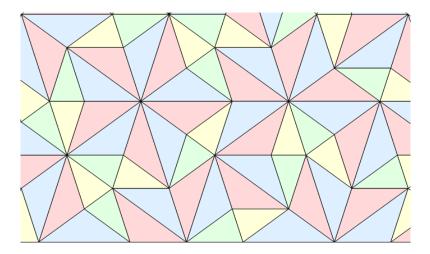
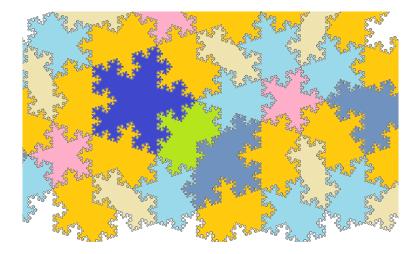
Fractal dual substitution tilings

Natalie Priebe Frank¹, Samuel B. G. Webster, and Michael F. Whittaker²

30th Summer Conference on Topology and its Applications, June 2015

¹Vassar College, Poughkeepsie, New York
²University of Wollongong, Wollongong, Australia





Overview

Construction of substitution tilings
Famous example: the Penrose tiling
Construction of fractal dual tilings
Combinatorial and geometric graphs
Recurrent pairs and edge substitutions
Iteration leads to fractal realization of the tiling

Results and applications

Substitution tilings

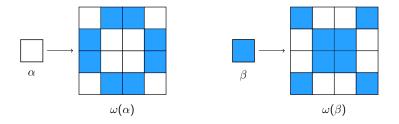
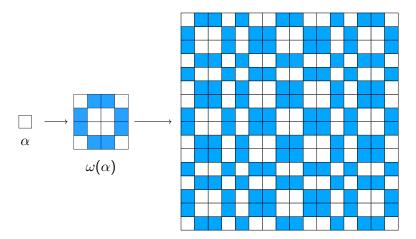


Figure: The two-dimensional Thue-Morse substitution rule.

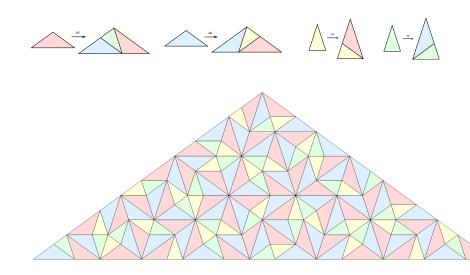
Iterating the substitution to produce a tiling of $\ensuremath{\mathbb{R}}^2$



 $\omega^2(\alpha)$

The Penrose substitution

Using four types of triangles



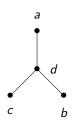
Combinatorial graphs

and their topological realizations

A combinatorial graph K has a finite set of vertices V(K) and an edge set E(K) consisting of two-element subsets of V(K).

• Ex.
$$V(K) = \{a, b, c, d\}; E(K) = \{\{a, d\}, \{b, d\}, \{c, d\}\}$$

▶ The topological realisation of *K* is given by identifying each edge with [0, 1] and gluing together according to *K*.

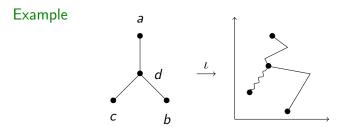


► Our method involves embedding graphs into ℝ² in multiple ways.

Geometric graphs

Embeddings of combinatorial graphs

- An embedding of K is a continuous injective map *ι_G* from the topological realisation of K into ℝ².
- A geometric graph G is the image of some embedding ι_G .

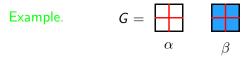


Two geometric graphs are equivalent if they are embeddings of the same combinatorial graph. Write $G \sim H$.

Graphs embedded into prototiles

► Let \mathcal{P} be a finite set of prototiles. Example. $P = \square$ α β

A geometric graph on P is a set {G_p}_{p∈P} of geometric graphs with G_p ⊂ supp p.



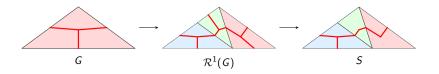
- ▶ Idea: When you substitute the tiles, you can bring the graphs along to form a new geometric graph on *P*.
 - ▶ From that graph you can try to select a subgraph G₁ that is equivalent to G.
 - Then you can substitute again, using G_1 instead of G, and select a subgraph G_2 that is equivalent to G_1 and G.
 - Repeating ad infinitum gives a fractal dual.

Recurrent pairs

Given substitution ω with scaling factor λ , let $\mathcal{R}^N := \lambda^{-N} \omega^N$. We say (G, S) is a recurrent pair if there exists an N for which $\triangleright S \subset \mathcal{R}^N(G)$, and

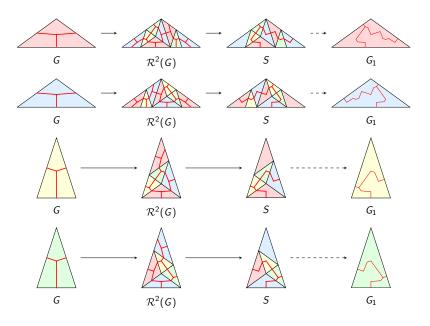
Recurrent pairs

Given substitution ω with scaling factor λ , let $\mathcal{R}^N := \lambda^{-N} \omega^N$. We say (G, S) is a recurrent pair if there exists an N for which $\triangleright S \subset \mathcal{R}^N(G)$, and

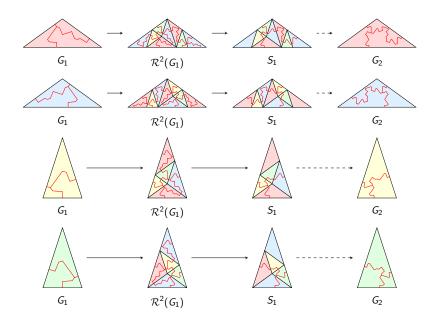


- ► A recurrent pair (G, S) defines a (graph) iterated function system
- The attractor (or fractal) of that IFS is a geometric graph that forms our new tile boundaries.

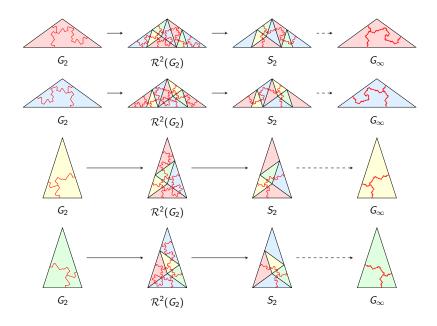
Example: a (G, S) recurrent pair for the Penrose tiling



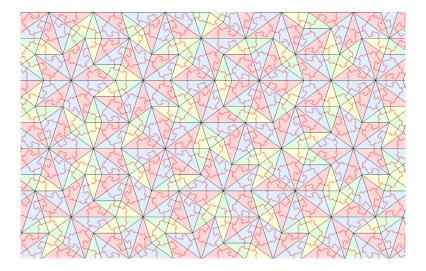
Example: the first iteration for the Penrose tiling



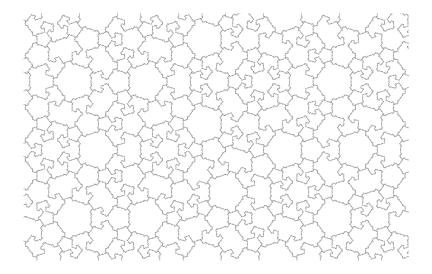
Example: the second iteration for the Penrose tiling



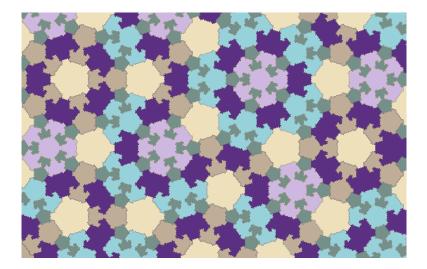
Example: a fractal Penrose tiling



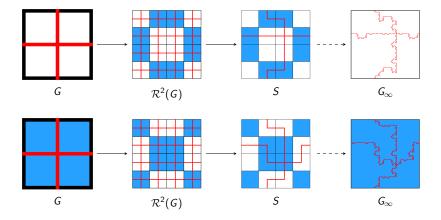
Example: a fractal Penrose tiling



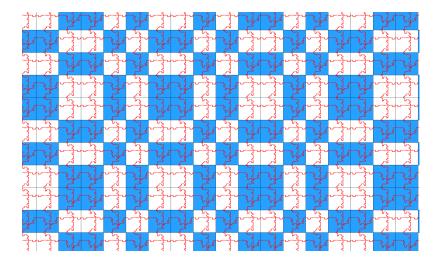
Example: a fractal Penrose tiling



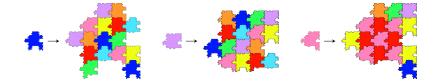
Example: 2-dimensional Thue-Morse Tiling

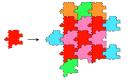


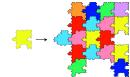
Example: 2-dimensional Thue-Morse Tiling

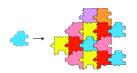


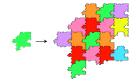
Example: Fractal Thue-Morse Tiling Substitution

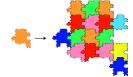












Results

THEOREM. (F.-Webster-Whittaker '14) If $\psi^{(\infty)}$ is injective, then $\psi^{(\infty)}(\partial T)$ is the boundary of a tiling, denoted T_{∞} . Moreover, T_{∞} is a substitution tiling, is mutually locally derivable from T, has FLC, and forces the border.

Results

THEOREM. (F.-Webster-Whittaker '14) If $\psi^{(\infty)}$ is injective, then $\psi^{(\infty)}(\partial T)$ is the boundary of a tiling, denoted T_{∞} . Moreover, T_{∞} is a substitution tiling, is mutually locally derivable from T, has FLC, and forces the border.

THEOREM. (F.-Webster-Whittaker '14) Suppose T is a finite local complexity substitution tiling with prototile set \mathcal{P} whose tiles meet singly edge-to-edge. Then T has an infinite number of distinct fractal quasi-dual substitution tilings.

Results

THEOREM. (F.-Webster-Whittaker '14) If $\psi^{(\infty)}$ is injective, then $\psi^{(\infty)}(\partial T)$ is the boundary of a tiling, denoted T_{∞} . Moreover, T_{∞} is a substitution tiling, is mutually locally derivable from T, has FLC, and forces the border.

THEOREM. (F.-Webster-Whittaker '14) Suppose T is a finite local complexity substitution tiling with prototile set \mathcal{P} whose tiles meet singly edge-to-edge. Then T has an infinite number of distinct fractal quasi-dual substitution tilings. If the prototiles of T are all convex, then T has an infinite number of distinct fractal dual substitution tilings.

THEOREM. (Mampusti-Whittaker '15) Under mild conditions, recurrent pairs give rise to fractal trees that define a geodesic distance on tiles in a tiling. This defines a class of noncommutative spectral triples on the C^* -algebra associated with the tiling that respects the hierarchy of the substitution system.

THEOREM. (Mampusti-Whittaker '15) Under mild conditions, recurrent pairs give rise to fractal trees that define a geodesic distance on tiles in a tiling. This defines a class of noncommutative spectral triples on the C^* -algebra associated with the tiling that respects the hierarchy of the substitution system.

Every fractal dual tiling defines a noncommutative Riemannian geometry on the C*-algebra of the original tiling space.

- N.P. Frank and M.F. Whittaker, *A Fractal version of the Pinwheel tiling*, Math. Intellig. **33** (2011), 7–17.
- N. P. Frank, S. B. G. Webster, and M.F. Whittaker, *Fractal dual substitution tilings*, preprint, 2014.
- M. Mampusti and M. F. Whittaker, *Fractal spectral triples on Kellendonk's C*-algebra of a substitution tiling*, preprint, 2015.