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Fusion rules

A framework for general hierarchical systems, including

Self-similar tilings and substitution sequences—our original
motivation

Cut-and-stack transformations

Bratteli-Vershik systems

Combinatorial substitutions

Generalized substitutions

S-adic transformations

Random substitutions
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Motivating results for substitution tiling dynamics

Acting by translation on the tiling space, we have

Conditions for unique ergodicity

There is an algorithm for finding eigenvalues

Measurable eigenfunctions can be chosen continuous.

The substitution is invertible if and only if the tilings are
non-periodic

No positive entropy or strong mixing

Hierarchy can be enforced via local matching rules

The spaces are either Cantor sets or Cantor set fiber bundles

The spaces are inverse limits

The cohomology and K-theory is computable

Today’s talk will focus on invariant/ergodic measures.
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Self-similar or substitution tilings

Self-similar tilings are “ideal” hierarchical tilings. Several
ingredients:

A group G of isometries, typically either Zd , Rd or the
Euclidean group.

A finite collection of shapes, called “prototiles”. “Tiles” are
prototiles moved around by group elements.

An expansive linear tranformation L : Rd → Rd , typically a
pure dilation.

A rule σ for replacing each tile t with a patch of tiles whose
union is L(t).
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The “chair” substitution rule

Choose G = R2, moving tiles and tilings by translation,

Thus we need four tile types, and

The linear map L expands by a factor of 2.

On all four tile types:

Iterating repeatedly creates “supertiles” that grow to cover the
plane.
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A few chair supertiles

Natalie Priebe Frank and Lorenzo Sadun Fusion tilings



A tiling substitution without linear expansion L
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Supertiles-the key idea of fusion

Definition An n-supertile is a tile t that has been substituted n
times, i.e. σn(t).

A chair 2-supertile (with t=yellow tile)
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Two views of supertiles

1 σn(t) = σ(σn−1(t)) is what you get by expanding an n − 1
supertile, replacing each tile with a 1-supertile:

2 σn(t) = σn−1(σ(t)) is what you get by gluing several n − 1
supertiles together, in a pattern determined by σ(t).

But why does gluing pattern have to be the same at each level?
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Definition of a fusion rule R

Definition. A fusion of a patch P1 to another patch P2 is a union
of P1 and P2 that is connected and does not contain overlaps.

fusion = geometric concatenation

0-supertiles. A finite collection P0 of tiles. These are “atoms”.

1-supertiles. A finite collection P1 of patches (fusions) of tiles
from P0. These are “molecules”.

2-supertiles. A finite collection P2 of patches made by fusing
together elements from P1.

n-supertiles. For each n > 0, Pn is a finite set of patches that
are fusions of (n − 1)-supertiles.
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How is this different from substitution?

For one thing, the combinatorics can change from level to level.

Example. Let P0 = {a, b}

Pn(a) = Pn−1(a)Pn−1(b),

Pn(b) =

{
Pn−1(a)Pn−1(b)Pn−1(b) if n is prime

Pn−1(b)Pn−1(b)Pn−1(a) if n is not prime

Our sets of supertiles are:

P1 = {ab, bba}
P2 = {abbba, abbbabba}
P3 = {abbbaabbbabba, abbbaabbbabbaabbbabba}
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Difference, part 2: The 10n example.

P0 = {a, b}, Pn = {Pn(a),Pn(b)},

where

P1(a) = a10b = aaaaaaaaaab P1(b) = b10a = bbbbbbbbbba

Let

P2(a) = (P1(a))100P1(b) P2(b) = (P1(b))100P1(a)

and in general

Pn(a) = (Pn−1(a))10
n
Pn−1(b) Pn(b) = (Pn−1(b))10

n
Pn−1(a)
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A two-dimensional example
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We could change the combinatorics at each level; we could change
the number of n-supertiles at each stage too.
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Tiling spaces

Consider a fixed substitution σ or fusion rule R.

A patch is admissible if it is found somewhere in a supertile.

An infinite tiling T is admissible if every finite patch of tiles in
T is admissible.

The tiling space Ωσ or ΩR consist of all admissible tilings T.

That is, each point in the tiling space is an infinite tiling.

A tiling and its image under a rigid motion from G are, in the
absence of symmetry, distinct points in the tiling space.

Note: While σ extends to a map from Ωσ to itself, there is no
self-map of ΩR induced by the fusion rule. This is a major
obstruction to proofs.

Natalie Priebe Frank and Lorenzo Sadun Fusion tilings



Tiling dynamical systems

Given a tiling space Ω constructed using isometry group G , we give
Ω the “big ball topology”.

G acts continuously on Ω; our dynamical system is

(Ω,G , µ)

where µ is an invariant Borel probability measure.

For simplicity we often assume that our action is by continuous
translations: G = Rd .

Natalie Priebe Frank and Lorenzo Sadun Fusion tilings



What do we know about fusion systems?

Without further assumptions, not a lot: every tiling system
can be expressed as a fusion tiling system.

With various assumptions, tons! We have versions of almost
all of the motivating results listed at the beginning.

Fusion allows for interesting constructions impossible for
substitutions.

There can be measurable eigenfunctions/values that aren’t
continuous.
Strong mixing and entropy are possible.
Minimal systems can fail to be uniquely ergodic.
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Essential technical stuff

“Transition matrices” Mn,N count how many n-supertiles
make up each N-supertile:

Mn,N(i , j) = #Pn(i) in PN(j)

For n < m < N we have Mn,mMm,N = Mn,N

“Primitivity”: for each n there exists an N such that all
entries of Mn,N are positive.

Implies (ΩR,G , µ) is a minimal (the closure of one orbit).

“Van Hove” (aka Følner): Supertile volumes grow large
relative to their interiors.

Essential for frequency (and thus measure) calculations.

“Recognizability”: every tiling decomposes into n-supertiles
unambiguously

Essential for anything involving Bratteli diagrams.

Natalie Priebe Frank and Lorenzo Sadun Fusion tilings



The Bratteli diagram model of ΩR

Let the set of n-supertiles be denoted by
Pn = {Pn(1),Pn(2), ...,Pn(jn)}

The vertex set Vn is the set of n-supertiles.

Each copy of Pn(i) in Pn+1(j) gets an edge in En.

If there is more than one way to fuse n-supertiles to get an
(n + 1)-supertile, fix a preferred one to use in this and all
other computations.

The transition matrix Fn is defined as the number of
n-supertiles in each N-supertile. That is, Fn = Mn,n+1.
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The Bratteli diagram model of ΩR

µ-almost every tiling T in ΩR corresponds to an infinite path in
the Bratteli diagram BR: the vertex in Vn corresponds to the
n-supertile in T that contains the origin.

If G = Z, the dynamics gives rise to an ordering and adic
transformation on BR

but I don’t know how to do this in general.

I do know that changing the ordering changes the combinatorics,
and possibly the nature of invariant measures.

Moreover, a Bratteli diagram with fixed ordering can support
invariant measures of different types.
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Invariant measures and abstract patch frequency

P = finite patch and U = small subset of Rd . The cylinder set

XP,U = {T ∈ ΩR|P − x ⊂ T for some x ∈ U}

When µ is a translation-invariant Borel probability measure we have

µ(XP,U) = freqµ(P)Vol(U)

But we have to make sense of what this frequency means.
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Invariant measures and abstract patch frequency

Fix a Van Hove sequence {An} of subsets of Rd : Vol(An)→∞
and the padded boundary of An goes to 0 relative to Vol(An).

By the ergodic theorem for µ-almost every T ∈ ΩR,

freqµ(P) = lim
n→∞

#(P in T ∩ An)

Vol(An)

Note: Changing the Van Hove sequence will change the set of Ts
for which the frequencies converge.
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Sequences of supertile frequencies

Consider the sequence ρ = {ρn} where each ρn ∈ Rjn has all
nonnegative entries.
Then ρn(i) represents an abstract frequency of the supertile Pn(i)
if ρ is:

volume-normalized:

jn∑
i=1

ρn(i)Vol(Pn(i)) = 1 for all n. (This

gives us a probability measure.)

transition-consistent: ρn = Mn,NρN whenever n < N. (The
frequency of an n-supertile consistent with the frequencies of
the N-supertiles it lives inside)
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The “10n” example

Pn(a) = (Pn−1(a))10
n
Pn−1(b) Pn(b) = (Pn−1(b))10

n
Pn−1(a)

We have Mn,n+1 =

(
10n 1

1 10n

)
.

The system is minimal, but Pn(a) is a-heavy and Pn(b) is b-heavy.

Volume-normalization for n-supertiles: ln = |Pn(a)| = |Pn(b)|

The frequencies of the n-supertiles satisfy ρn(a)ln + ρn(b)ln = 1
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Invariant measures ↔ well-defined supertile frequencies

Theorem. Let R be a recognizable, primitive, Van Hove fusion
rule. There is a one-to-one correspondence between the set of all
invariant Borel probability measures on (XR,Rd) and the set of all
sequences of well-defined supertile frequencies with the
correspondence that, for all patches P,

freqµ(P) = lim
n→∞

jn∑
i=1

# (P in Pn(i)) ρn(i) (1)

This means that finding invariant measures boils down to finding
supertile frequencies. These are determined by the transition
matrices.
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Parameterization of invariant measures

The jth column of Mn,N represents the number of times each
n-supertile appears in the N-supertile of type j .

Normalizing this column by volume gives us the relative
volume each n-supertile occupies in PN(j).

Let ∆n,N = volume-normalized vectors in positive cone
spanned by columns of Mn,N .

In the 10n example we have

Natalie Priebe Frank and Lorenzo Sadun Fusion tilings



Parameterization of invariant measures

Note: ∆n,N+1 ⊂ ∆n,N , since Mn,N+1 = Mn,NMN,N+1.

In the 10n example we get

Let ∆n = ∩N∆n,N = {all possible vectors ρn}.
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Parameterization of invariant measures

Thus ∆n is the set of possible n-supertile frequencies. A sequence
of well-defined supertile frequencies ρ = {ρn} must also be
transition-consistent.

Take the inverse limit under Mn,n+1 : ∆n+1 → ∆n

∆∞ = lim←−∆n = { invariant measures }

Corollary. Let (XR,Rd) be the dynamical system of a
recognizable, primitive, Van Hove fusion rule. The set of all
invariant Borel probability measures is parameterized by ∆∞.
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Unique ergodicity

We have unique ergodicity if the ∆ns collapse to points.

Corollary. Let δn = min
i ,j ,k

Mn,n+1(i , k)

Mn,n+1(j , k)
. If

∑
δn =∞, the fusion is

primitive and ΩR is uniquely ergodic.

Corollary. If the transition matrix is fixed and primitive, ΩR is
uniquely ergodic.
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The 10n system has exactly two ergodic measures.

Mn−1,n =
(
10n 1
1 10n

)
has eigenvalues 10n − 1 and 10n + 1.

∆n is an interval for every value of n ( defined by the limits of the
first and second columns of Mn,N).

Likewise, ∆∞ is an interval, whose endpoints µa and µb can be
obtained from the supertile sequences κ = (a, a, a, a, . . .) and
κ = (b, b, b, b, . . .).

The invariant measure µ = (µa + µb)/2 corresponds to Lebesgue
measure when the system is seen as a cut-and-stack
transformation.
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Other examples

A minimal fusion rule with two ergodic measures, one having
pure discrete spectrum and the other having some continuous
spectrum.

A fusion rule that is measurably pure discrete spectrum but
topologically weakly mixing.

The Bratteli diagram is identical to one that is topologically
pure point spectrum; the difference is determined by the order
on the edges.
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Conclusion

Fusion gives a unified framework for lots of hierarchical
structures.

Some properties of substitutions carry over, others don’t.
Interesting counterexamples.

For primitive Van Hove fusions, finding ergodic measures boils
down to linear algebra. The spectral type of those measures
doesn’t, though.

Spectral theory can be handled via return vectors in Vn.

Topological properties, like inverse limit structures, resemble
those of substitution tilings.
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