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A fan favorite: the Fibonacci substitution

Fibonacci symbolic substitution

The substitution:

a→ ab b→ a

Iterate to obtain a ‘language’ for a shift space Σ :

a→ ab→ aba→ abaab→ abaababa→ abaababaabaab→ ...

Since Σ is shift-invariant, (Σ, σ) is a subshift of ZA.
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A fan favorite: the Fibonacci substitution

Fibonacci symbolic substitution

a→ ab b→ a

Substitution matrix and expansion constant

M =

(
1 1
1 0

)
, τ =

1 +
√

5

2
.

The eigenvectors of this matrix give

The relative frequencies of the letters

The canonical tile lengths for a self-similar tiling.

Discrete dynamical spectrum given by

L = Z[τ ]/
√

5.
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A fan favorite: the Fibonacci substitution

Fibonacci natural tile lengths

Tile lengths are given by the left Perron-Frobenius eigenvector

(τ, 1) of M =

(
1 1
1 0

)
a = [0, τ ] and b = [0, 1]

we obtain an inflate-and-subdivide rule

As before, the rule can be iterated to make the allowable tile
patches
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A fan favorite: the Fibonacci substitution

Cut-and-project scheme

Let ~a =

(
1
0

)
and ~b =

(
0
1

)
. With M =

(
1 1
1 0

)
, the vectors

Mn~a and Mn~b

are the population vectors of σn(a) and σn(b).
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A fan favorite: the Fibonacci substitution

Cut-and-project scheme

The vertices of the staircase project onto the right
Perron-Frobenius eigenline to make the self-similar tiling.

Vertex type determines tile type.
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A fan favorite: the Fibonacci substitution

Cut-and-project scheme

If you project the staircase onto the weak eigenline, you get the
window.

W = Wa ∪Wb
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A fan favorite: the Fibonacci substitution

Renormalization

Λa,Λb points of type a, b resp. on the staircase

Λ = Λa ∪ Λb

MΛ ⊂ Λ
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A fan favorite: the Fibonacci substitution

Renormalization

Every point on the staircase is in a copy of σ(a) or σ(b).

Substituted words start at vertices of the form M~v, where
~v is already in the staircase.

The a’s appear as the first letter in σ(a) = ab and as the
first letter in σ(b) = a.

The elements of Λb appear only as the second letter in
σ(a) = ab.

Λa = MΛa ∪MΛb and Λb = MΛa +

(
1
0

)
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A fan favorite: the Fibonacci substitution

Renormalization for the window

Points in the window are in one-to-one correspondence with
points on the staircase (and therefore the tiling).

Λa = MΛa ∪MΛb and Λb = MΛa +

(
1
0

)
Projecting onto the window yields

Wa =
−1

τ
Wa ∪

−1

τ
Wb and Wb =

−1

τ
Wa + projwk

(
1
0

)
This is an IFS whose attractor contains the window.
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‘Fibinoid’ tilings
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‘Fibinoid’ tilings

Fibinoid direct product substitution

Fibonacci × ‘solenoid’ or 2-adic substitution

a→ ab b→ a and A→ AA

we end up with alphabet {(a,A), (b, A)} and we obtain

(a,A) −→ (a,A) (b,A)

(a,A) (b,A)
and (b,A) −→ (a,A)

(a,A)
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‘Fibinoid’ tilings

Canonical tiles

We obtain tiles for an inflate-and-subdivide rule:

The horizontal expansion factor is τ and the vertical
expansion factor is 2

Q =

(
τ 0
0 2

)
.

tile widths are τ and 1 and heights should be equal.

The canonical tiles can be:

(a,A) = (b, A) =
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‘Fibinoid’ tilings

Fibinoid inflate-and-subdivide rule

The symbolic substitution

(a,A) −→ (a,A) (b,A)

(a,A) (b,A)
and (b,A) −→ (a,A)

(a,A)

becomes the inflate-and-subdivide rule

−→ −→
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‘Fibinoid’ tilings

Iterating the Fibinoid DP

−→ −→

−→ −→ −→ −→ ...
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‘Fibinoid’ tilings

A Fibinoid variation

−→ −→

−→ −→ −→ −→ ...

Natalie Priebe Frank DPVs



‘Fibinoid’ tilings

Fibinoid DP vs DPV
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‘Fibinoid’ tilings

Fibinoid 3D stepped surfaces
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‘Fibinoid’ tilings

Fibinoid not-windows

There are again renormalization relations for the points on
the stepped surface

If we adopt a fourth dimension to go with the vertical axis,
we have renormalization given by the matrix

Q =


τ 0 0 0
0 2 0 0
0 0 −1/τ 0
0 0 0 1


This induces an IFS on the weak eigenspace as before.
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Fibonacci DPVs
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Fibonacci DPVs

Fibonacci direct product substitution

Fibonacci × Fibonacci: A = {(a, a), (a, b), (b, a), (b, b)}

(a,a) −→ (a,b) (b,b)

(a,a) (b,a)
, (a,b) −→ (a,a) (b,a) ,

(b,a) −→ (a,b)

(a,a)
, (b,b) −→ (a,a) .

The canonical tiles have side lengths given by τ and 1.
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Fibonacci DPVs

Fibonacci direct product substitution

→ → → →

→ → → →
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Fibonacci DPVs

A variation

The DP:

→ → → →

A DPV:

→ → → →
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Fibonacci DPVs

A variation

→ → → →

→ → → →

There are 48 total variations, including the DP itself.
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Fibonacci DPVs

The measure-theoretic situation

Theorem (Baake-F.-Grimm, 2021)

The 48 inflation tiling dynamical systems that emerge from the
Fibonacci DPVs all have pure point dynamical spectrum.

The point spectrum is L∗ × L∗, where L∗ = Z[τ ]/
√

5.

All 48 systems are measure-theoretically isomorphic.

They are all model sets

We can compute∗ windows with an IFS derived from the
substitution as an action on Z4.
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Fibonacci DPVs

Fibonacci DP
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Fibonacci DPVs

Fibonacci DPV–skewed window
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Fibonacci DPVs

The 28 polygonal windows
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Fibonacci DPVs

Fibonacci DPVs with polygonal windows are
topologically conjugate

Theorem (Baake, Gähler, Mazáč, preprint 2022)

The 28 inflation tiling dynamical sustems that emerge from the
DPVs with polygonal windows form one class of topologically
conjugate dynamical systems.

When two systems have windows with different slopes, they
cannot be MLD

So these topological conjugacies require far-flung
information
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Fibonacci DPVs

Some DPVs with fractal windows

Recall the direct product substitution:

→ → → →
Type ‘island’

→ → → →
Type ‘cross’

→ → → →
Type ‘castle’

→ → → →
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Fibonacci DPVs

Rauzy fractal ‘island’
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Fibonacci DPVs

Rauzy fractal ‘cross’
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Fibonacci DPVs

Rauzy fractal ‘castle’
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Fibonacci DPVs

Rauzy fractal window comparison

dimH = 1.875 dimH = 1.756 dimH = 1.561

Calculated by Bernd Sing
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General DPVs in two dimensions

Direct products and variations

Given substitutions σ1 and σ2 on alphabets A1 and A2.
The direct product substitution σ is defined on A = A1 ×A2 as

σ(a, b) = σ1(a)× σ2(b),

a rectangular word of size |σ1(a)| × |σ2(b)| in which:

Each row has σ1(a) in coordinate 1, read left to right

Each column has σ2(b) in coordinate 2, read bottom to top

Canonical tiles are rectangles with dimensions given by the
natural tile lengths.
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General DPVs in two dimensions

DPVs and their canonical tilings.

A direct product variation substitution is a substitution rule
obtained from a direct product substitution through
rearrangement within some or all of the supertiles.

We do not attempt to classify which rearrangements will result
in a substitution rule.
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General DPVs in two dimensions

Park-Robinson 1991: Chacon Z2 action

The Chacon substitution (orig. Chacon “cut-and-stack”):

a→ aaba b→ b

A variation on Chacon × Chacon:

1

3

31 442

1

1
3

1

1
1 24

1
2 4

2

1
2 4

3

23

33

21

There aren’t really canonical tiles for this one
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General DPVs in two dimensions

Park-Robinson 1991: Chacon Z2 action

Park-Robinson’s version:

Theorem (Park-Robinson, 1991)

The Chacon Z2-action is weakly mixing but not mixing.
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General DPVs in two dimensions

A non-Pisot DPV–the symbolic case

a→ abbb b→ a

4

24

4

4

3

4

4

4 4
4

2

2

2
3

31

1
2

3

2

23 33 1
4

11
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General DPVs in two dimensions

A non-Pisot DPV with canonical tiles

a→ abbb b→ a
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General DPVs in two dimensions

Finite local complexity

A tiling is said to be of finite local complexity (FLC) if it
contains only a finite number of two-tile patches up to
translation. If not, it is of infinite local complexity (ILC).

Theorem (F.-Robinson, 2008)

Suppose that S is a property-(C) substitution on a finite set of
fractagonal prototiles. If the length expansion of S is a Pisot
number, then any tiling admitted by S is locally finite.

Corollary

Let σ be a one-dimensional substitution with a Pisot expansion
factor. Every canonical DPV tiling constructed from σ × σ is
locally finite.
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General DPVs in two dimensions

Theorem (F.-Robinson, 2008)

The tiling above is of infinite local complexity.
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General DPVs in two dimensions

Some questions

There are partial results on the dffraction/dynamical
spectrum questions

There is no general theory for the windows

The question of FLC for a general σ1 × σ2 hasn’t been
looked at systematically.

If the expansion factors for both σ1 and σ2 are Pisot, one
would expect FLC.
If one or both of the expansion factors is not Pisot, there
can be FLC or ILC:

The direct product substitution will always have finite local
complexity
In the presence of a (strongly) non-Pisot expansion factor,
is it possible for any nontrivial variation to maintain FLC?
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