanced bookkeeping: the Fourier matrix

#### Symbolic Dynamics

• The full shift  $\Sigma_2$  is the set of all (bi)infinite sequences of 0s and 1s

#### Symbolic Dynamics

- The full shift  $\Sigma_2$  is the set of all (bi)infinite sequences of 0s and 1s
- ▶ Metric: if two sequences have the same word from -N to N, the distance between them is ~ 1/N or e<sup>-N</sup>
- ▶ The metric topology is the product topology

#### Symbolic Dynamics

- The full shift  $\Sigma_2$  is the set of all (bi)infinite sequences of 0s and 1s
- ▶ Metric: if two sequences have the same word from -N to N, the distance between them is ~ 1/N or e<sup>-N</sup>
- ▶ The metric topology is the product topology
- ▶ The action of the dynamics is "shift your sequence one unit to the left"

#### Symbolic Dynamics

- The full shift  $\Sigma_2$  is the set of all (bi)infinite sequences of 0s and 1s
- ▶ Metric: if two sequences have the same word from -N to N, the distance between them is ~ 1/N or e<sup>-N</sup>
- ▶ The metric topology is the product topology
- ▶ The action of the dynamics is "shift your sequence one unit to the left"
- Since the metric is origin-centric, the shift action allows us to "see" parts of a sequence that are far away by shifting them to the origin.
- ▶ *Subshifts* are closed shift-invariant subspaces
### The big ball metric for tilings

Let  $\mathcal{T}$  and  $\mathcal{T}'$  be two tilings of  $\mathbb{R}^d$ . How close are they?

## The big ball metric for tilings

Let  $\mathcal{T}$  and  $\mathcal{T}'$  be two tilings of  $\mathbb{R}^d$ . How close are they?

#### Definition

Let  $R(\mathcal{T}, \mathcal{T}')$  be the supremum of all  $r \ge 0$  such that there exists  $\vec{x}, \vec{y} \in \mathbb{R}^d$  with

1.  $|\vec{x}| < 1/2r$  and  $|\vec{y}| < 1/2r$ , and

1

2. On the ball of radius r around the origin,  $(\mathcal{T} - \vec{x}) \cap B_r(0) = (\mathcal{T}' - \vec{y}) \cap B_r(0).$ 

We define

$$d(\mathcal{T}, \mathcal{T}') := \min\left\{\frac{1}{R(\mathcal{T}, T')}, 1\right\}$$

### The big ball metric for tilings

Let  $\mathcal{T}$  and  $\mathcal{T}'$  be two tilings of  $\mathbb{R}^d$ . How close are they?

#### Definition

Let  $R(\mathcal{T}, \mathcal{T}')$  be the supremum of all  $r \ge 0$  such that there exists  $\vec{x}, \vec{y} \in \mathbb{R}^d$  with

- 1.  $|\vec{x}| < 1/2r$  and  $|\vec{y}| < 1/2r$ , and
- 2. On the ball of radius r around the origin,  $(\mathcal{T} - \vec{x}) \cap B_r(0) = (\mathcal{T}' - \vec{y}) \cap B_r(0).$

We define

$$d(\mathcal{T}, \mathcal{T}') := \min\left\{\frac{1}{R(\mathcal{T}, T')}, 1\right\}$$

The distance between  $\mathcal{T}$  and  $\mathcal{T}'$  is determined by the largest origin-centered ball the tilings agree on up to a small translation.

## Tiling spaces

 $\blacktriangleright \ \Omega_{\mathcal{P}} = \text{the space of all } \mathcal{P}\text{-tilings}$ 

► Note: Elements of  $\mathcal{A}^{\mathbb{Z}}$  are infinite sequences, likewise elements of  $\Omega_{\mathcal{P}}$  are infinite tilings of  $\mathbb{R}^d$ .

## Tiling spaces

•  $\Omega_{\mathcal{P}}$  = the space of all  $\mathcal{P}$ -tilings

Note: Elements of  $\mathcal{A}^{\mathbb{Z}}$  are infinite sequences, likewise elements of  $\Omega_{\mathcal{P}}$  are infinite tilings of  $\mathbb{R}^d$ .

- A tiling space  $\Omega$  is a closed, translation-invariant subset of  $\Omega_{\mathcal{P}}$
- We write (Ω, ℝ<sup>d</sup>) for the dynamical system under the action of translation

▶ Unlike the symbolic case, the action is continuous

## Tiling spaces

•  $\Omega_{\mathcal{P}}$  = the space of all  $\mathcal{P}$ -tilings

Note: Elements of  $\mathcal{A}^{\mathbb{Z}}$  are infinite sequences, likewise elements of  $\Omega_{\mathcal{P}}$  are infinite tilings of  $\mathbb{R}^d$ .

- A tiling space  $\Omega$  is a closed, translation-invariant subset of  $\Omega_{\mathcal{P}}$
- ▶ We write  $(\Omega, \mathbb{R}^d)$  for the dynamical system under the action of translation

▶ Unlike the symbolic case, the action is continuous

- ▶ There are two particularly nice ways to make tiling spaces:
  - ▶ The "hull" of a tiling  $\mathcal{T}$
  - ▶ The set of all tilings made of specified patches

## Two tiling space constructions

To study a given tiling  $\mathcal{T}$ : The hull of the tiling  $\mathcal{T}$  is the orbit closure of  $\mathcal{T}$ :

$$\Omega_{\mathcal{T}} = \overline{\{\mathcal{T} - \vec{v} \text{ for all } \vec{v}\}}$$

## Two tiling space constructions

To study a given tiling  $\mathcal{T}$ : The hull of the tiling  $\mathcal{T}$  is the orbit closure of  $\mathcal{T}$ :

$$\Omega_{\mathcal{T}} = \overline{\{\mathcal{T} - \vec{v} \text{ for all } \vec{v}\}}$$

To restrict the patch types: Let  $\mathcal{R}$  be a set of  $\mathcal{P}$ -patches to be used as a 'language'.

We say that  $\mathcal{T} \in \Omega_{\mathcal{P}}$  is allowed by  $\mathcal{R}$  if every patch in  $\mathcal{T}$  is translation-equivalent to a subpatch of an element of  $\mathcal{R}$ .

The tiling space  $\Omega_{\mathcal{R}}$  is the set of all allowed tilings.





LEMMA. Under mild conditions,  $\Omega$  is connected. Each tiling in  $\Omega$  defines a path component that is homeomorphic to  $\mathbb{R}^d$ , and there are uncountably many path components.

LEMMA. If  $\Omega \subset \Omega_{\mathcal{P}}$  is closed and of finite local complexity, then  $\Omega$  is complete and compact.

#### Historical introduction

Fundamental approach to aperiodic systems (for today's talk) Making aperiodic order using 'substitution' processes The "hull": a dynamical systems approach

#### Matrices and the information they carry Beginning bookkeeping: The substitution matrix Intermediate bookkeeping: The digit matrix

Renormalization approach to diffraction analysis A whirlwind review of mathematical diffraction theory Advanced bookkeeping: the Fourier matrix

# The substitution<sup>1</sup> matrix $\mathcal{M}$ .

We define the  $|\mathcal{A}| \times |\mathcal{A}|$  matrix  $\mathcal{M}$  by:

 $\mathcal{M}_{i,j}$  = the number of occurrences of a tile of type *i* in  $\mathcal{S}(j)$ 

**Ex.** For  $1 \rightarrow 1222$ ;  $2 \rightarrow 1$  we obtain

$$\mathcal{M} = \begin{pmatrix} 1 & 1 \\ 3 & 0 \end{pmatrix}$$

<sup>1</sup>A.k.a. the transition, abelianization, incidence, or subdivision matrix Natalie P. Frank Substitution tilings

# The substitution<sup>1</sup> matrix $\mathcal{M}$ .

We define the  $|\mathcal{A}| \times |\mathcal{A}|$  matrix  $\mathcal{M}$  by:

 $\mathcal{M}_{i,j}$  = the number of occurrences of a tile of type *i* in  $\mathcal{S}(j)$ 

**Ex.** For  $1 \rightarrow 1222$ ;  $2 \rightarrow 1$  we obtain

$$\mathcal{M} = \begin{pmatrix} 1 & 1 \\ 3 & 0 \end{pmatrix}$$

**Ex.** We get the same matrix for



<sup>1</sup>A.k.a. the transition, abelianization, incidence, or subdivision matrix Natalie P. Frank Substitution tilings

 Since *M* is always a nonnegative integer matrix, Perron-Frobenius theory applies.

- Since *M* is always a nonnegative integer matrix, Perron-Frobenius theory applies.
- ▶ The PF eigenvalue (i.e. the largest one) is the expansion factor of the system.

- Since *M* is always a nonnegative integer matrix, Perron-Frobenius theory applies.
- ▶ The PF eigenvalue (i.e. the largest one) is the expansion factor of the system.
- ▶ The left PF eigenvector tells the relative volumes of the tiles.
  - In one dimension, this gives the natural tile lengths that make a symbolic substitution into a self-similar tiling.

- Since *M* is always a nonnegative integer matrix, Perron-Frobenius theory applies.
- ▶ The PF eigenvalue (i.e. the largest one) is the expansion factor of the system.
- ▶ The left PF eigenvector tells the relative volumes of the tiles.
  - In one dimension, this gives the natural tile lengths that make a symbolic substitution into a self-similar tiling.
- ▶ The right PF eigenvector tells us the relative frequencies of the tile types.

#### Historical introduction

Fundamental approach to aperiodic systems (for today's talk) Making aperiodic order using 'substitution' processes The "hull": a dynamical systems approach

#### Matrices and the information they carry Beginning bookkeeping: The substitution matrix Intermediate bookkeeping: The digit matrix

Renormalization approach to diffraction analysis A whirlwind review of mathematical diffraction theory Advanced bookkeeping: the Fourier matrix

# The digit<sup>2</sup> matrix $\mathcal{D}$ .

We define the  $|\mathcal{A}| \times |\mathcal{A}|$  set-valued matrix  $\mathcal{D}$  by:

 $\mathcal{D}_{i,j} = \text{ locations of left endpoints of all tiles of type } i \text{ in } \mathcal{S}(j)$ 

**Ex.** For  $1 \to 1222$ ;  $2 \to 1$  and tile lengths  $\gamma = \frac{1+\sqrt{13}}{2}$  and 1:

$$\mathcal{D} = \begin{pmatrix} \{0\} & \{0\} \\ \{\gamma, \gamma + 1, \gamma + 2\} & \emptyset \end{pmatrix}$$



 $^{2}$ A.k.a. displacement or location matrix

Natalie P. Frank

Substitution tilings

Suppose  $\mathcal{T}$  is a self-similar tiling with expansion factor  $\lambda$ , so that  $\mathcal{S}(\mathcal{T}) = \mathcal{T}$ .

Suppose  $\mathcal{T}$  is a self-similar tiling with expansion factor  $\lambda$ , so that  $\mathcal{S}(\mathcal{T}) = \mathcal{T}$ .

Consider a tile of type 1 in  $\mathcal{T}$ , located at x. By self-similarity, there must be a copy of  $\mathcal{S}(1)$  located at  $\lambda x$ .



Suppose  $\mathcal{T}$  is a self-similar tiling with expansion factor  $\lambda$ , so that  $\mathcal{S}(\mathcal{T}) = \mathcal{T}$ .

Consider a tile of type 1 in  $\mathcal{T}$ , located at x. By self-similarity, there must be a copy of  $\mathcal{S}(1)$  located at  $\lambda x$ .



That puts tiles of type 1 located at  $\lambda x + D_{1,1}$ 

Suppose  $\mathcal{T}$  is a self-similar tiling with expansion factor  $\lambda$ , so that  $\mathcal{S}(\mathcal{T}) = \mathcal{T}$ .

Consider a tile of type 1 in  $\mathcal{T}$ , located at x. By self-similarity, there must be a copy of  $\mathcal{S}(1)$  located at  $\lambda x$ .

That puts tiles of type 1 located at  $\lambda x + D_{1,1}$ And puts tiles of type 2 at  $\lambda x + D_{2,1}$ . (and so on.)

#### Digit matrix recursion for Delone sets

Let  $\Lambda_i \subset \mathbb{R}^d$  be the locations of all tiles of type *i* in our self-similar tiling  $\mathcal{T}$ .

If there is a type 1 tile at x, then there are tiles of type i at  $\lambda x + \mathcal{D}_{i,1}$ ;

if there is a type j tile at x then there are tiles of type 1 at  $\overline{\lambda x + \mathcal{D}_{i,j}};$ 

#### Digit matrix recursion for Delone sets

Let  $\Lambda_i \subset \mathbb{R}^d$  be the locations of all tiles of type *i* in our self-similar tiling  $\mathcal{T}$ .

If there is a type 1 tile at x, then there are tiles of type i at  $\lambda x + \mathcal{D}_{i,1}$ ;

if there is a type j tile at x then there are tiles of type 1 at  $\overline{\lambda x + \mathcal{D}_{i,j}}$ ;

Since there is no other way for a tile of type i to arise we obtain

$$\Lambda_i = \bigcup_j \lambda \Lambda_j + \mathcal{D}_{ij}$$

#### Digit matrix recursion for Delone sets

Let  $\Lambda_i \subset \mathbb{R}^d$  be the locations of all tiles of type *i* in our self-similar tiling  $\mathcal{T}$ .

If there is a type 1 tile at x, then there are tiles of type i at  $\lambda x + \mathcal{D}_{i,1}$ ;

if there is a type j tile at x then there are tiles of type 1 at  $\overline{\lambda x + \mathcal{D}_{i,j}}$ ;

Since there is no other way for a tile of type i to arise we obtain

$$\Lambda_i = \bigcup_j \lambda \Lambda_j + \mathcal{D}_{ij}$$

#### This allows a renormalization approach to diffraction.

#### Historical introduction

Fundamental approach to aperiodic systems (for today's talk) Making aperiodic order using 'substitution' processes The "hull": a dynamical systems approach

Matrices and the information they carry Beginning bookkeeping: The substitution matrix Intermediate bookkeeping: The digit matrix

#### Renormalization approach to diffraction analysis A whirlwind review of mathematical diffraction theory Advanced bookkeeping: the Fourier matrix

#### Diffraction: the Dirac comb

- $\Lambda = \bigcup \Lambda_i$  represents our set of scatterers from  $\mathcal{T}$
- Choose scattering strengths  $a_i \in \mathbb{C}$  for each tile type
- ▶ We have the *weighted Dirac comb*

$$\omega = \sum a_i \delta_{\Lambda_i} = \sum a_i \sum_{x \in \Lambda_i} \delta_x$$

#### Diffraction: the Dirac comb

- $\Lambda = \bigcup \Lambda_i$  represents our set of scatterers from  $\mathcal{T}$
- Choose scattering strengths  $a_i \in \mathbb{C}$  for each tile type
- ▶ We have the *weighted Dirac comb*

$$\omega = \sum a_i \delta_{\Lambda_i} = \sum a_i \sum_{x \in \Lambda_i} \delta_x$$

Waves passing through this Dirac comb display patterns of interference that help us understand the long-range order properties of the tiling.

#### The autocorrelation and diffraction measures

The autocorrelation is defined to be

$$\gamma_{\omega} = \lim_{R \to \infty} \frac{1}{Vol(B_R(0))} \left( \omega|_{B_R(0)} * \tilde{\omega}|_{B_R(0)} \right)$$
$$= \sum_{i,j \le m} a_i \overline{a_j} \sum_{z \in \Lambda_i - \Lambda_j} \nu_{ij}(z) \delta_z,$$

#### The autocorrelation and diffraction measures

The autocorrelation is defined to be

$$\gamma_{\omega} = \lim_{R \to \infty} \frac{1}{Vol(B_R(0))} \left( \omega|_{B_R(0)} * \tilde{\omega}|_{B_R(0)} \right)$$
$$= \sum_{i,j \le m} a_i \overline{a_j} \sum_{z \in \Lambda_i - \Lambda_j} \nu_{ij}(z) \delta_z,$$

where the pair correlation coefficient  $\nu_{ij}$  is:

$$\nu_{ij}(z) = \lim_{R \to \infty} \frac{1}{Vol(B_R(0))} \# \{ x \in \Lambda_i \cap B_R(0) \text{ and } x - z \in \Lambda_j \}$$

#### The autocorrelation and diffraction measures

The autocorrelation is defined to be

$$\gamma_{\omega} = \lim_{R \to \infty} \frac{1}{Vol(B_R(0))} \left( \omega|_{B_R(0)} * \tilde{\omega}|_{B_R(0)} \right)$$
$$= \sum_{i,j \le m} a_i \overline{a_j} \sum_{z \in \Lambda_i - \Lambda_j} \nu_{ij}(z) \delta_z,$$

where the pair correlation coefficient  $\nu_{ij}$  is:

$$\nu_{ij}(z) = \lim_{R \to \infty} \frac{1}{Vol(B_R(0))} \# \{ x \in \Lambda_i \cap B_R(0) \text{ and } x - z \in \Lambda_j \}$$

#### Definition

When the autocorrelation measure  $\gamma_{\omega}$  exists, the *diffraction* measure of  $\mathcal{T}$  is defined to be its Fourier transform  $\widehat{\gamma_{\omega}}$ .

# The diffraction measure, briefly interpreted

The measure  $\widehat{\gamma_{\omega}}$  tells us how much intensity is scattered into a given volume.

$$\widehat{\gamma_{\omega}} = (\widehat{\gamma_{\omega}})_{pp} + (\widehat{\gamma_{\omega}})_{sc} + (\widehat{\gamma_{\omega}})_{ac}.$$

The pure point part tells us the location of the 'Bragg peaks'; the degree of disorder in the solid is quantified by the continuous parts.

The singular continuous part is rare (or hard?) to observe in physical experiments ( )





# Simulated diffraction images for four tilings



## With a fun colormap


#### Historical introduction

Fundamental approach to aperiodic systems (for today's talk) Making aperiodic order using 'substitution' processes The "hull": a dynamical systems approach

Matrices and the information they carry Beginning bookkeeping: The substitution matrix Intermediate bookkeeping: The digit matrix

#### Renormalization approach to diffraction analysis A whirlwind review of mathematical diffraction theory Advanced bookkeeping: the Fourier matrix

Recall the pair correlation coefficient  $\nu_{ij}$  is:

$$\nu_{ij}(z) = \lim_{R \to \infty} \frac{1}{Vol(B_R(0))} \# \{ x \in \Lambda_i \cap B_R(0) \text{ and } x - z \in \Lambda_j \}$$

Recall the pair correlation coefficient  $\nu_{ij}$  is:

$$\nu_{ij}(z) = \lim_{R \to \infty} \frac{1}{Vol(B_R(0))} \# \{ x \in \Lambda_i \cap B_R(0) \text{ and } x - z \in \Lambda_j \}$$

From  $\Lambda_i = \bigcup_j \lambda \Lambda_j + \mathcal{D}_{ij}$  we obtain the renormalization relation :

$$\nu_{ij}(z) = \frac{1}{\lambda} \sum_{m,n} \sum_{r \in \mathcal{D}_{im}} \sum_{s \in \mathcal{D}_{jn}} \nu\left(\frac{z - r + s}{\lambda}\right)$$

## Renormalization programme: pair correlation measures

Decompose the autocorrelation by pair correlation:

$$\Upsilon_{ij} = \sum_{z \in \Lambda_i - \Lambda_j} \nu_{ij}(z) \delta_z$$

## Renormalization programme: pair correlation measures

Decompose the autocorrelation by pair correlation:

$$\Upsilon_{ij} = \sum_{z \in \Lambda_i - \Lambda_j} \nu_{ij}(z) \delta_z$$

The renormalization for pair coefficients leads to the measure renormalization equations:

$$\Upsilon = rac{1}{\lambda} \left( \widetilde{\delta_{\mathcal{D}}} \otimes^* \delta_{\mathcal{D}} 
ight) * (f.\Upsilon) \, ,$$

## Renormalization programme: pair correlation measures

Decompose the autocorrelation by pair correlation:

$$\Upsilon_{ij} = \sum_{z \in \Lambda_i - \Lambda_j} \nu_{ij}(z) \delta_z$$

The renormalization for pair coefficients leads to the measure renormalization equations:

$$\Upsilon = rac{1}{\lambda} \left( \widetilde{\delta_{\mathcal{D}}} \otimes^* \delta_{\mathcal{D}} 
ight) * (f.\Upsilon) \, ,$$

where the matrix of Dirac combs  $\delta_{\mathcal{D}}$  is given by

$$(\delta_{\mathcal{D}})_{ij} = \sum_{x \in \mathcal{D}_{ij}} \delta_x$$

Since the goal is diffraction, we're going to Fourier transform all of those delta functions anyway. Why not do it early?

The Fourier matrix  $\mathcal{F}$  is given by the f.t. of the combs:

$$\mathcal{F}_{ij}(k) = \sum_{x \in \mathcal{D}_{ij}} \exp(2\pi i k x)$$

$$\Upsilon = \frac{1}{\lambda} \left( \widetilde{\delta_{\mathcal{D}}} \otimes^* \delta_{\mathcal{D}} \right) * (f.\Upsilon)$$

Recall  $\mathcal{M}$  is the matrix of the substitution; one can check that  $\mathcal{M}^n$  is the matrix for the substitution applied n times.

The Fourier matrix for  $\mathcal{M}^n$  can be obtained via a matrix cocycle:

$$\mathcal{F}^{(n)}(k) = \mathcal{F}(k)\mathcal{F}(\lambda k)\cdots\mathcal{F}(\lambda^n(k))$$

Maximal Lyapunov exponent:

$$\chi^{\mathcal{F}}(k) := \limsup_{n \to \infty} \frac{1}{n} \log ||\mathcal{F}^{(n)}k||$$

#### Fourier matrix cocycle

$$\chi^{\mathcal{F}}(k) := \limsup_{n \to \infty} \frac{1}{n} \log ||\mathcal{F}^{(n)}k||$$

Only known examples with a.c. spectrum have

$$\chi^{\mathcal{F}}(k) = 1/2\log(\lambda)$$

Thm. (Baake, various coauthors.) If there is some  $\epsilon > 0$  s.t. for a.e.  $k \in \mathbb{R}$  we have

$$\chi^{\mathcal{F}}(k) \le 1/2 \log \lambda - \epsilon,$$

then there is no a.c. part to the diffraction.

Natalie P. Frank Substitution tilings Vassar Colleg

# Renormalization programme: applications

- Spectral purity' results
- In mixed spectrum examples, conditions for nonexistence of a.c. spectrum
- ► For pure point examples, explicit and efficient direct computation of diffraction measure
- ▶ In higher dimensions the programme works too
- Tilings with infinite local complexity can be approached; with singular spectrum identified
- ▶ All of it requires a high degree of technical prowess







# Thank you for your attention

