
Fractal dual substitution tilings

Natalie Priebe Frank1, Samuel B. G. Webster, and Michael F.
Whittaker2

30th Summer Conference on Topology and its Applications,
June 2015

1Vassar College, Poughkeepsie, New York
2University of Wollongong, Wollongong, Australia







Overview

I Construction of substitution tilings
I Famous example: the Penrose tiling

I Construction of fractal dual tilings
I Combinatorial and geometric graphs
I Recurrent pairs and edge substitutions
I Iteration leads to fractal realization of the tiling

I Results and applications



Substitution tilings
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Figure: The two-dimensional Thue-Morse substitution rule.



Iterating the substitution to produce a tiling of R2
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The Penrose substitution
Using four types of triangles
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Combinatorial graphs
and their topological realizations

I A combinatorial graph K has a finite set of vertices V (K ) and
an edge set E (K ) consisting of two-element subsets of V (K ).
I Ex. V (K ) = {a, b, c , d};E (K ) = {{a, d}, {b, d}, {c , d}}

I The topological realisation of K is given by identifying each
edge with [0, 1] and gluing together according to K .
I Ex.
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I Our method involves embedding graphs into R2 in multiple
ways.



Geometric graphs
Embeddings of combinatorial graphs

I An embedding of K is a continuous injective map ιG from the
topological realisation of K into R2.

I A geometric graph G is the image of some embedding ιG .

Example
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I Two geometric graphs are equivalent if they are embeddings
of the same combinatorial graph. Write G ∼ H.



Graphs embedded into prototiles

I Let P be a finite set of prototiles.

Example. P =

α β

I A geometric graph on P is a set {Gp}p∈P of geometric graphs
with Gp ⊂ supp p.

Example. G =

α β

I Idea: When you substitute the tiles, you can bring the graphs
along to form a new geometric graph on P.
I From that graph you can try to select a subgraph G1 that is

equivalent to G .
I Then you can substitute again, using G1 instead of G , and

select a subgraph G2 that is equivalent to G1 and G .
I Repeating ad infinitum gives a fractal dual.



Recurrent pairs

Given substitution ω with scaling factor λ, let RN := λ−NωN . We
say (G ,S) is a recurrent pair if there exists an N for which

I S ⊂ RN(G ), and

I S ∼ G

G R1(G ) S

I A recurrent pair (G ,S) defines a (graph) iterated function
system

I The attractor (or fractal) of that IFS is a geometric graph
that forms our new tile boundaries.
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Example: a (G , S) recurrent pair for the Penrose tiling

G R2(G ) S G1

G R2(G ) S G1

G R2(G ) S G1

G R2(G ) S G1



Example: the first iteration for the Penrose tiling

G1 R2(G1) S1 G2

G1 R2(G1) S1 G2

G1 R2(G1) S1 G2

G1 R2(G1) S1 G2



Example: the second iteration for the Penrose tiling

G2 R2(G2) S2 G∞

G2 R2(G2) S2 G∞

G2 R2(G2) S2 G∞

G2 R2(G2) S2 G∞



Example: a fractal Penrose tiling
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Example: a fractal Penrose tiling



Example: 2-dimensional Thue-Morse Tiling

G R2(G ) S G∞

G R2(G ) S G∞



Example: 2-dimensional Thue-Morse Tiling



Example: Fractal Thue-Morse Tiling Substitution



Results

Theorem. (F.-Webster-Whittaker ’14) If ψ(∞) is injective, then
ψ(∞)(∂T ) is the boundary of a tiling, denoted T∞. Moreover, T∞
is a substitution tiling, is mutually locally derivable from T , has
FLC, and forces the border.

Theorem. (F.-Webster-Whittaker ’14) Suppose T is a finite local
complexity substitution tiling with prototile set P whose tiles meet
singly edge-to-edge. Then T has an infinite number of distinct
fractal quasi-dual substitution tilings. If the prototiles of T are all
convex, then T has an infinite number of distinct fractal dual
substitution tilings.
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Application: Connes’ noncommutative geometry program

Theorem. (Mampusti-Whittaker ’15) Under mild conditions,
recurrent pairs give rise to fractal trees that define a geodesic
distance on tiles in a tiling. This defines a class of
noncommutative spectral triples on the C ∗-algebra associated with
the tiling that respects the hierarchy of the substitution system.

I Every fractal dual tiling defines a noncommutative Riemannian
geometry on the C ∗-algebra of the original tiling space.
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