Diffraction basics at light speed $00 \\ 0000$

The Renormalization Approach

Towards spectral analysis of self-similar tilings via a renormalization approach

Michael Baake¹ Natalie P. Frank² Uwe Grimm³ E. Arthur Robinson Jr.⁴

¹University of Bielefeld

 2 Vassar College

 3 Open University

⁴George Washington University

Special Session on Dynamical Systems, January 5 2017

Diffraction, quasicrystals, and tilings • 0 00000 0000	Diffraction basics at light speed oo oooo	The Renormalization Approach ooo ooooo
Tilings		

Tilings of Euclidean Space.

- \blacktriangleright Begin with a finite set of closed topological disks in \mathbb{R}^n
 - ▶ We call these *prototiles*
 - Prototiles can carry labels, markings, or colors
- In one dimension, tiles are just closed intervals; in higher dimensions they can have interesting geometry
- ▶ Tilings are coverings of \mathbb{R}^n by isometric copies of the prototiles, intersecting only on their boundaries

Diffraction, quasicrystals, and tilings	Diffraction basics at light speed	The Renormalization Approach
00000	oo	000
0000	oooo	00000
Tilings		

Tilings as models for atomic structures.

- Prototile types can represent atom types.
- Mark certain points in tiles to represent the location of atoms in the solid.

Diffraction, quasicrystals, and tilings	Diffraction basics at light speed	The Renormalization Approach
00 ●0000 0000	00 0000	000 00000
Diffraction Experiments		

- ► A diffraction experiment passes rays of appropriate wavelength through the solid.
- ▶ The rays bounce off the atoms and combine with constructive and destructive interference.
- I'll describe how it is modeled mathematically via the Fourier transform of autocorrelations.

Diffraction, quasicrystals, and tilings	Diffraction basics at light speed	The Renormalization Approach
00 00000 0000	00 0000	000 00000

Diffraction Experiments

Simulated diffraction pattern of diamond tiling

Cleavage plane tiling of diamond

Simulated diffraction image

Diffraction, quasicrystals, and tilings ^{OO} ^{OO} ^{OO} ^{OO} ^{OO}	Diffraction basics at light speed $00000000000000000000000000000000000$	The Renormalization 000 00000
Diffraction Experiments		

Quasicrystalline solids and tiling models.

- In the 1980s, Daniel Shechtman discovered a quasicrystalline solid via its diffraction pattern.
- It was quickly realized that the Penrose tilings had a similar diffraction pattern.
- In 2011, Shechtman was awarded the Nobel Prize in Chemistry

"For the discovery of quasicrystals"

Diffraction, quasicrystals, and tilings $00 \\ 00000 \\ 00000$

Diffraction basics at light speed oo oooo The Renormalization Approach 000 00000

Diffraction Experiments

Image source: Oxford Dept. of Chemistry http://www.xtl.ox.ac.uk/tag/penrose-tiling.html Left: An electron diffraction pattern of Zn-Mg-Ho alloy. Right: patch of a Penrose tiling

Diffraction,	quasicrystals,	and	tilings
00000			
0000			

Diffraction basics at light speed oo oooo The Renormalization Approach

Diffraction Experiments

Summary of this talk's universe

- Quasicrystals are fascinating
- One way to identify and analyze them is through diffraction
- ▶ You can construct tilings that model them
- Dynamical systems theory analyzes tiling models
 - Especially through spectral measures, which include diffraction
- This particular talk is our attempt to analyze the diffraction of a specific one-dimensional quasicrystalline tiling

Diffraction, quasicrystals, and tilings	Diffraction basics at light speed	The Renormalization
00 00000 ●000	00 0000	000 00000
Our Goal and Method		

Our Goal: Identify This Tiling's Spectral Type.

▶ Infinite tilings look like:

Diffraction, quasicrystals, and tilings ${}^{\circ\circ}_{\circ\circ\circ\circ\circ\circ}$ ${}^{\circ\circ\circ\circ\circ\circ}_{\circ\circ\circ\circ\circ}$	Diffraction basics at light speed oo oooo	The Renormalization Approach 000 00000
Our Goal and Method		

Our Goal: Identify This Tiling's Spectral Type.

Diffraction,	quasicrystals,	and	tilings
00000			
0000			

Diffraction basics at light speed oo oooo

Our Goal and Method

What's known in general

- ► Tiling dynamical systems:
 - ▶ Take all translates of the tiling
 - Close it up to make the tiling space X
 - (X, \mathbb{R}) is a dynamical system under translation
- ▶ Spectral analysis of $L^2(X)$ yields measures on the circle
- Eigenfunctions yield atomic measures on the circle (Bragg peaks)
- \blacktriangleright The diffraction measure $\widehat{\Upsilon}$ is also a measure on the circle
 - ▶ it is dominated by the maximal spectral type of the dynamical system

Diffraction, quasicrystals, and tilings $\circ \circ \circ$	Diffraction basics at light speed $00 \\ 00000$	The Renormalization Approach 000 00000
Our Goal and Method		

What's known for our example

- Dynamical result of Solomyak shows there are no nonconstant eigenfunctions
- ▶ Thus the maximal spectral type has no atoms other than the trivial one at 0
- ▶ Thus there are no Bragg peaks either, except at 0
- The diffraction measure $\widehat{\Upsilon}$ is continuous with respect to Lebesgue measure.

Diffraction, quasicrystals, and tilings 000000000000000000000000000000000000	Diffraction basics at light speed oo oooo	The Renormalization Approach 000 00000
Our Goal and Method		

Our Conjecture and Approach

- Conjecture: Υ̂ is Singular Continuous with respect to Lebesgue measure.
- ▶ Approach: Use a Renormalization scheme
 - ▶ Capitalizes on the self-similar structure of the tiling
 - Uses the fact that the expansion constant is not Pisot
 - \blacktriangleright Eliminates the possibility that $\widehat{\Upsilon}$ is absolutely continuous in certain examples

Diffraction, quasicrystals, and tilings 00 00000 0000	Diffraction basics at light speed $\bullet \circ$	The Renormalization Approach 000 00000
Autocorrelation		

Dirac comb scatterer

Diffraction, quasicrystals, and tilings	Diffraction basics at light speed	The Renormalization Approach
00 00000 0000	0 0000	000 00000

Autocorrelation

Dirac comb scatterer

0	0	1	1	1	0	0	0	0	1	1	1	0	0	0	

- Recall: tile lengths are $\lambda = \frac{1+\sqrt{13}}{2}$ and 1.
- We use the left endpoints of tiles as our diffraction set:

$$\Lambda = \{..., -1 - 3\lambda, -3\lambda, -2\lambda, -\lambda, 0, \lambda, 1 + \lambda, 2 + \lambda, 3 + \lambda, 3 + 2\lambda ...\}$$

▶ To simulate atoms at the endpoints we use the Dirac comb

$$\delta_{\Lambda} = \sum_{x \in \Lambda} \delta_x$$

Diffraction,		
0000		

Autocorrelation

Dirac comb two-point autocorrelation

• The autocorrelation measure γ is defined by

$$\gamma = \lim_{r \to \infty} \frac{\delta_{\Lambda_r} * \delta_{-\Lambda_r}}{2r}$$

where $\Lambda_r = \Lambda \cap [-r, r]$

• We can express γ as a weighted Dirac comb via

$$\gamma = \sum_{\Lambda - \Lambda} \eta(z) \delta_z,$$

where

Diffraction,		
00000		

Autocorrelation

Diffraction basics at light speed $\circ \bullet$ $\circ \circ \circ \circ \circ \circ$

The Renormalization Approach 000 00000

Dirac comb two-point autocorrelation

• The autocorrelation measure γ is defined by

1

$$\gamma = \lim_{r \to \infty} \frac{\delta_{\Lambda_r} * \delta_{-\Lambda_r}}{2r}$$

where $\Lambda_r = \Lambda \cap [-r, r]$

▶ We can express γ as a weighted Dirac comb via

$$\gamma = \sum_{\Lambda - \Lambda} \eta(z) \delta_z,$$

where

$$\eta(z) = \lim_{r \to \infty} \frac{card(\Lambda_r \cap (z + \Lambda_r))}{2r}$$

Baake, Frank, Grimm, and Robinson

Renormalization approach to tiling diffraction

Diffraction, quasicrystals, and tilings 00 00000 0000	Diffraction basics at light speed °° •000	The Renormalization Approach 000 00000
Diffraction		

The Diffraction Measure

- \blacktriangleright The diffraction measure $\widehat{\gamma}$ is the Fourier transform of the autocorrelation measure γ
- ▶ It is a finite measure on the torus.
- ▶ As such, it breaks into three parts: atomic, singular, and absolutely continuous
- Quasicrystals have a nontrivial atomic part; random structures have absolutely continuous parts
- ▶ What about singular continuous spectrum?

Diffraction, quasicrystals, and tilings 00 00000 0000	Diffraction basics at light speed $\circ \circ $	The Renormalization Approach 000 00000
Diffraction		

Pair correlation functions.

• Because we have two tile types it is easier to compute using $\Lambda^{(i)}$, the set of left endpoints of tiles of type *i*. Then

$$\Lambda = \Lambda^{(0)} \cup \Lambda^{(1)}$$

▶ $\nu_{ij}(z)$ is the frequency with which an *i* is followed *z* units later by a *j*:

$$\nu_{ij}(z) = \lim_{r \to \infty} \frac{card(\Lambda_r^{(i)} \cap \Lambda_r^{(j)} - z)}{dens(\Lambda_r)}$$

where $\Lambda_r^{(i)}$ is the set of points labelled i in $\Lambda \cap [-r, r]$

Diffraction, quasicrystals, and tilings 00 00000 0000	Diffraction basics at light speed $\circ\circ$ $\circ\circ\circ\circ\circ\circ\circ$	The Renormalization Approach 000 00000
Diffraction		

Pair Correlation and Autocorrelation

▶ The pairwise Dirac comb

$$\Upsilon_{ij} := \sum_{\Lambda^{(j)} - \Lambda^{(i)}} \nu_{ij}(z) \delta_z$$

becomes the autocorrelation via

$$\gamma = dens(\Lambda) \sum_{i,j \in \{0,1\}} \Upsilon_{ij}$$

Diffraction, quasicrystals, and tilings 00 00000 0000	Diffraction basics at light speed $\circ \circ$ $\circ \circ \circ \circ \bullet$	The Renormalization Approach 000 00000
Diffraction		

Diffraction Measure.

▶ We can obtain the diffraction $\hat{\gamma}$ via

$$\widehat{\gamma} = dens(\Lambda) \sum_{i,j \in \{0,1\}} \widehat{\Upsilon}_{ij}$$

▶ Our renormalization approach works at the level of ν_{ij}, Υ_{ij} , and $\widehat{\Upsilon}_{ij}$

Tracking correlations via supertiles

- Recall v_{ij}(z) := frequency with which we see an i followed by a j at a distance of z
- ► This can be recursively computed if you know frequencies of supertiles at a distance of about z/λ

Tracking correlations via supertiles

- Recall v_{ij}(z) := frequency with which we see an i followed by a j at a distance of z
- This can be recursively computed if you know frequencies of supertiles at a distance of about z/λ

Renormalization of Pair Correlation Functions

Tracking correlations via supertiles

Example: Among supertiles, we see a 0 followed by a 1 at a distance z in six distinct ways.

Renormalization of Pair Correlation Functions

Tracking correlations via supertiles

Example: Among supertiles, we see a 0 followed by a 1 at a distance z in six distinct ways.

Diffraction,		
00000		
0000		

Diffraction basics at light speed oo oooo The Renormalization Approach 000

Renormalization of Pair Correlation Functions

Renormalization for pair correlations

We obtain four total renormalization equations:

$$\nu_{00}(z) = \frac{1}{\lambda} \left(\nu_{00} \left(\frac{z}{\lambda} \right) + \nu_{10} \left(\frac{z}{\lambda} \right) + \nu_{01} \left(\frac{z}{\lambda} \right) + \nu_{11} \left(\frac{z}{\lambda} \right) \right)$$

$$\nu_{01}(z) = \frac{1}{\lambda} \left(\nu_{00}\left(\frac{z-\lambda}{\lambda}\right) + \nu_{00}\left(\frac{z-\lambda-1}{\lambda}\right) + \nu_{00}\left(\frac{z-\lambda-2}{\lambda}\right) + \nu_{10}\left(\frac{z-\lambda}{\lambda}\right) + \nu_{10}\left(\frac{z-\lambda-1}{\lambda}\right) + \nu_{10}\left(\frac{z-\lambda-2}{\lambda}\right)\right)$$
$$\nu_{10}(z) = \dots$$

$$\nu_{11}(z) = \dots$$

Baake, Frank, Grimm, and Robinson

Renormalization approach to tiling diffraction

Diffraction, quasicrystals, and tilings	Diffraction basics at light speed	The Renormalization Approach
00 00000 0000	00 0000	000 ●0000

Renormalization on autocorrelation measure

▶ Recall that

$$\Upsilon_{ij} := \sum \nu_{ij}(z) \delta_z$$

- ▶ The renormalization on ν_{ij} passes to the Υ_{ij} with a bit of calculation
- ▶ It turns out that the matrix of Dirac combs related to the original substitution is essential:

$$\delta_T = \begin{pmatrix} \delta_0 & \delta_0 \\ \delta_\lambda + \delta_{\lambda+1} + \delta_{\lambda+2} & 0 \end{pmatrix}$$

▶ and we obtain...

Diffraction, quasicrystals, and tilings	Diffraction basics at light speed	The Renormalization Approach
00 00000	00 0000	000 0000
0000		

Renormalization for autocorrelation measure

Renormalization for the autocorrelation measure.

$$\Upsilon = rac{1}{\lambda} (\delta_{-T} \otimes^* \delta_T) * (f.\Upsilon)$$

▶ where * denotes convolution of measures,

$$\blacktriangleright f(x) = \lambda x,$$

▶ and ⊗* is the Kronecker product of convolution of measures.

Diffraction,		
00000		
0000		

Diffraction basics at light speed 00 0000 The Renormalization Approach $\begin{array}{c} \circ \circ \circ \\ \circ \circ \circ \circ \circ \circ \circ \end{array}$

Renormalization for autocorrelation measure

Renormalization for the Diffraction Measure.

$$\widehat{\Upsilon} = \frac{1}{\lambda^2} A(.)(f^{-1}.\widehat{\Upsilon})$$

• where
$$f(x) = \lambda x$$
,

• and A(k) is the Fourier transform of the matrix $\delta_{-T} \otimes^* \delta_T$, i.e. A(k) is a four-by-four matrix of exponentials that are transforms of delta functions in δ_T .

Diffraction, quasicrystals, and tiling oo ooooo oooo	s Diffraction basics at light speed oo oooo	The Renormalization Approach ○○○ ○○○●○

Renormalization for autocorrelation measure

Eliminating Absolutely Continuous Diffraction

- 1. Let h represent the Radon-Nikodym derivative of $\widehat{\Upsilon}$.
- 2. Renormalization translates to the equation:

$$h\left(\frac{k}{\lambda}\right) = \frac{1}{\lambda}A\left(\frac{k}{\lambda}\right)h(k)$$

3. Iteration implies

$$h\left(\frac{k}{\lambda^n}\right) = \frac{1}{\lambda^n} A\left(\frac{k}{\lambda^n}\right) \cdots A\left(\frac{k}{\lambda}\right) h(k)$$

4. The eigenvalues of A(z) for small z are very close to λ^2

- 5. This 'blow-up' at 0 implies that away from a thin set, h must be identically 0.
- 6. We are still dealing with the thin set but hope to prove $h \equiv 0$.

Diffraction, quasicrystals, and tilings 00 00000 0000 Diffraction basics at light speed 00 0000 The Renormalization Approach $_{\circ\circ\circ}^{\circ\circ\circ}$ $_{\circ\circ\circ\circ\circ}$

Renormalization for autocorrelation measure

The Distribution Function

Renormalization approach to tiling diffraction