Fusion: A general framework for hierarchical tilings

Natalie Priebe Frank¹ Lorenzo Sadun²

¹Vassar College

²University of Texas at Austin

Aperiodic Order, CMS Edmonton, June 3 2011

A framework for general hierarchical systems, including

- Self-similar tilings and substitution sequences—our original motivation
- Cut-and-stack transformations
- Bratteli-Vershik systems
- Combinatorial substitutions
- Generalized substitutions
- S-adic transformations
- Random substitutions

Motivating results for substitution tiling dynamics

Acting by translation on the tiling space, we have

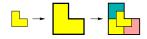
- Conditions for unique ergodicity
- There is an algorithm for finding eigenvalues
- Measurable eigenfunctions can be chosen continuous.
- The substitution is invertible if and only if the tilings are non-periodic
- No positive entropy or strong mixing
- Hierarchy can be enforced via local matching rules
- The spaces are either Cantor sets or Cantor set fiber bundles
- The spaces are inverse limits
- The cohomology and K-theory is computable

Today's talk will focus on invariant/ergodic measures.

Self-similar tilings are "ideal" hierarchical tilings. Several ingredients:

- A group *G* of isometries, typically either \mathbb{Z}^d , \mathbb{R}^d or the Euclidean group.
- A finite collection of shapes, called "prototiles". "Tiles" are prototiles moved around by group elements.
- An expansive linear tranformation $L : \mathbb{R}^d \to \mathbb{R}^d$, typically a pure dilation.
- A rule σ for replacing each tile t with a patch of tiles whose union is L(t).

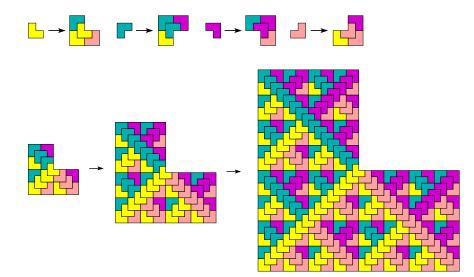
The "chair" substitution rule



- Choose $G = \mathbb{R}^2$, moving tiles and tilings by translation,
- Thus we need four tile types, and
- The linear map *L* expands by a factor of 2.
- On all four tile types:

Iterating repeatedly creates "supertiles" that grow to cover the plane.

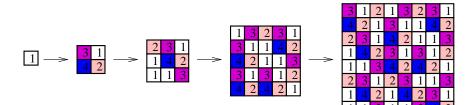
A few chair supertiles



→ < ∃ →</p>

э

A tiling substitution without linear expansion L



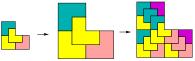
A ≥ ▶

Definition An *n*-supertile is a tile *t* that has been substituted *n* times, i.e. $\sigma^{n}(t)$.

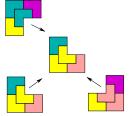
A chair 2-supertile (with *t*=yellow tile)

Two views of supertiles

• $\sigma^n(t) = \sigma(\sigma^{n-1}(t))$ is what you get by expanding an n-1 supertile, replacing each tile with a 1-supertile:



σⁿ(t) = σⁿ⁻¹(σ(t)) is what you get by gluing several n-1 supertiles together, in a pattern determined by σ(t).



But why does gluing pattern have to be the same at each level?

Definition. A *fusion* of a patch P_1 to another patch P_2 is a union of P_1 and P_2 that is connected and does not contain overlaps.

fusion = geometric concatenation

- O-supertiles. A finite collection \mathcal{P}_0 of tiles. These are "atoms".
- 1-supertiles. A finite collection \mathcal{P}_1 of patches (fusions) of tiles from \mathcal{P}_0 . These are "molecules".
- 2-supertiles. A finite collection \mathcal{P}_2 of patches made by fusing together elements from \mathcal{P}_1 .
- *n*-supertiles. For each n > 0, P_n is a finite set of patches that are fusions of (n − 1)-supertiles.

For one thing, the combinatorics can change from level to level.

Example. Let $\mathcal{P}_0 = \{a, b\}$

$$P_n(a) = P_{n-1}(a)P_{n-1}(b),$$

$$P_n(b) = \begin{cases} P_{n-1}(a)P_{n-1}(b)P_{n-1}(b) & \text{if } n \text{ is prime} \\ P_{n-1}(b)P_{n-1}(b)P_{n-1}(a) & \text{if } n \text{ is not prime} \end{cases}$$

Our sets of supertiles are:

- $\mathcal{P}_1 = \{ab, bba\}$
- $\mathcal{P}_2 = \{abbba, abbbabba\}$

Difference, part 2: The 10ⁿ example.

$$\mathcal{P}_0 = \{a, b\}, \qquad \mathcal{P}_n = \{P_n(a), P_n(b)\},$$

where

Let

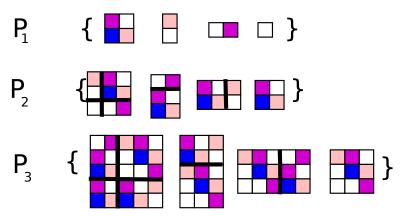
$$P_2(a) = (P_1(a))^{100} P_1(b)$$
 $P_2(b) = (P_1(b))^{100} P_1(a)$

and in general

$$P_n(a) = (P_{n-1}(a))^{10^n} P_{n-1}(b)$$
 $P_n(b) = (P_{n-1}(b))^{10^n} P_{n-1}(a)$

æ

A two-dimensional example



We could change the combinatorics at each level; we could change the number of *n*-supertiles at each stage too.

Consider a fixed substitution σ or fusion rule \mathcal{R} .

- A patch is *admissible* if it is found somewhere in a supertile.
- An infinite tiling **T** is *admissible* if every finite patch of tiles in **T** is admissible.
- The tiling space Ω_{σ} or $\Omega_{\mathcal{R}}$ consist of all admissible tilings **T**.
- That is, each point in the tiling space is an infinite tiling.
- A tiling and its image under a rigid motion from G are, in the absence of symmetry, distinct points in the tiling space.

Note: While σ extends to a map from Ω_{σ} to itself, there is no self-map of $\Omega_{\mathcal{R}}$ induced by the fusion rule. This is a major obstruction to proofs.

Given a tiling space Ω constructed using isometry group G, we give Ω the "big ball topology".

G acts continuously on Ω ; our dynamical system is

 (Ω, G, μ)

where μ is an invariant Borel probability measure.

For simplicity we often assume that our action is by continuous translations: $G = \mathbb{R}^{d}$.

What do we know about fusion systems?

- Without further assumptions, not a lot: every tiling system can be expressed as a fusion tiling system.
- With various assumptions, tons! We have versions of almost all of the motivating results listed at the beginning.

- Fusion allows for interesting constructions impossible for substitutions.
 - There can be measurable eigenfunctions/values that aren't continuous.
 - Strong mixing and entropy are possible.
 - Minimal systems can fail to be uniquely ergodic.

Essential technical stuff

• "Transition matrices" $M_{n,N}$ count how many *n*-supertiles make up each *N*-supertile:

$$M_{n,N}(i,j) = \#P_n(i) \text{ in } P_N(j)$$

- For n < m < N we have $M_{n,m}M_{m,N} = M_{n,N}$
- "Primitivity": for each *n* there exists an *N* such that all entries of $M_{n,N}$ are positive.
 - Implies $(\Omega_{\mathcal{R}}, G, \mu)$ is a minimal (the closure of one orbit).
- "Van Hove" (aka Følner): Supertile volumes grow large relative to their interiors.
 - Essential for frequency (and thus measure) calculations.
- "Recognizability": every tiling decomposes into *n*-supertiles unambiguously

3

• Essential for anything involving Bratteli diagrams.

Let the set of *n*-supertiles be denoted by

 $\mathcal{P}_n = \{P_n(1), P_n(2), ..., P_n(j_n)\}$

- The vertex set V_n is the set of *n*-supertiles.
- Each copy of $P_n(i)$ in $P_{n+1}(j)$ gets an edge in E_n .
- If there is more than one way to fuse *n*-supertiles to get an (n+1)-supertile, fix a preferred one to use in this and all other computations.
- The transition matrix F_n is defined as the number of *n*-supertiles in each *N*-supertile. That is, $F_n = M_{n,n+1}$.

 μ -almost every tiling **T** in $\Omega_{\mathcal{R}}$ corresponds to an infinite path in the Bratteli diagram $\mathfrak{B}_{\mathcal{R}}$: the vertex in V_n corresponds to the *n*-supertile in **T** that contains the origin.

If $G=\mathbb{Z},$ the dynamics gives rise to an ordering and adic transformation on $\mathfrak{B}_{\mathcal{R}}$

but I don't know how to do this in general.

I do know that changing the ordering changes the combinatorics, and possibly the nature of invariant measures.

Moreover, a Bratteli diagram with fixed ordering can support invariant measures of different types.

P = finite patch and U = small subset of \mathbb{R}^d . The cylinder set

$$X_{P,U} = \{ \mathbf{T} \in \Omega_{\mathcal{R}} | P - x \subset \mathbf{T} \text{ for some } x \in U \}$$

When μ is a translation-invariant Borel probability measure we have

$$\mu(X_{P,U}) = freq_{\mu}(P)Vol(U)$$

But we have to make sense of what this frequency means.

Fix a Van Hove sequence $\{A_n\}$ of subsets of \mathbb{R}^d : $Vol(A_n) \to \infty$ and the padded boundary of A_n goes to 0 relative to $Vol(A_n)$.

By the ergodic theorem for μ -almost every $\mathbf{T} \in \Omega_{\mathcal{R}}$,

$$freq_{\mu}(P) = \lim_{n \to \infty} \frac{\#(P \text{ in } \mathbf{T} \cap A_n)}{Vol(A_n)}$$

Note: Changing the Van Hove sequence will change the set of Ts for which the frequencies converge.

Consider the sequence $\rho = \{\rho_n\}$ where each $\rho_n \in \mathbb{R}^{j_n}$ has all nonnegative entries. Then $\rho_n(i)$ represents an abstract frequency of the supertile $P_n(i)$ if ρ is:

- volume-normalized: $\sum_{i=1}^{j_n} \rho_n(i) \operatorname{Vol}(P_n(i)) = 1$ for all n. (This gives us a probability measure.)
- transition-consistent: ρ_n = M_{n,N}ρ_N whenever n < N. (The frequency of an *n*-supertile consistent with the frequencies of the N-supertiles it lives inside)

 $l_n x + l_n y = 1$

$$P_n(a) = (P_{n-1}(a))^{10^n} P_{n-1}(b)$$
 $P_n(b) = (P_{n-1}(b))^{10^n} P_{n-1}(a)$

We have $M_{n,n+1} = \begin{pmatrix} 10^n & 1\\ 1 & 10^n \end{pmatrix}$. The system is minimal, but $P_n(a)$ is *a*-heavy and $P_n(b)$ is *b*-heavy.

Volume-normalization for *n*-supertiles: $I_n = |P_n(a)| = |P_n(b)|$

The frequencies of the *n*-supertiles satisfy $\rho_n(a)I_n + \rho_n(b)I_n = 1$

Theorem. Let \mathcal{R} be a recognizable, primitive, Van Hove fusion rule. There is a one-to-one correspondence between the set of all invariant Borel probability measures on $(X_{\mathcal{R}}, \mathbb{R}^d)$ and the set of all sequences of well-defined supertile frequencies with the correspondence that, for all patches P,

$$freq_{\mu}(P) = \lim_{n \to \infty} \sum_{i=1}^{j_n} \# (P \text{ in } P_n(i)) \rho_n(i)$$
(1)

This means that finding invariant measures boils down to finding supertile frequencies. These are determined by the transition matrices.

Parameterization of invariant measures

- The *j*th column of $M_{n,N}$ represents the number of times each *n*-supertile appears in the *N*-supertile of type *j*.
- Normalizing this column by volume gives us the relative volume each *n*-supertile occupies in $P_N(j)$.
- Let $\Delta_{n,N}$ = volume-normalized vectors in positive cone spanned by columns of $M_{n,N}$.

• In the 10^n example we have

Parameterization of invariant measures

• Note: $\Delta_{n,N+1} \subset \Delta_{n,N}$, since $M_{n,N+1} = M_{n,N}M_{N,N+1}$.

• In the 10^n example we get

• Let $\Delta_n = \bigcap_N \Delta_{n,N} = \{ \text{all possible vectors } \rho_n \}.$

Thus Δ_n is the set of possible *n*-supertile frequencies. A sequence of well-defined supertile frequencies $\rho = \{\rho_n\}$ must also be transition-consistent.

Take the inverse limit under $M_{n,n+1} : \Delta_{n+1} \to \Delta_n$ $\Delta_{\infty} = \varprojlim \Delta_n = \{ \text{ invariant measures } \}$

Corollary. Let $(X_{\mathcal{R}}, \mathbb{R}^d)$ be the dynamical system of a recognizable, primitive, Van Hove fusion rule. The set of all invariant Borel probability measures is parameterized by Δ_{∞} .

We have unique ergodicity if the Δ_n s collapse to points.

Corollary. Let
$$\delta_n = \min_{i,j,k} \frac{M_{n,n+1}(i,k)}{M_{n,n+1}(j,k)}$$
. If $\sum \delta_n = \infty$, the fusion is primitive and Ω_R is uniquely ergodic.

Corollary. If the transition matrix is fixed and primitive, $\Omega_{\mathcal{R}}$ is uniquely ergodic.

 $M_{n-1,n} = \begin{pmatrix} 10^n & 1\\ 1 & 10^n \end{pmatrix}$ has eigenvalues $10^n - 1$ and $10^n + 1$.

 Δ_n is an interval for every value of n (defined by the limits of the first and second columns of $M_{n,N}$).

Likewise, Δ_{∞} is an interval, whose endpoints μ_a and μ_b can be obtained from the supertile sequences $\kappa = (a, a, a, a, ...)$ and $\kappa = (b, b, b, b, ...)$.

The invariant measure $\mu = (\mu_a + \mu_b)/2$ corresponds to Lebesgue measure when the system is seen as a cut-and-stack transformation.

• A minimal fusion rule with two ergodic measures, one having pure discrete spectrum and the other having some continuous spectrum.

- A fusion rule that is measurably pure discrete spectrum but topologically weakly mixing.
 - The Bratteli diagram is identical to one that is topologically pure point spectrum; the difference is determined by the order on the edges.

- Fusion gives a unified framework for lots of hierarchical structures.
- Some properties of substitutions carry over, others don't. Interesting counterexamples.
- For primitive Van Hove fusions, finding ergodic measures boils down to linear algebra. The *spectral type* of those measures doesn't, though.
- Spectral theory can be handled via return vectors in \mathcal{V}_n .
- Topological properties, like inverse limit structures, resemble those of substitution tilings.