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Setting

I Our objects: a class of aperiodic tilings of Euclidean space

I These tilings display hierarchical structure that is highly
ordered yet not periodic.

I The way we study them originates in fields as disparate as
logic, geometry, and chemistry.

I I offer a story from each field for motivation.
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Story 1 (Logic): The domino problem

I Imagine square tiles whose edges come in given
combinations of labelfs.

I You are only allowed to put two tiles next to each other if
the edge labels match.

AN APERIODIC SET OF 11 WANG TILES
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Figure 1: The aperiodic set of 13 tiles obtained by Culik from an idea by Kari: the transducer view and
the tile view.

Let Tk, k 2 N\{0} be T if k = 1, Tk�1 �T otherwise.
A reformulation of the original question is as follows:

Lemma 3. A Wang set T is finite if there is no infinite run of the transducer T: there is no biinfinite
sequence (wk)k2N so that wkTwk+1 for all k.

A Wang set T is periodic if and only if there exists a biinfinite word w and a positive integer k so that
wTkw.

We will also use the following operations on tilesets (or transducers):

rotation Let Ttr be (V,H,T 0) where T 0 = {(s,n,e,w) : (w,e,s,n) 2 T}. This operation corresponds to a
rotation of the tileset by 90 degrees.

simplification Let s(T) be the operation that deletes from T any tile that cannot be used in a tiling of a
(biinfinite) line row by T. From the point of view of transducers, this corresponds to eliminating
sources and sinks from T. In particular, s(T) is empty if and only if there are no biinfinite words
w,w0 s.t. wTw0.

union T[T0 is the disjoint union of transducers T and T0: we first rename the states of both transducers
so that they are all different, and then we take the union of the transitions of both transducers. Thus
w(T[T0)w0 if and only if wTw0 or wT0w0.

Equivalence of Wang sets. Once Wang sets are seen as transducers, it is easy to see that the problems
under consideration do not actually depend on T, but only on the relation induced by T: We say that two
Wang sets T = (H,V,T ) and T0 = (H 0,V,T 0) are equivalent if they are equivalent as relations. In other
words: for every pair of biinfinite words (w,w0) over V , wTw0 , wT0w0.

In the course of the following proofs and algorithms, it will be useful to switch between equivalent
Wang sets (transducers), in particular by trying to simplify the sets as much as possible. For example,

ADVANCES IN COMBINATORICS, 2021:1, 37pp. 5

Figure: Jeandel and Rao’s aperiodic set (2019).

I Immediate question: Can you make an infinite tiling of the
plane with these tiles? (That’s the “domino problem”.)
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Figure: Jeandel and Rao’s aperiodic set (2019).

I Deep question: can you make a Turing machine that
answers that question for any finite tile set?
I This is the question logician Hao Wang was considering in

1961 [Wang].
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Undecidability of the domino problem

I Can you make a machine that answers that question for
any finite tile set?

I The answer depended on whether an aperiodic prototile set
exists, i.e. a set of tiles that can tile the plane, but only
nonperiodicaly.

I In 1966 Wang’s student Rober Berger found an aperiodic
set of tiles with over 20000 tiles.

I In 1971 Raphael Robinson published an aperiodic set with
only 6 tiles.
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Robinson’s aperiodic tile set

 l
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Robinson’s aperiodic tile set
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Story 2 (Geometry): Penrose’s aperiodic set of two tiles

I Roger Penrose began to develop an interest in tiling
questions in part because of Hilbert’s Problem 18.

I Also he (and his father) began a collaboration with M. C.
Esher.

I Penrose was trying to create a hierarchical tiling and found
his original tiling by experimentation.

I He succeeded! There are several equivalent versions of
Penrose tilings.

I I recommend Penrose’s foreword to Baake/Grimm’s
Aperiodic Order for his telling of the history.
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Story 3 (Chemistry): Physical quasicrystals

The 2011 Nobel Prize in Chemistry

Daniel Shechtman

“For the discovery of quasicrystals”
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‘Impossible’ diffraction image

I Shechtman’s colleague at U.S. NIST made an
aluminum-magnesium alloy

I Shechtman did a diffraction analysis and found
contradictory properties
I it had bright spots indicative of a periodic (crystal) atomic

structure
I had symmetries impossible for such a structure
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Original diffraction image
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Shechtman’s original notebook
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Discovery of Quasicrystals

Diffraction image of Al6Mn
www.ph.melb.edu.au/diffraction/image/fivefold.html

Single grain of icosahedral Al!Pd!Mn phase
source:  A. P. Tsai
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Image source: Oxford Dept. of Chemistry http://www.xtl.ox.ac.uk/tag/penrose-tiling.html

Left: A patch of a Penrose tiling. Right: An electron diffraction
pattern of Zn-Mg-Ho alloy.
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Connections

I Diffraction image of Penrose tiling (computed by Mackay
in 1982) looked like Shechtman’s images

I Tilings like the Penrose tiling might be good models for
quasicrystals

I Penrose tiles have matching rules like the Robinson tiling

I (Note: there was already a field of one-dimensional
supertile construction methods: substitution)

I Some of us analyze the diffraction and/or dynamical
spectrum of tilings
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An Aperiodic Order community arises

I Mathematical physicists

I Theoretical computer scientists

I Mathematicians with training in ergodic theory and
dynamical systems, topology, discrete geometry, functional
analysis, and more
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A simple substitution rule

Alphabet A = {1, 2}.

Define S : A → A∗ by

S(1) = 1222; S(2) = 1

Iterate to obtain an aperiodically ordered infinite sequence:

1→ 1222→ 1222 111→ 1222 111 1222 1222 1222
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A simple tiling substitution rule

A = { }

Inflate Subdivide

Inflate Subdivide

Lengths are γ = 1+
√

13
2 and 1.

Expansion is by γ.
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Self-similar tilings

Definition
Let A be an alphabet of tiles in Rd and let γ > 1.

A function
S : A → A∗ is called a tiling inflation rule with inflation map γ
if for every t ∈ A,

γ supp(t) = supp(S(t)).

(Expanded support of t = Union of supports of its subtiles)
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Self-similar tilings

Definition
Let A be an alphabet of tiles in Rd and let γ > 1. A function
S : A → A∗ is called a tiling inflation rule with inflation map γ
if for every t ∈ A,

γ supp(t) = supp(S(t)).
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Danzer’s “T2000” inflate-and-subdivide rule.

A =

 ,



→

→
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Tiling self-similarity

We can extend S to tiles, patches, and tilings:

I If t = t− x for t ∈ A and x ∈ Rd we define

S(t) := S(t)− φ(x)

I Q patch or tiling:

S(Q) =
⋃
t∈Q
S(t)

I Lingo: an n-supertile is a patch of the form Sn(t)

A tiling T is said to be self-similar if S(T ) = T .
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Intuition: sequence spaces and shift dynamical systems

Symbolic Dynamics

I The full shift Σ2 is the set of all (bi)infinite sequences of 0s
and 1s

I Metric: if two sequences have the same word from −N to
N , the distance between them is ∼ 1/N or e−N

I The metric topology is the product topology

I The action of the dynamics is “shift your sequence one unit
to the left”

I Since the metric is origin-centric, the shift action allows us
to “see” parts of a sequence that are far away by shifting
them to the origin.

I Subshifts are closed shift-invariant subspaces
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The big ball metric for tilings

Let T and T ′ be two tilings of Rd. How close are they?

Definition
Let R(T , T ′) be the supremum of all r ≥ 0 such that there exists
~x, ~y ∈ Rd with

1. |~x| < 1/2r and |~y| < 1/2r, and

2. On the ball of radius r around the origin,
(T − ~x) ∩Br(0) = (T ′ − ~y) ∩Br(0).

We define

d(T , T ′) := min

{
1

R(T , T ′)
, 1

}

The distance between T and T ′ is determined by the largest
origin-centered ball the tilings agree on up to a small
translation.
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Tiling spaces

I ΩP = the space of all P-tilings
I Note: Elements of AZ are infinite sequences, likewise

elements of ΩP are infinite tilings of Rd.

I A tiling space Ω is a closed, translation-invariant subset of
ΩP

I We write (Ω,Rd) for the dynamical system under the
action of translation
I Unlike the symbolic case, the action is continuous

I There are two particularly nice ways to make tiling spaces:
I The “hull” of a tiling T
I The set of all tilings made of specified patches
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Two tiling space constructions

To study a given tiling T : The hull of the tiling T is the

orbit closure of T :

ΩT = {T − ~v for all ~v}

To restrict the patch types: Let R be a set of P-patches to

be used as a ‘language’.

We say that T ∈ ΩP is allowed by R if every patch in T is
translation-equivalent to a subpatch of an element of R.

The tiling space ΩR is the set of all allowed tilings.
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Basic topology of tiling spaces

Lemma. Under mild conditions, Ω is connected. Each tiling in
Ω defines a path component that is homeomorphic to Rd, and
there are uncountably many path components.

Lemma. If Ω ⊂ ΩP is closed and of finite local complexity, then
Ω is complete and compact.
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The substitution1 matrix M.

We define the |A| × |A| matrix M by:

Mi,j = the number of occurrences of a tile of type i in S(j)

Ex. For 1→ 1222; 2→ 1 we obtain

M =

(
1 1
3 0

)

Ex. We get the same matrix for

Inflate Subdivide

Inflate Subdivide

1A.k.a. the transition, abelianization, incidence, or subdivision matrix
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What the eigenstuff of M tells us.

I Since M is always a nonnegative integer matrix,
Perron-Frobenius theory applies.

I The PF eigenvalue (i.e. the largest one) is the expansion
factor of the system.

I The left PF eigenvector tells the relative volumes of the
tiles.
I In one dimension, this gives the natural tile lengths that

make a symbolic substitution into a self-similar tiling.

I The right PF eigenvector tells us the relative frequencies of
the tile types.

Natalie P. Frank Vassar College

Substitution tilings



What the eigenstuff of M tells us.

I Since M is always a nonnegative integer matrix,
Perron-Frobenius theory applies.

I The PF eigenvalue (i.e. the largest one) is the expansion
factor of the system.

I The left PF eigenvector tells the relative volumes of the
tiles.
I In one dimension, this gives the natural tile lengths that

make a symbolic substitution into a self-similar tiling.

I The right PF eigenvector tells us the relative frequencies of
the tile types.

Natalie P. Frank Vassar College

Substitution tilings



What the eigenstuff of M tells us.

I Since M is always a nonnegative integer matrix,
Perron-Frobenius theory applies.

I The PF eigenvalue (i.e. the largest one) is the expansion
factor of the system.

I The left PF eigenvector tells the relative volumes of the
tiles.
I In one dimension, this gives the natural tile lengths that

make a symbolic substitution into a self-similar tiling.

I The right PF eigenvector tells us the relative frequencies of
the tile types.

Natalie P. Frank Vassar College

Substitution tilings



What the eigenstuff of M tells us.

I Since M is always a nonnegative integer matrix,
Perron-Frobenius theory applies.

I The PF eigenvalue (i.e. the largest one) is the expansion
factor of the system.

I The left PF eigenvector tells the relative volumes of the
tiles.
I In one dimension, this gives the natural tile lengths that

make a symbolic substitution into a self-similar tiling.

I The right PF eigenvector tells us the relative frequencies of
the tile types.

Natalie P. Frank Vassar College

Substitution tilings



Outline

Historical introduction

Fundamental approach to aperiodic systems (for today’s talk)
Making aperiodic order using ‘substitution’ processes
The “hull”: a dynamical systems approach

Matrices and the information they carry
Beginning bookkeeping: The substitution matrix
Intermediate bookkeeping: The digit matrix

Renormalization approach to diffraction analysis
A whirlwind review of mathematical diffraction theory
Advanced bookkeeping: the Fourier matrix

Natalie P. Frank Vassar College

Substitution tilings



The digit2 matrix D.

We define the |A| × |A| set-valued matrix D by:

Di,j = locations of left endpoints of all tiles of type i in S(j)

Ex. For 1→ 1222; 2→ 1 and tile lengths γ = 1+
√

13
2 and 1:

D =

(
{0} {0}

{γ, γ + 1, γ + 2} ∅

)

0 γ γ+1 γ+2

2A.k.a. displacement or location matrix
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Digit matrix construction of supertiles

Suppose T is a self-similar tiling with expansion factor λ, so
that S(T ) = T .

Consider a tile of type 1 in T , located at x. By self-similarity,
there must be a copy of S(1) located at λx.

x γx γ + γx γ + γx + 1 γ + γx + 2

That puts tiles of type 1 located at λx+D1,1

And puts tiles of type 2 at λx+D2,1 . (and so on.)
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Digit matrix recursion for Delone sets

Let Λi ⊂ Rd be the locations of all tiles of type i in our
self-similar tiling T .

If there is a type 1 tile at x, then there are tiles of type i at
λx+Di,1 ;

if there is a type j tile at x then there are tiles of type 1 at
λx+Di,j ;

Since there is no other way for a tile of type i to arise we obtain

Λi =
⋃
j

λΛj +Dij

This allows a renormalization approach to diffraction.
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Diffraction: the Dirac comb

I Λ =
⋃

Λi represents our set of scatterers from T
I Choose scattering strengths ai ∈ C for each tile type

I We have the weighted Dirac comb

ω =
∑

aiδΛi =
∑

ai
∑
x∈Λi

δx

Waves passing through this Dirac comb display
patterns of interference that help us understand the
long-range order properties of the tiling.
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The autocorrelation and diffraction measures

The autocorrelation is defined to be

γω = lim
R→∞

1

V ol(BR(0))

(
ω|BR(0) ∗ ω̃|BR(0)

)
=
∑
i,j≤m

aiaj
∑

z∈Λi−Λj

νij(z)δz,

where the pair correlation coefficient νij is:

νij(z) = lim
R→∞

1

V ol(BR(0))
#{x ∈ Λi ∩BR(0) and x− z ∈ Λj}

Definition
When the autocorrelation measure γω exists, the diffraction
measure of T is defined to be its Fourier transform γ̂ω.
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The diffraction measure, briefly interpreted

The measure γ̂ω tells us how much intensity is scattered into a
given volume.

γ̂ω = (γ̂ω)pp + (γ̂ω)sc + (γ̂ω)ac.

The pure point part tells us the location of the ‘Bragg peaks’;
the degree of disorder in the solid is quantified by the
continuous parts.

The singular continuous part is rare (or hard?) to observe in
physical experiments ( )
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Simulated diffraction images for four tilings
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With a fun colormap

Thank you for your attentionNatalie P. Frank Vassar College
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Renormalization programme: pair coefficients.

Recall the pair correlation coefficient νij is:

νij(z) = lim
R→∞

1

V ol(BR(0))
#{x ∈ Λi ∩BR(0) and x− z ∈ Λj}

From Λi =
⋃

j λΛj +Dij we obtain the renormalization relation :

νij(z) =
1

λ

∑
m,n

∑
r∈Dim

∑
s∈Djn

ν

(
z − r + s

λ

)

Natalie P. Frank Vassar College

Substitution tilings



Renormalization programme: pair coefficients.

Recall the pair correlation coefficient νij is:

νij(z) = lim
R→∞

1

V ol(BR(0))
#{x ∈ Λi ∩BR(0) and x− z ∈ Λj}

From Λi =
⋃

j λΛj +Dij we obtain the renormalization relation :

νij(z) =
1

λ

∑
m,n

∑
r∈Dim

∑
s∈Djn

ν

(
z − r + s

λ

)

Natalie P. Frank Vassar College

Substitution tilings



Renormalization programme: pair correlation measures

Decompose the autocorrelation by pair correlation:

Υij =
∑

z∈Λi−Λj

νij(z)δz

The renormalization for pair coefficients leads to the measure
renormalization equations:

Υ =
1

λ

(
δ̃D ⊗∗ δD

)
∗ (f.Υ) ,

where the matrix of Dirac combs δD is given by

(δD)ij =
∑
x∈Dij

δx
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The Fourier matrix F .

Since the goal is diffraction, we’re going to Fourier transform all
of those delta functions anyway. Why not do it early?

The Fourier matrix F is given by the f.t. of the combs:

Fij(k) =
∑
x∈Dij

exp(2πikx)

Υ =
1

λ

(
δ̃D ⊗∗ δD

)
∗ (f.Υ)

Natalie P. Frank Vassar College

Substitution tilings



Fourier matrix cocycle

Recall M is the matrix of the substitution; one can check that
Mn is the matrix for the substitution applied n times.

The Fourier matrix for Mn can be obtained via a matrix
cocycle:

F (n)(k) = F(k)F(λk) · · · F(λn(k))

Maximal Lyapunov exponent:

χF (k) := lim sup
n→∞

1

n
log ||F (n)k||
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Fourier matrix cocycle

χF (k) := lim sup
n→∞

1

n
log ||F (n)k||

Only known examples with a.c. spectrum have

χF (k) = 1/2 log(λ)

Thm. (Baake, various coauthors.) If there is some ε > 0 s.t. for
a.e. k ∈ R we have

χF (k) ≤ 1/2 log λ− ε,

then there is no a.c. part to the diffraction.
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Renormalization programme: applications

I ‘Spectral purity’ results

I In mixed spectrum examples, conditions for nonexistence of
a.c. spectrum

I For pure point examples, explicit and efficient direct
computation of diffraction measure

I In higher dimensions the programme works too

I Tilings with infinite local complexity can be approached;
with singular spectrum identified

I All of it requires a high degree of technical prowess
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Thank you for your attention
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