# Introduction to hierarchical tiling dynamical systems

Natalie P. Frank<sup>1</sup>

 $^{1}$ Vassar College

Research School: Tiling Dynamical Systems, Nov. 21, 2017

#### LECTURE 2: SUPERTILE CONSTRUCTION METHODS

# Recall from yesterday

- Objects: sequences on a finite alphabet; tilings on a finite prototile set
  - ▶ Letters/tiles serve as atoms in a model for quasicrystals
- ▶ Big ball metric
  - Two tilings are close if after a small translation they agree exactly on a big ball around the origin
  - You're standing at the origin and you can see the landscape around you clearly
  - If you want to see what is further away, you can shift/translate the part you are interested in
- ▶ Translation serves as the action for our dynamical systems
- ▶ We want to avoid any periodicity yet have a repetitive structure
  - ▶ Supertile construction techniques are a good way to do that

#### CLASSES OF SUPERTILE METHODS

- Symbolic substitutions
- ▶ Constant-length  $\mathbb{Z}^d$  substitutions
- ▶ Self-similar and self-affine tilings
  - ▶ "pseudo"-self-similar and -affine tilings
- Fusion rules
  - $\blacktriangleright$  S-adic systems

#### SUBSTITUTION FOR SEQUENCES

• A substitution is a map  $\sigma : \mathcal{A} \to \mathcal{A}^*$ 

• where  $\mathcal{A}^*$  is the set of non-empty words on  $\mathcal{A}$ 

- If  $w = a_1...a_k \in \mathcal{A}^*$ , then  $\sigma(w) = \sigma(a_1)...\sigma(a_k)$
- ► Terminology: an *n*-superword is a word of the form  $\sigma^n(a)$  for some  $a \in \mathcal{A}$

#### Example

(A constant-length substitution.) Let  $\sigma(a) = abb$  and  $\sigma(b) = aaa$ .

 $a \rightarrow abb \rightarrow abb \, aaa \, aaa \rightarrow abb \, aaa \, aaa \, abb \, abb \, abb \, abb \, abb \rightarrow \cdots$ 

The length is 3. There is a whole other lexicon for this. (sequence is 3-automatic,  $\sigma$  a non-erasing morphism,...)

#### Example

(Non-constant length) Choose a positive integer k and let  $\sigma(a) = abbb$  and  $\sigma(b) = a$ . The first few supertiles are

 $a \rightarrow abbb \rightarrow abbb \ a \ a \ a \rightarrow abbb \ a \ a \ a \ abbb \$ 

# The subshift associated to the substitution $\sigma$

- Let  $\mathcal{R} = \{\sigma^n(a) \text{ such that } a \in \mathcal{A} \text{ and } n \in \mathbb{N}\}$
- A sequence  $\mathbf{x} \in \mathcal{A}^{\mathbb{Z}}$  is said to be *admitted* by  $\sigma$  if every subword of  $\mathbf{x}$  is a subword of an element of  $\mathcal{R}$ .
- We define  $\Omega_{\sigma} \subset \mathcal{A}^{\mathbb{Z}}$  to be the set of all sequences admitted by  $\sigma$ .
- Apologies to the computer scientists; we are using  $\mathcal{R}$  as a sort of "language" for  $\Omega_{\sigma}$ .
- ► Since all of the words in a shifted sequence are the same as those in the original,  $\Omega_{\sigma}$  is a shift-invariant subset of  $\mathcal{A}^{\mathbb{Z}}$

#### ONE-DIMENSIONAL SELF-SIMILAR TILINGS

#### Example

(Obtaining a self-similar tiling from a symbolic substitution.)

- ► To make a tiling for  $\sigma(a) = abbb$  and  $\sigma(b) = a$ , tiles  $t_a$  and  $t_b$  are made with (carefully chosen) lengths  $|t_a|$  and  $|t_b|$ .
- We define a tile substitution S:
  - $S(t_a)$  is the tile  $t_a$  followed by 3 copies of  $t_b$ .
  - $S(t_b)$  is just  $t_a$ .
- ► The lengths of the supertiles are  $|S(t_a)| = |t_a| + 3|t_b|$  and  $|S(t_b)| = |t_a|$ .
- ► The ideal situation would be if there was an *inflation* factor  $\lambda > 1$  such that  $|S(t_a)| = \lambda |t_a|$  and  $|S(t_b)| = \lambda |t_b|$ .

# Getting good tile lengths

#### If we know

$$|S(t_a)| = |t_a| + 3|t_b|$$
  $|S(t_b)| = |t_a|$ 

and we want

$$|\mathcal{S}(t_a)| = \lambda |t_a|$$
  $|\mathcal{S}(t_b)| = \lambda |t_b|$ 

we quickly see that  $\lambda$  must satisfy  $3 = \lambda^2 - \lambda$ . So we can let

$$\lambda = \frac{1 + \sqrt{13}}{2}, \quad |t_a| = \lambda, \quad |t_b| = 1$$

The symbolic substitution becomes a tiling *inflate-and-subdivide* rule:



Figure: Inflation and subdivision for the example.

#### (a.k.a. tiling substitution rule, tiling inflation rule)

# Tiling inflation rules in $\mathbb{R}$

- $\sigma$  is a symbolic subs
- $t_e$  is the tile corresponding to the symbol  $e \in \mathcal{A}$ .
- $S(t_e) = \text{patch of tiles for } \sigma(e) \text{ supported on } \lambda \operatorname{supp}(t_e).$
- $\blacktriangleright$  S is an 'inflate-and-subdivide rule'.

Extend  $\mathcal{S}$  to be a map on  $\Omega_{\mathcal{P}}$  as follows

- Let  $\mathcal{T} \in \Omega_{\mathcal{P}}$  be a tiling and let  $t \in \mathcal{T}$  be any tile
- ► S(t) = patch given by the substitution of the prototile of t, translated so that it occupies the set  $\lambda \operatorname{supp}(t)$
- Apply  $\mathcal{S}$  to all tiles in  $\mathcal{T}$  simultaneously to get  $\mathcal{S}(\mathcal{T})$

$$\mathcal{S}(\mathcal{T}) = \bigcup_{t \in \mathcal{T}} \mathcal{S}(t)$$

If  $\mathcal{S}(\mathcal{T}) = \mathcal{T}$ , then  $\mathcal{T}$  is called a *self-similar tiling*.

# Self-similar tiling for our example

Part of a self-similar tiling for our example:

If you imagine the origin at the far left,  $\lambda(\mathcal{T})$  looks like

$$\mathcal{S}(\mathcal{T}) = \mathcal{T}$$
, so  $\mathcal{T}$  is self-similar.

### Constant-length symbolic substitutions in $\mathbb{Z}^d$

Natalie P. Frank Hierarchical tilings

Vassar College

# Multidimensional constant-length symbolic substitutions

Goal: Construct substitutions for sequences in  $\mathbb{Z}^d$ .

- We want to replace each  $a \in \mathcal{A}$  with a rectangular block of letters.
- Fix lengths  $l_1, l_2, ... l_d$ , positive integers with each  $l_i > 1$ .
- The location set  $\mathcal{I}^d$  is:

 $\mathcal{I}^d = \{ \vec{j} = (j_1, ..., j_d) \text{ such that } j_i \in 0, 1, ..., l_i - 1 \text{ for all } i = 1, ...d \}.$ 

- The substitution is a map  $\mathcal{S} : \mathcal{A} \times \mathcal{I}^d \to \mathcal{A}$ .
- ▶ For any  $e \in \mathcal{A}$  write  $\mathcal{S}(e)$  a block of letters; we call it a *1-superblock* or *1-supertile*.

## A two-dimensional Thue-Morse substitution

Let 
$$l_1 = l_2 = 2$$
, so that the location set is  
 $\mathcal{I}^2 = \{(0,0), (0,1), (1,0), (1,1)\}.$ 

Define the substitution as:

$$S(0) = {\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \end{array}}, \qquad S(1) = {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \end{array}},$$

Figure: The first three superblocks of type 0. The lines emphasize

We can see S as a matrix  $(p_{\vec{k}})_{\vec{k}\in\mathcal{I}^2}$  of maps on  $\mathcal{A}$ . If we denote by  $g_0$  the identity map and  $g_1$  the map switching 0 and 1, we obtain:

$$S(*, \mathcal{I}^2) = (p_{\vec{k}})_{\vec{k} \in \mathcal{I}^2} = \begin{array}{c} g_1 & g_0 \\ g_0 & g_1 \end{array} .$$
(1)

For example we see that  $p_{(0,0)} = g_0$  and  $p_{(0,1)} = g_1$ . We call this substitution **bijective** because each of the maps are bijections of the alphabet.

- $\vec{k} \in \mathcal{I}^d$  represents a location in a 1-superblock
- S restricted to  $\vec{k}$  is a map  $p_{\vec{k}} : \mathcal{A} \to \mathcal{A}$
- ► (These maps determine the cocycle for the skew product representation of the system.)

#### Definition

Let the substitution S as defined in this section be written as  $S = (p_{\vec{k}})_{\vec{k} \in \mathcal{I}^d}$ . We say S is *bijective* if and only if each  $p_{\vec{k}}$  is a bijection from  $\mathcal{A}$  to itself.

## Self-similar and self-affine tilings in $\mathbb{R}^d$

- Consider a finite prototile set  $\mathcal{P}$ .
- ▶ If you are lucky, you may be able to make an inflation rule that acts as a substitution
  - (Unions of prototiles are related to prototiles via linear maps)
- ► There are two ways to formally define self-similar/self-affine tilings

#### Definition

Let  $\phi : \mathbb{R}^d \to \mathbb{R}^d$  be a diagonalizable linear transformation all of whose eigenvalues are greater than one in modulus. A tiling  $\mathcal{T}$ is called *self-affine with expansion map*  $\phi$  if

- 1. for each tile  $t \in \mathcal{T}$ ,  $\phi(\operatorname{supp}(t))$  is the support of a union of  $\mathcal{T}$ -tiles, and
- 2. t and t' are equivalent up to translation if and only if  $\phi(\operatorname{supp}(t))$  and  $\phi(\operatorname{supp}(t'))$  support equivalent patches of tiles in  $\mathcal{T}$ .

If  $\phi$  is a similarity the tiling is called *self-similar*. For self-similar tilings of  $\mathbb{R}$  or  $\mathbb{R}^2 \cong \mathbb{C}$  we obtain an *inflation* constant  $\lambda$  for which  $\phi(z) = \lambda z$ .

#### Definition

Let  $\mathcal{P}$  be a finite prototile set in  $\mathbb{R}^d$  and let  $\phi : \mathbb{R}^d \to \mathbb{R}^d$  be a diagonalizable linear transformation all of whose eigenvalues are greater than one in modulus. A function  $\mathcal{S} : \mathcal{P} \to \mathcal{P}^*$  is called a *tiling inflation rule with inflation map*  $\phi$  if for every  $p \in \mathcal{P}$ ,

 $\phi(\operatorname{supp}(p)) = \operatorname{supp}(\mathcal{S}(p)).$ 

## Another way to define self-similar tilings, continued

We can extend  $\mathcal{S}$  to tiles, patches, and tilings:

• If t = p - x for  $p \in \mathcal{P}$  and  $x \in \mathbb{R}^d$  we define

$$\mathcal{S}(t) := \mathcal{S}(p) - \phi(x)$$

•  $\mathcal{Q}$  patch or tiling:

$$\mathcal{S}(\mathcal{Q}) = \bigcup_{t \in \mathcal{Q}} \mathcal{S}(t)$$

• If a tiling  $\mathcal{T}$  is invariant under  $\mathcal{S}$  we call it a *self-affine tiling* 

• Lingo: an *n*-supertile is a patch of the form  $\mathcal{S}^n(t)$ 



Figure: The T2000 inflate-and-subdivide rule.

# Supertiles





Natalie P. Frank Hierarchical tilings

Vassar College



# Pseudo-self-similar tilings

We need to define what it means to expand  $\mathcal{T}$  to obtain the tiling  $\phi(\mathcal{T})$ :

For every tile t in  $\mathcal{T}$ ,  $\phi(t)$  is defined to be a tile supported on  $\phi(\operatorname{supp}(t))$ that carries the label of t We define  $\phi(\mathcal{T}) := \bigcup_{t \in \mathcal{T}} \phi(t)$ . Note that  $\phi(\mathcal{T})$  is a tiling made using the prototile set  $\phi(\mathcal{P})$ .

#### Definition

Let  $\mathcal{P}$  be a finite prototile set in  $\mathbb{R}^d$  and let  $\phi : \mathbb{R}^d \to \mathbb{R}^d$  be a diagonalizable linear transformation all of whose eigenvalues are greater than one in modulus. We say a tiling  $\mathcal{T} \in \Omega_{\mathcal{P}}$  is *pseudo-self-similar with expansion*  $\phi$  if  $\mathcal{T}$  is locally derivable from  $\phi(\mathcal{T})$ .

$$\phi = \begin{pmatrix} 5/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 5/2 \end{pmatrix}$$

Figure: The inflate-and-subdivide rule for a hexagonal pseudo-self-similar tiling.



Figure: The inflated blue tile and its patch, left; the inflated green and its patch, right.



Figure: 2- and 3-supertiles for the blue prototile.

#### FUSION RULES

# Definition of a fusion rule ${\cal R}$

**Definition.** A fusion of a patch  $P_1$  to another patch  $P_2$  is a union of  $P_1$  and  $P_2$  that is connected and does not contain overlaps.

 $fusion = geometric \ concatenation$ 

- ▶ 0-supertiles. A finite collection  $\mathcal{P}_0$  of tiles. These are "atoms".
- ► 1-supertiles. A finite collection P<sub>1</sub> of patches (fusions) of tiles from P<sub>0</sub>. These are "molecules".
- ▶ 2-supertiles. A finite collection  $\mathcal{P}_2$  of patches made by fusing together elements from  $\mathcal{P}_1$ .
- ▶ *n*-supertiles. For each n > 0,  $\mathcal{P}_n$  is a finite set of patches that are fusions of (n-1)-supertiles.

## Definiton of fusion rule

Notation: the set of n-supertiles is

$$\mathcal{P}_n = \{P_n(1), ..., P_n(j_n)\},\$$

and we can think of our *n*-supertiles as patches of *k*-supertiles for any k < n.

All supertiles together form an atlas of patches called a *fusion rule:* 

$$\mathcal{R} = \{\mathcal{P}_n\}_{n=0}^{\infty}$$

 $\mathcal{T}$  is admitted by  $\mathcal{R}$  if all its patches lie in elements of  $\mathcal{R}$ . The tiling space  $\Omega_{\mathcal{R}}$  is the set of all tilings admitted by  $\mathcal{R}$ .

# A direct product fusion

$$\sigma(a) = abb, \sigma(b) = aa$$

$$\mathcal{P} = \{(a, a), (a, b), (b, a), (b, b)\}$$

$$\mathcal{S}((a,a)) = \begin{pmatrix} (a,b) & (b,b) & (b,b) \\ (a,b) & (b,b) & (b,b), \\ (a,a) & (b,a) & (b,a) \end{pmatrix} \qquad \mathcal{S}((a,b)) = \begin{pmatrix} (a,a) & (b,a) & (b,a) \\ (a,a) & (b,a) & (b,a) \end{pmatrix}$$

$$\mathcal{S}((b,a)) = \begin{pmatrix} (a,b) & (a,b) \\ (a,b) & (a,b), \\ (a,a) & (a,a) \end{pmatrix} \qquad \mathcal{S}((b,b)) = \begin{pmatrix} (a,a) & (a,a) \\ (a,a) & (a,a) \end{pmatrix}$$

Substitute the first coordinate horizontally and the second coordinate vertically.

Natalie P. Frank Hierarchical tilings Vassar Colleg

#### The prototiles look like

$$\mathcal{P} = \{(a, a), (a, b), (b, a), (b, b)\} = \square$$
 and the 1-supertiles look like



# Template for DP concatenation

Make the n + 1-supertile from the n-supertiles using these combinatorics:

| P(h)               | P(d)                        | P(d)                        |          |          |          | P(h)               | P(h)               |          |          |
|--------------------|-----------------------------|-----------------------------|----------|----------|----------|--------------------|--------------------|----------|----------|
| 1 <sub>n</sub> (0) | 1 <sub>n</sub> ( <i>a</i> ) | 1 <sub>n</sub> ( <i>a</i> ) |          |          |          | 1 <sub>n</sub> (0) | 1 <sub>n</sub> (0) |          |          |
| $P_n(b)$           | $P_n(d)$                    | $P_n(d)$                    | $P_n(a)$ | $P_n(c)$ | $P_n(c)$ | $P_n(b)$           | $P_n(b)$           | $P_n(a)$ | $P_n(a)$ |
|                    |                             |                             |          |          |          |                    |                    |          |          |
| $P_n(a)$           | $P_n(c)$                    | $P_n(c)$                    | $P_n(a)$ | $P_n(c)$ | $P_n(c)$ | $P_n(a)$           | $P_n(a)$           | $P_n(a)$ | $P_n(a)$ |
|                    |                             |                             |          |          |          |                    |                    |          |          |

The 2-supertiles come out to be



# "Direct product variation" (DPV) tilings

- ► The Z<sup>2</sup> dynamical system for a DP is conjugate to the direct product of the one-dimensional systems.
- ▶ If we are careful we can we rearrange the substitution to obtain "Direct Product Variation" (DPV) tilings.
- ► Care must be taken so that the DPV substitution can be iterated to form legitimate patches and tilings.

# Breaking the direct product structure

Start with a direct product:



The tile on the left has been carefully rearranged:



# Template for DPV concatenation

Make the n + 1-supertile from the n-supertiles using these combinatorics:

| P(h)     |          | P(d)          | P(d)                         |          |          |          | P(h)               | P(h)                      |          |          |
|----------|----------|---------------|------------------------------|----------|----------|----------|--------------------|---------------------------|----------|----------|
| $I_n(U)$ | <i>′</i> | $I_n(\alpha)$ | $\mathbf{I}_{n}(\mathbf{u})$ |          |          |          | 1 <sub>n</sub> (0) | <b>1</b> <sub>n</sub> (0) |          |          |
| $P_n(c)$ | I        | $P_n(a)$      | $P_n(d)$                     | $P_n(a)$ | $P_n(c)$ | $P_n(c)$ | $P_n(b)$           | $P_n(b)$                  | $P_n(a)$ | $P_n(a)$ |
| $P_n(d)$ | ŀ        | P(b)          | $P_n(c)$                     | $P_n(a)$ | $P_n(c)$ | $P_n(c)$ | $P_n(a)$           | $P_n(a)$                  | $P_n(a)$ | $P_n(a)$ |

The 2-supertiles come out to be



# A comparison of the DP and DPV



# A problem

Details of this DPV prevent us from seeing it as a substitution. Namely, given adjacent tiles, how should their supertiles fit together?



Natalie P. Frank

Hierarchical tilings

## Example: an "algorithmic" fusion rule

This example doesn't have diagram to show how to put the supertiles together like the DPV, but there is a simple algorithm to determine the fusion.

▶ Inputs: *n*-supertiles  $A_n$  and  $B_n$ ; fundamental *n*th-level translation vectors.

Fixed: matrix 
$$L = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$$

▶ Outputs are (n + 1)-supertiles and (n + 1)-th level translations  $\vec{k_n}$  and  $\vec{l_n}$ .

$$A_{n+1} = A_n \cup (B_n + \vec{k}_n) \cup (B_n + \vec{l}_n)$$
$$B_{n+1} = B_n \cup (A_n + \vec{k}_n) \cup (A_n + \vec{l}_n).$$
$$\vec{k}_{n+1} = L\vec{k}_n \qquad \vec{l}_{n+1} = L\vec{l}_n$$

To run the algorithm, put in a prototile set and some initial vectors and see what happens.

# Inputs: hexagonal tiles





$$\vec{k}_0 = (2, -1)$$
 and  $\vec{l}_0 = (1, 1)$ 







## The $10^n$ example—minimal but not uniquely ergodic.

$$\mathcal{P}_0 = \{a, b\}, \qquad \mathcal{P}_n = \{P_n(a), P_n(b)\},\$$

where

Let

$$P_2(a) = (P_1(a))^{100} P_1(b)$$
  $P_2(b) = (P_1(b))^{100} P_1(a)$ 

and in general

$$P_n(a) = (P_{n-1}(a))^{10^n} P_{n-1}(b) \qquad P_n(b) = (P_{n-1}(b))^{10^n} P_{n-1}(a)$$

# S-adic systems

- Let  $\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2, \dots$  be a family of finite alphabets,
- ► Let

$$\sigma_n:\mathcal{A}_{n+1}\to\mathcal{A}_n^*$$

► Let  $\{a_n\}_{n=0}^{\infty}$  represent a sequence for which  $a_n \in \mathcal{A}_n$  for all  $n \in \mathbb{N}$ 

#### Definition

An infinite word  $\mathbf{x} \in \mathcal{A}_0^{\mathbb{N}}$  admits the *S*-adic expansion  $\{(\sigma_n, \mathcal{A}_n)\}_{n=0}^{\infty}$  if

$$\mathbf{x} = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_{n-1}(a_n).$$

## S-adic constructions are fusions

- The prototile set is  $\mathcal{A}_0$
- The 1-supertiles are constructed using the map  $\sigma_0 : \mathcal{A}_1 \to \mathcal{A}_0$ , where  $a \in \mathcal{A}_1$ :

 $\mathcal{P}_1 = \{\sigma_0(a) \text{ such that } a \in \mathcal{A}_1\}$ 

► The 2-supertiles are given by  $\sigma_0(\sigma_1(a)))$ , where  $a \in \mathcal{A}_2$ :  $\mathcal{P}_2 = \{\sigma_0 \sigma_1(a) \text{ such that } a \in \mathcal{A}_2\}$ 

• The 2-supertiles are given by  $\sigma_0(\sigma_1(a)))$ , where  $a \in \mathcal{A}_2$ , . Notice that  $\sigma_1(a)$  is a word in  $\mathcal{A}_1^*$ , and so we can apply  $\sigma_0$  to each of its letters. Thus one can see  $\sigma_0(\sigma_1(a))$  as the fusion

of blocks of the form  $\sigma_0(a')$  in the order prescribed by  $\sigma_1(a)$ 

$$\mathcal{P}_n = \{\sigma_0 \sigma_1 \cdots \sigma_{n-1}(a) \text{ such that } a \in \mathcal{A}_n\},\$$

an *n*-supertile is the fusion of n - 1-supertiles  $\sigma_0 \sigma_1 \cdots \sigma_{n-2}(a')$  in the order prescribed by  $\sigma_{n-1}(a)$ .

#### Dynamics of supertile constructions

Natalie P. Frank Hierarchical tilings

Vassar College

# Tiling spaces from supertile methods

- Let  $\mathcal{R}$  be the set of all supertiles. We can make  $\Omega_{\mathcal{R}}$  as the set of all tilings allowed by  $\mathcal{R}$ .
  - ▶ This will always work.
- If there is an invariant tiling  $\mathcal{T}$ , we make the hull  $\Omega_{\mathcal{T}}$ .
  - This only works when the supertile rule can act as a map on the full tiling space, i.e. substitutions/inflations.
- ▶ For many supertile rules the two constructions give the same space.
- We use "Ω" from here forward to denote either type of supertiling space.

(It is possible for  $\mathcal{R}$  not to admit any tilings, but we ignore that situation.)

# Supertiling spaces and recognizability

- ▶ Fact: If  $\mathcal{T} \in \Omega$ , every tile in  $\mathcal{T}$  must be in some *n*-supertile, either from the generating tiling or from  $\mathcal{R}$ .
- ▶ The *n*-supertiles might not all be unique, but
- All tiles in  $\mathcal{T}$  itself can be composed into *n*-supertiles that overlap only on their boundary.
- A tiling  $\mathcal{T}_n$  obtained by this composition, i.e. where the prototile set is considered at  $\mathcal{P}_n$  rather than  $\mathcal{P}$ , is called an *n*-supertiling of  $\mathcal{T}$ .
- The space of all *n*-supertilings of  $\Omega$  is denoted  $\Omega_n$

![](_page_52_Picture_0.jpeg)

Natalie P. Frank Hierarchical tilings

Vassar Colleg

Each *n*-supertile is constructed from (n-1)-supertiles; there is a unique *decomposition map*  $f_n$  taking  $\Omega_n$  to  $\Omega_{n-1}$ .

#### Definition

A supertile rule is said to be *recognizable* if the decomposition map from  $\Omega_n$  to  $\Omega_{n-1}$  is invertible for all n.

We tend to think of recognizability locally: we should be able to tell what (n + 1)-supertile is at  $\vec{x}$  by knowing the patch of *n*-supertiles in a ball around  $\vec{x}$ .

"I can tell what type of supertile I'm in by looking around me."