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“Rudin-Shapiro”

The “Rudin-Shapiro” Sequence: some history
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The “Rud juence: some hi

Quick definitions

-+t

@ The solution {ry,},>0 to the recurrence
ro=1, 7o =7rn, Tony1=(—1)"r,

@ If u(n) is the occurrence number of “11” in the 2-adic
representation of n,

ry = (=1)
© The factor onto 1 of the fixed point of

1—12 2 —12
1—-12 212
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The “Rudin-

Fast facts

@ 2-Automatic

Balanced and non-palindromic

Has an absolutely continuous spectrum of multiplicity 2

Satisfies the “root-IN property”
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The “Rudin-Sh. Sequence: some history

Foundational literature on the RS sequence

e H. Shapiro, “Extremal Problems for Polynomials and Power
Series”, 1951

e In the context of trigonometric polynomials, see p. 39

M. Golay, “Statistic multislit spectrometry and its
application to the panoramic display of infrared spectra”,
1951

o W. Rudin, “Some theorems on Fourier coefficients”, 1959
o Establishes the “root-IN property” can be satisfied.

J. Brillhart and L. Carlitz, “Note on the Shapiro
polynomials”, 1970

(]

o The formulation using binary expansion is Theorem 4.

M. Queffélec, Substitution Dynamical Systems —
Spectral Analysis, 1987, 2010

o Extensive documentation of literature pre-1987.
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Tt udin- Sequence: some hi

Literature on RS generalizations

o M. Queffélec, “Une nouvelle propriété des suites de
Rudin-Shapiro,” 1987
o Generalization to sequences of roots of unity
o J.-P. Allouche and P. Liardet, “Generalized Rudin-Shapiro
Sequences”, 1991
o Generalization through binary expansion
o N. Frank, “Substitution sequences in Z% with a non-simple
Lebesgue component in the spectrum”, 2003
e Uses Hadamard matrices to make rectangular substitutions
o L. Chan and U. Grimm, “Spectrum of a
Rudin—Shapiro-like sequence”, 2017; Chan, U. Grimm, and
1. Short, “Substitution-based structures with absolutely
continuous spectrum”, 2018
o Uses the root-IN property
o N. Manibo and N. Frank, “Spectral Theory of Spin
Substitutions”, 2027
o Generalizes using digit-based substitutions and abelian
groups
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Shapiro polynomials: Chan-Grimm-Short method

Shapiro polynomials: Chan-Grimm-Short

method
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Shapiro polynomi Grimm-Short method

Trigonometric polynomials and v N

Polynomials of the form
Pn(z) = Z anz" where ||z|| = 1.
n<N

Define

E anz"

n<N

PN loo = sup
|z|=1

For almost every sequence with a,, = +1 it is true that

VN < ||Py|lso < /Nlog N
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Shapiro polynomials Grimm-Short method

A question of Raphael Salem, circa 1950

As stated by W. Rudin, “Some theorems on Fourier
coefficients”, 1959:
Does there exist an absolute constant C' such that for all
N there exists €1,...,en such that

sup E enx”

lz1=1 N

< CVN?

This becomes known as the “root-N” property.
Root-N property IFF absolutely continuous diffraction

(You can deduce from Queffelec’s Substitution Dynamical
Systems—Spectral Analysis)

Natalie Priebe Frank Generalizations of the Rudin-Shapiro sequence



n-Short method

The 01“1g al polynomlals

Letting Py(x) = Qo(z) = x, define

Pyi1(z) = Pulz) + 2% Qu(z)
Qrs1(z) = Pi(z) — 2% Qu(x)

@ You can show that the coefficients of P; are the first 2F
elements of the Rudin-Shapiro sequence.

o Using the parallelogram law
o+ B + o= B° = 2]af” + 2/,

the proof of the root-IV property falls out of the recursion
for N = 2% and can be extended to any N in a
straightforward way.
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Shapiro polynom rimm-Short method

Chan-Grimm-Short generalizations

A first generalization: Let Py(z) = Qo(z) = z, and o, = £1:

Pysa(2) = Pil(a) + (o) 2> Qu()
Qrr1(2) = Pe(2) — (03)2* Qi(z)

o With o == 1 you get the original
o With o, == —1 you get a different sequence

o In every case, the root-IN property is satisfied and so the
new sequences generated have absolutely continuous
diffraction
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Shapiro polynormr E: m-Short method

Chan- Gumm Short generalizations

@ They define a substitution for o == —1 analogously to the
RS substitution

o For a general sequence of oys, the sequnce becomes S-adic
using those two substitutions

o Interesting questions about the relationships between the
resulting subshifts are also investigated.

Additionally, a generalization using complex coefficients, more
general Shapiro polynomials, and Fourier matrices is shown to
maintain the root-IN property, producing more examples of
sequences with ac spectrum.
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Generalization to Z¢ using Hadamard matrices

Generalization to Z? using Hadamard matrices
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Recall RS as a substltutlon

Let A= {1,2,1,2} and define

1—12 2 — 12
1—12 2 — 12
Things to notice:

@ Only 1s are in the first ‘column’ and only 2’s in the second.

@ The substitution of a barred element is the bar of the
substituted element:

S(1)=12=12=8(1)
S2)=12=12=35(2)
@ A Hadamard matrix appears when we look at the

substitution on the unbarred elements: (i +)
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Generalization to Z% ing Hadamard matrices

RS generalization to higher dimensions, F. circa 2002

Recipe:
Q@ Get an n x n Hadamard matrix H
e A matrix of +1 with orthogonal rows
@ Make a rectangular array in Z¢ with n total entries
o each j € {1,...n} is associated with a spot in this array
@ Make the alphabet A = {1,2,...,n,1,2,....,n}.
@ Define the kth spot in S(j) to be k or k depending on
whether Hj, = + or —

@ Define S(j) to be S(4)
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+++—

o Let H = T
+—++
-+ ++
o Take the array in Z? given by
314
1=1(0,0),2=(1,0),3=(0,1),4=(1,1): 115

e The alphabet is then A = {1,2,3,4,1,2,3,4}.

PR T el Nl S e " O e . /RO e

+ [+ + [+ + [ - B

Natalie Priebe Frank Generalizations of the Rudin-Shapiro sequence



©@

ns of the Rudin-Shapiro sequen

Generalizatior

Natalie Priebe Frank

g
o
.=
=
Q
<
o=
=
=
e
+~
o r—
o
S
<
=
Q
+
Q
rw
—
I_I_
5]
-~
B




Geometric generalization using groups




Geometric genera

(Regular) Dlglt tlhngsr

(Grochenig/Haas, Lagarias/Wang, Vince, ...)

Ingredients:
@ a matrix @ that preserves Z%
@ a full set of coset representatives for Z¢/QZ we call D
@ One can think of D as a ‘tile’ that tiles Z.

We obtain a digit set for Q™:

pn) — {Z Q" ldy, with dy, ...,d, € D}

k=1
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Geometric generalizati using groups

Digit tiling example

Q= (3 g) ) D:{(0,0),(l,O),(O, 1)7(_17_1)}

Digit sets for @, Q?, and Q3.
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Geometric generalization using groups

Digit fractile

By iterating and rescaling we get a fractile:

oo
t = “kd. | di = lim Q*pW),
> Q@ 7FdyldreD Jim Q7D (1)
k=1
How big is this fractile? Is it a rep-tile?

A. Vince has a survey paper condensing results into a 10-point
theorem for when the fractile has volume 1.

(The tile in our example does have volume 1)
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1ps

nd their subshifts

Recipe:
o Get a digit tiling system (@, D)
e Pick a (finite) alphabet A
o Define a substitution rule as S : A — AP however you like
o Use the supertiles S*)(a) to create a ‘language’

o If there are sequences in Z% that are allowed by this
language, you have a substitution subshift (X, Z%).
o This will happen if the D(™s contain arbitrarily large
rectangles
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Geometric g 10 ng groups

Using the rec
e Using our previous digit system
@= (5 5)- P=10.0.0.0.0.1.(-1,-1))
o Let A = {a,b} = {pink, blue}

o Let S(pink) assign the digits to pink, pink, pink, blue
o Let S(blue) be the opposite

4
2 3
1
1 2
-3 - 3 4
-3
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Our example makes a subshift
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RS generalization: spin digit substutions
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RS generalizatio

RS as a spin substltutlon

Let G = Cy = {e, g} and consider the alphabet to be digits that
have a ‘spin’ given by elements of G:

A=1{1,2,1,2} = {el,e2, g1, g2},
el — ele2 e2 — elg2
gl — glg2 g2 — gle2

The matrix W allocating the spins in this notation is (Z ;)
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Spln dlglt SU_bStltuthHS

Recipe:

(*]

(]

Get a digit system (Q, D)
Get a finite abelian group G
Make the alphabet

{91,492, ...,9|D| such that g € G},

which has |G||D| elements.
Make a |D| x |D| matrix W with entries from G

Use the rows of W to distribute the spins for the
substitution of the spin-free letters el, e2, ..., e|D|

Define S(gd) = ¢S(d) for the rest of the alphabet.
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RS generalization: s ubstutions

Example: Vierdrachen substitution

o Let Q— G _11) with D = {(0,0), (1,0)} = {1,2}
o this digit system makes the ‘twindragon’ fractile.

o Let G=Cy x Oy ={e,a,b,ab}

o The alphabet as square tiles.

e a b ab

o Let W = <€ ‘”).
e ab

Natalie Priebe Frank Generalizations of the Rudin-Shapiro sequence



RS generalization: s ubstutions

Example: Vierdrachen substitution

e a b ab

Level-1 supertiles:

H
N
Level-2 supertiles:

s 5
s B
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RS generalization: spir stutions

Fast look at spectral theory

o Given a Z9 subshift ¥ with invariant measure u, let
H = L*(%, ).

Each f € H has a spectral measure associated with it

That measure can be pure point, singular wrt Lebesgue but
continuous, absolutely continuous wrt Lebesgue, or a

combination

@ These measures, taken together, reveal something about
the structure of the subshift
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RS genera st sutions

Breaking the spectrum down

o Let UY: H — H be given by

U9(f(T)) = f(gT)

e Let x : G — S! be a group character
@ let HX be the eigenspace of functions U9(f) = x(g)f

Proposition (F.—Manibo, '21)

Let S = (Q,D,G, W) be a primitive spin substitution and % be

the subshift it generates. Suppose further that 3 is fully
apertodic. Then

A2, ) = @ HX

xeG
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RS generalizatio

Spectral purit

Corollary (F.-Manibo, '21)

Let § = (Q,D,G,W) be a primitive spin substitution and ¥ be
the subshift it generates. Suppose further that 3 is fully
aperiodic. Consider the decompositions

Hpp ® Hae ® Hee = L*(S, 1) = @D HX.
xEG

FEach HX is spectrally pure, i.e., for a fived x, HX C H, where
a € {pp, ac, sc}.
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RS generalizati ub

Characterizing the spectrum

Theorem (F.-Manibo, "21)

Let S = (Q,D,G, W) be a primitive spin substitution and % be
the subshift it generates. Suppose further that 3 is fully
aperiodic. Let x(W) := (x(W;))

Q x trwial = HX pure point
Q@ — (W) unitary = HX is purely absolutely continuous
\/@x( ) (] purely y

@ x(W) rank-1 = HX is singular (either pure point or
purely singular continuous)

@ Unitarity = zero spectral coefficients for ; #0

@ Rank-1 = x induces a factor onto a substitution with singular spectrum
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