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Tilings

Tilings of Euclidean Space.

I Begin with a finite set of closed topological disks in Rn
I We call these prototiles
I Prototiles can carry labels, markings, or colors

I In one dimension, tiles are just closed intervals; in higher
dimensions they can have interesting geometry

I Tilings are coverings of Rn by isometric copies of the
prototiles, intersecting only on their boundaries
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Tilings

Tilings as models for atomic structures.

I Prototile types can represent atom types.

I Mark certain points in tiles to represent the location of
atoms in the solid.

I
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Diffraction Experiments

Diffraction.

I A diffraction experiment passes rays of appropriate
wavelength through the solid.

I The rays bounce off the atoms and combine with
constructive and destructive interference.

I I’ll describe how it is modeled mathematically via the
Fourier transform of autocorrelations.
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Diffraction Experiments

Simulated diffraction image

Simulated diffraction pattern of diamond tiling

Cleavage plane tiling of diamond
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Diffraction Experiments

Quasicrystalline solids and tiling models.

I In the 1980s, Daniel Shechtman discovered a
quasicrystalline solid via its diffraction pattern.

I It was quickly realized that the Penrose tilings had a
similar diffraction pattern.

I In 2011, Shechtman was awarded the Nobel Prize in
Chemistry

“For the discovery of quasicrystals”
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Diffraction Experiments

Image source: Oxford Dept. of Chemistry http://www.xtl.ox.ac.uk/tag/penrose-tiling.html

Left: An electron diffraction pattern of Zn-Mg-Ho alloy. Right:
patch of a Penrose tiling
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Diffraction Experiments

Summary of this talk’s universe

I Quasicrystals are fascinating

I One way to identify and analyze them is through diffraction

I You can construct tilings that model them

I Dynamical systems theory analyzes tiling models
I Especially through spectral measures, which include

diffraction

I This particular talk is our attempt to analyze the
diffraction of a specific one-dimensional quasicrystalline
tiling
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Our Goal and Method

Our Goal: Identify This Tiling’s Spectral Type.

I Symbolically: 0→ 0111, 1→ 0

I The inflation constant is λ = 1+
√

13
2 , non-Pisot

1 0

0 0 1 1 1

I Infinite tilings look like:

1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1
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Our Goal and Method

What’s known in general

I Tiling dynamical systems:
I Take all translates of the tiling
I Close it up to make the tiling space X
I (X,R) is a dynamical system under translation

I Spectral analysis of L2(X) yields measures on the circle

I Eigenfunctions yield atomic measures on the circle (Bragg
peaks)

I The diffraction measure Υ̂ is also a measure on the circle
I it is dominated by the maximal spectral type of the

dynamical system
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Our Goal and Method

What’s known for our example

I Dynamical result of Solomyak shows there are no
nonconstant eigenfunctions

I Thus the maximal spectral type has no atoms other than
the trivial one at 0

I Thus there are no Bragg peaks either, except at 0

I The diffraction measure Υ̂ is continuous with respect to
Lebesgue measure.
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Our Goal and Method

Our Conjecture and Approach

I Conjecture: Υ̂ is Singular Continuous with respect to
Lebesgue measure.

I Approach: Use a Renormalization scheme
I Capitalizes on the self-similar structure of the tiling
I Uses the fact that the expansion constant is not Pisot
I Eliminates the possibility that Υ̂ is absolutely continuous in

certain examples
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Autocorrelation

Dirac comb scatterer

1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1

I Recall: tile lengths are λ = 1+
√

13
2 and 1.

I We use the left endpoints of tiles as our diffraction set:

Λ = {...,−1−3λ,−3λ,−2λ,−λ, 0, λ, 1+λ, 2+λ, 3+λ, 3+2λ...}

I To simulate atoms at the endpoints we use the Dirac comb

δΛ =
∑
x∈Λ

δx
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Autocorrelation

Dirac comb two-point autocorrelation

I The autocorrelation measure γ is defined by

γ = lim
r→∞

δΛr ∗ δ−Λr

2r

where Λr = Λ ∩ [−r, r]
I We can express γ as a weighted Dirac comb via

γ =
∑
Λ−Λ

η(z)δz,

where

η(z) = lim
r→∞

card(Λr ∩ (z + Λr))

2r
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Diffraction

The Diffraction Measure

I The diffraction measure γ̂ is the Fourier transform of the
autocorrelation measure γ

I It is a finite measure on the torus.

I As such, it breaks into three parts: atomic, singular, and
absolutely continuous

I Quasicrystals have a nontrivial atomic part; random
structures have absolutely continuous parts

I What about singular continuous spectrum?
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Diffraction

Pair correlation functions.

I Because we have two tile types it is easier to compute using
Λ(i), the set of left endpoints of tiles of type i. Then

Λ = Λ(0) ∪ Λ(1)

I νij(z) is the frequency with which an i is followed z units
later by a j:

I

νij(z) = lim
r→∞

card(Λ
(i)
r ∩ Λ

(j)
r − z)

dens(Λr)

where Λ
(i)
r is the set of points labelled i in Λ ∩ [−r, r]
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Diffraction

Pair Correlation and Autocorrelation

I The pairwise Dirac comb

Υij :=
∑

Λ(j)−Λ(i)

νij(z)δz

I becomes the autocorrelation via

γ = dens(Λ)
∑

i,j∈{0,1}

Υij
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Diffraction

Diffraction Measure.

I We can obtain the diffraction γ̂ via

γ̂ = dens(Λ)
∑

i,j∈{0,1}

Υ̂ij

I Our renormalization approach works at the level of νij ,Υij ,

and Υ̂ij
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Renormalization of Pair Correlation Functions

Tracking correlations via supertiles

I Recall νij(z) := frequency with which we see an i followed
by a j at a distance of z

I This can be recursively computed if you know frequencies
of supertiles at a distance of about z/λ

0 0

0 0 1 1 1

0 1 1 1 0

0 1 1 1 0 1 1 1
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Renormalization of Pair Correlation Functions

Tracking correlations via supertiles

Example: Among supertiles, we see a 0 followed by a 1 at a
distance z in six distinct ways.

0 0

0 0 1 1 1

0 1 1 1 0

0 1 1 1 0 1 1 1

ν01(z) =
1

λ

(
ν00

(
z − λ
λ

)
+ ν00

(
z − λ− 1

λ

)
+ ν00

(
z − λ− 2

λ

)
+

ν10

(
z − λ
λ

)
+ ν10

(
z − λ− 1

λ

)
+ ν10

(
z − λ− 2

λ

))
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Renormalization of Pair Correlation Functions

Renormalization for pair correlations

We obtain four total renormalization equations:

ν00(z) =
1

λ

(
ν00

( z
λ

)
+ ν10

( z
λ

)
+ ν01

( z
λ

)
+ ν11

( z
λ

))

ν01(z) =
1

λ
(ν00

(
z − λ
λ

)
+ ν00

(
z − λ− 1

λ

)
+ ν00

(
z − λ− 2

λ

)
+

ν10

(
z − λ
λ

)
+ ν10

(
z − λ− 1

λ

)
+ ν10

(
z − λ− 2

λ

)
)

ν10(z) = ...

ν11(z) = ...
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Renormalization for autocorrelation measure

Renormalization on autocorrelation measure

I Recall that
Υij :=

∑
νij(z)δz

I The renormalization on νij passes to the Υij with a bit of
calculation

I It turns out that the matrix of Dirac combs related to the
original substitution is essential:

δT =

(
δ0 δ0

δλ + δλ+1 + δλ+2 0

)
I and we obtain...
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Renormalization for autocorrelation measure

Renormalization for the autocorrelation measure.

Υ =
1

λ
(δ−T ⊗∗ δT ) ∗ (f.Υ)

I where ∗ denotes convolution of measures,

I f(x) = λx,

I and ⊗∗ is the Kronecker product of convolution of
measures.
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Renormalization for autocorrelation measure

Renormalization for the Diffraction Measure.

Υ̂ =
1

λ2
A(.)(f−1.Υ̂)

I where f(x) = λx,

I and A(k) is the Fourier transform of the matrix δ−T ⊗∗ δT ,
i.e. A(k) is a four-by-four matrix of exponentials that are
transforms of delta functions in δT .
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Renormalization for autocorrelation measure

Eliminating Absolutely Continuous Diffraction

1. Let h represent the Radon-Nikodym derivative of Υ̂.

2. Renormalization translates to the equation:

h

(
k

λ

)
=

1

λ
A

(
k

λ

)
h(k)

3. Iteration implies

h

(
k

λn

)
=

1

λn
A

(
k

λn

)
· · ·A

(
k

λ

)
h(k)

4. The eigenvalues of A(z) for small z are very close to λ2

5. This ‘blow-up’ at 0 implies that away from a thin set, h
must be identically 0.

6. We are still dealing with the thin set but hope to prove
h ≡ 0.
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Renormalization for autocorrelation measure

The Distribution Function

0

1

2

0 1 2 3
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