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Recall from yesterday

I Objects: sequences on a finite alphabet; tilings on a finite
prototile set

I Letters/tiles serve as atoms in a model for quasicrystals

I Big ball metric
I Two tilings are close if after a small translation they agree

exactly on a big ball around the origin
I You’re standing at the origin and you can see the landscape

around you clearly
I If you want to see what is further away, you can

shift/translate the part you are interested in

I Translation serves as the action for our dynamical systems

I We want to avoid any periodicity yet have a repetitive
structure

I Supertile construction techniques are a good way to do that
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Classes of supertile methods
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Supertile constructions

I Symbolic substitutions

I Constant-length Zd substitutions

I Self-similar and self-affine tilings
I “pseudo”-self-similar and -affine tilings

I Fusion rules
I S-adic systems
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Substitution for sequences
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Symbolic substitutions

I A substitution is a map σ : A → A∗
I where A∗ is the set of non-empty words on A

I If w = a1...ak ∈ A∗, then σ(w) = σ(a1)...σ(ak)

I Terminology: an n-superword is a word of the form σn(a)
for some a ∈ A
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Example

(A constant-length substitution.) Let σ(a) = abb and
σ(b) = aaa.

a→ abb→ abb aaa aaa→ abb aaa aaa abb abb abb abb abb abb→ · · · ,

The length is 3. There is a whole other lexicon for this.
(sequence is 3-automatic, σ a non-erasing morphism,...)

Example

(Non-constant length) Choose a positive integer k and let
σ(a) = abbb and σ(b) = a. The first few supertiles are

a→ abbb→ abbb a a a→ abbb a a a abbb abbb abbb → · · · ,
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The subshift associated to the substitution σ

I Let R = {σn(a) such that a ∈ A and n ∈ N}
I A sequence x ∈ AZ is said to be admitted by σ if every

subword of x is a subword of an element of R.

I We define Ωσ ⊂ AZ to be the set of all sequences admitted
by σ.

I Apologies to the computer scientists; we are using R as a
sort of “language” for Ωσ.

I Since all of the words in a shifted sequence are the same as
those in the original, Ωσ is a shift-invariant subset of AZ
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One-dimensional self-similar tilings
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One-dimensional self-similar tilings

Example

(Obtaining a self-similar tiling from a symbolic substitution.)

I To make a tiling for σ(a) = abbb and σ(b) = a, tiles ta and
tb are made with (carefully chosen) lengths |ta| and |tb|.

I We define a tile substitution S:
I S(ta) is the tile ta followed by 3 copies of tb.
I S(tb) is just ta.

I The lengths of the supertiles are |S(ta)| = |ta|+ 3|tb| and
|S(tb)| = |ta|.

I The ideal situation would be if there was an inflation
factor λ > 1 such that |S(ta)| = λ|ta| and |S(tb)| = λ|tb|.
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Getting good tile lengths

If we know

|S(ta)| = |ta|+ 3|tb| |S(tb)| = |ta|

and we want

|S(ta)| = λ|ta| |S(tb)| = λ|tb|

we quickly see that λ must satisfy 3 = λ2 − λ. So we can let

λ =
1 +
√

13

2
, |ta| = λ, |tb| = 1
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Inflate-and-subdivide rule

The symbolic substitution becomes a tiling inflate-and-subdivide
rule:

Inflate Subdivide

Inflate Subdivide

Figure: Inflation and subdivision for the example.

(a.k.a. tiling substitution rule, tiling inflation rule)
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Tiling inflation rules in R

I σ is a symbolic subs

I te is the tile corresponding to the symbol e ∈ A.

I S(te) = patch of tiles for σ(e) supported on λ supp(te).

I S is an ‘inflate-and-subdivide rule’.

Extend S to be a map on ΩP as follows

I Let T ∈ ΩP be a tiling and let t ∈ T be any tile

I S(t) = patch given by the substitution of the prototile of t,
translated so that it occupies the set λ supp(t)

I Apply S to all tiles in T simultaneously to get S(T )

S(T ) =
⋃
t∈T
S(t)

If S(T ) = T , then T is called a self-similar tiling.
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Self-similar tiling for our example

Part of a self-similar tiling for our example:

If you imagine the origin at the far left, λ(T ) looks like

S(T ) = T , so T is self-similar.
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Constant-length symbolic substitutions in Zd
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Multidimensional constant-length symbolic
substitutions

Goal: Construct substitutions for sequences in Zd.

I We want to replace each a ∈ A with a rectangular block of
letters.

I Fix lengths l1, l2, ...ld, positive integers with each li > 1.

I The location set Id is:

Id = {~ = (j1, ...jd) such that ji ∈ 0, 1, ..., li−1 for all i = 1, ..d}.

I The substitution is a map S : A× Id → A.

I For any e ∈ A write S(e) a block of letters; we call it a
1-superblock or 1-supertile.
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A two-dimensional Thue-Morse substitution

Let l1 = l2 = 2, so that the location set is

I2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Define the substitution as:

S(0) =
1 0
0 1

, S(1) =
0 1
1 0

,

0→ 1 0
0 1

→
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

→

1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1

Figure: The first three superblocks of type 0. The lines emphasize
(n− 1)-superblocks inside the n-superblocks.Natalie P. Frank Vassar College
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Substitution as a block of maps

We can see S as a matrix
(
p~k
)
~k∈I2 of maps on A.

If we denote by g0 the identity map and g1 the map switching 0
and 1, we obtain:

S(∗, I2) =
(
p~k
)
~k∈I2 =

g1 g0
g0 g1

. (1)

For example we see that p(0,0) = g0 and p(0,1) = g1.
We call this substitution bijective because each of the maps
are bijections of the alphabet.
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Bijective substitutions

I ~k ∈ Id represents a location in a 1-superblock

I S restricted to ~k is a map p~k : A → A
I (These maps determine the cocycle for the skew product

representation of the system.)

Definition
Let the substitution S as defined in this section be written as
S =

(
p~k
)
~k∈Id . We say S is bijective if and only if each p~k is a

bijection from A to itself.
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Self-similar and self-affine tilings in Rd
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Self-similar and self-affine tilings in Rd

I Consider a finite prototile set P.

I If you are lucky, you may be able to make an inflation rule
that acts as a substitution

I (Unions of prototiles are related to prototiles via linear
maps)

I There are two ways to formally define
self-similar/self-affine tilings

Natalie P. Frank Vassar College

Hierarchical tilings



One way to define self-affine/similar tilings

Definition
Let φ : Rd → Rd be a diagonalizable linear transformation all of
whose eigenvalues are greater than one in modulus. A tiling T
is called self-affine with expansion map φ if

1. for each tile t ∈ T , φ(supp(t)) is the support of a union of
T -tiles, and

2. t and t′ are equivalent up to translation if and only if
φ(supp(t)) and φ(supp(t′)) support equivalent patches of
tiles in T .

If φ is a similarity the tiling is called self-similar. For
self-similar tilings of R or R2 ∼= C we obtain an inflation
constant λ for which φ(z) = λz.
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Another way to define self-similar tilings

Definition
Let P be a finite prototile set in Rd and let φ : Rd → Rd be a
diagonalizable linear transformation all of whose eigenvalues are
greater than one in modulus. A function S : P → P∗ is called a
tiling inflation rule with inflation map φ if for every p ∈ P,

φ(supp(p)) = supp(S(p)).
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Another way to define self-similar tilings, continued

We can extend S to tiles, patches, and tilings:

I If t = p− x for p ∈ P and x ∈ Rd we define

S(t) := S(p)− φ(x)

I Q patch or tiling:

S(Q) =
⋃
t∈Q
S(t)

I If a tiling T is invariant under S we call it a self-affine tiling

I Lingo: an n-supertile is a patch of the form Sn(t)
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Figure: The T2000 inflate-and-subdivide rule.

Natalie P. Frank Vassar College

Hierarchical tilings



Supertiles
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Pseudo-self-similar tilings

We need to define what it means to expand T to obtain the
tiling φ(T ):

For every tile t in T , φ(t) is defined to be a tile
supported on φ(supp(t))

that carries the label of t

We define φ(T ) :=
⋃
t∈T φ(t).

Note that φ(T ) is a tiling made using the prototile
set φ(P).

Definition
Let P be a finite prototile set in Rd and let φ : Rd → Rd be a
diagonalizable linear transformation all of whose eigenvalues are
greater than one in modulus. We say a tiling T ∈ ΩP is
pseudo-self-similar with expansion φ if T is locally derivable
from φ(T ).
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φ =
(

5/2
√
3/2

−
√
3/2 5/2

)

Figure: The inflate-and-subdivide rule for a hexagonal
pseudo-self-similar tiling.
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Figure: The inflated blue tile and its patch, left; the inflated green
and its patch, right.
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Figure: 2- and 3-supertiles for the blue prototile.
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Fusion rules
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Definition of a fusion rule R

Definition. A fusion of a patch P1 to another patch P2 is a
union of P1 and P2 that is connected and does not contain
overlaps.

fusion = geometric concatenation

I 0-supertiles. A finite collection P0 of tiles. These are
“atoms”.

I 1-supertiles. A finite collection P1 of patches (fusions) of
tiles from P0. These are “molecules”.

I 2-supertiles. A finite collection P2 of patches made by
fusing together elements from P1.

I n-supertiles. For each n > 0, Pn is a finite set of patches
that are fusions of (n− 1)-supertiles.
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Definiton of fusion rule

Notation: the set of n-supertiles is

Pn = {Pn(1), ..., Pn(jn)},

and we can think of our n-supertiles as patches of k-supertiles
for any k < n.

All supertiles together form an atlas of patches called a fusion
rule:

R = {Pn}∞n=0

T is admitted by R if all its patches lie in elements of R.

The tiling space ΩR is the set of all tilings admitted by R.
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A direct product fusion

σ(a) = abb, σ(b) = aa

P = {(a, a), (a, b), (b, a), (b, b)}

S((a, a)) =
(a, b) (b, b) (b, b)
(a, b) (b, b) (b, b)
(a, a) (b, a) (b, a)

, S((a, b)) =
(a, a) (b, a) (b, a)
(a, a) (b, a) (b, a)

,

S((b, a)) =
(a, b) (a, b)
(a, b) (a, b)
(a, a) (a, a)

, S((b, b)) =
(a, a) (a, a)
(a, a) (a, a)

Substitute the first coordinate horizontally and the second
coordinate vertically.
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Direct product tiling

The prototiles look like

P = {(a, a), (a, b), (b, a), (b, b)} =

and the 1-supertiles look like
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Template for DP concatenation

Make the n+ 1-supertile from the n-supertiles using these
combinatorics:

The 2-supertiles come out to be

Natalie P. Frank Vassar College

Hierarchical tilings



“Direct product variation” (DPV) tilings

I The Z2 dynamical system for a DP is conjugate to the
direct product of the one-dimensional systems.

I If we are careful we can we rearrange the substitution to
obtain “Direct Product Variation” (DPV) tilings.

I Care must be taken so that the DPV substitution can be
iterated to form legitimate patches and tilings.
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Breaking the direct product structure

Start with a direct product:

The tile on the left has been carefully rearranged:
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Template for DPV concatenation

Make the n+ 1-supertile from the n-supertiles using these
combinatorics:

The 2-supertiles come out to be
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A comparison of the DP and DPV
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A problem

Details of this DPV prevent us from seeing it as a substitution.
Namely, given adjacent tiles, how should their supertiles fit
together?
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Example: an “algorithmic” fusion rule

This example doesn’t have diagram to show how to put the
supertiles together like the DPV, but there is a simple
algorithm to determine the fusion.

I Inputs: n-supertiles An and Bn; fundamental nth-level
translation vectors.

I Fixed: matrix L =

(
2 1
−1 1

)
.

I Outputs are (n+ 1)-supertiles and (n+ 1)-th level
translations ~kn and ~ln.

An+1 = An ∪ (Bn + ~kn) ∪ (Bn +~ln)

Bn+1 = Bn ∪ (An + ~kn) ∪ (An +~ln).

~kn+1 = L~kn ~ln+1 = L~ln

To run the algorithm, put in a prototile set and some initial
vectors and see what happens.
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Inputs: hexagonal tiles

A0 = B0 =

~k0 = (2,−1) and ~l0 = (1, 1)
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The 10n example—minimal but not uniquely ergodic.

P0 = {a, b}, Pn = {Pn(a), Pn(b)},

where

P1(a) = a10b = aaaaaaaaaab P1(b) = b10a = bbbbbbbbbba

Let

P2(a) = (P1(a))100P1(b) P2(b) = (P1(b))
100P1(a)

and in general

Pn(a) = (Pn−1(a))10
n
Pn−1(b) Pn(b) = (Pn−1(b))

10nPn−1(a)
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S-adic systems

I Let A0,A1,A2, ... be a family of finite alphabets,

I Let
σn : An+1 → A∗n

I Let {an}∞n=0 represent a sequence for which an ∈ An for all
n ∈ N

Definition
An infinite word x ∈ AN

0 admits the S-adic expansion
{(σn,An)}∞n=0 if

x = lim
n→∞

σ0σ1 · · ·σn−1(an).
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S-adic constructions are fusions

I The prototile set is A0

I The 1-supertiles are constructed using the map
σ0 : A1 → A0, where a ∈ A1:

P1 = {σ0(a) such that a ∈ A1}
I The 2-supertiles are given by σ0(σ1(a))), where a ∈ A2:

P2 = {σ0σ1(a) such that a ∈ A2}

I The 2-supertiles are given by σ0(σ1(a))), where a ∈ A2, .
Notice that σ1(a) is a word in A∗1, and so we can apply σ0 to
each of its letters. Thus one can see σ0(σ1(a)) as the fusion
of blocks of the form σ0(a′) in the order prescribed by σ1(a)

I

Pn = {σ0σ1 · · ·σn−1(a) such that a ∈ An},
an n-supertile is the fusion of n− 1-supertiles
σ0σ1 · · ·σn−2(a′) in the order prescribed by σn−1(a).
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Dynamics of supertile constructions
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Tiling spaces from supertile methods

I Let R be the set of all supertiles. We can make ΩR as
the set of all tilings allowed by R.

I This will always work.

I If there is an invariant tiling T , we make the hull ΩT .
I This only works when the supertile rule can act as a map

on the full tiling space, i.e. substitutions/inflations.

I For many supertile rules the two constructions give the
same space.

I We use “Ω” from here forward to denote either type of
supertiling space.

(It is possible for R not to admit any tilings, but we ignore that
situation.)
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Supertiling spaces and recognizability

I Fact: If T ∈ Ω, every tile in T must be in some
n-supertile, either from the generating tiling or from R.

I The n-supertiles might not all be unique, but

I All tiles in T itself can be composed into n-supertiles that
overlap only on their boundary.

I A tiling Tn obtained by this composition, i.e. where the
prototile set is considered at Pn rather than P, is called an
n-supertiling of T .

I The space of all n-supertilings of Ω is denoted Ωn
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Supertiling spaces

Each n-supertile is constructed from (n− 1)-supertiles; there is
a unique decomposition map fn taking Ωn to Ωn−1.

Definition
A supertile rule is said to be recognizable if the decomposition
map from Ωn to Ωn−1 is invertible for all n.

We tend to think of recognizability locally: we should be able to
tell what (n+ 1)-supertile is at ~x by knowing the patch of
n-supertiles in a ball around ~x.

“I can tell what type of supertile I’m in by looking around me.”
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