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Question.

Suppose you had an INFINITE SUPPLY
of blue and white SQUARE TILES.

How might you form an infinite tiling of the plane R2?



An interesting answer.

Use a tiling substitution!

An example of a substitution rule.



Iterate the substitution to get arbitrarily large patches:



How we study substitution tilings

I All tilings T that are “allowed” by the substitution form
the tiling space Ω

I Any nontrivial translate of T is considered a distinct tiling,
and it is also an element of Ω

I Every element of Ω is an infinite tiling of Rd

I Topologize Ω with the ‘big ball metric’: two tilings are close
if they very nearly agree on a big ball about the origin.

I Approaches to the study of Ω

I Dynamical systems
I Functional analysis and noncommutative geometry
I Topology

I In this talk we’ll see that substitution tiling spaces are
Cantor set fiber bundles that can be seen as inverse limits
and that their cohomology can be computed.
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Definitions
Prototiles, tiles, and tilings

I A prototile is a labelled closed topological disk in Rd

I Labels can distinguish between identical shapes e.g. by color

I A prototile set is a finite set of prototiles P
I A P-tile (or just tile) is a translate of a prototile by an

element of Rd.

I The tile carries the label of its prototile.
I A tile’s type is the prototile it is a translation of.

I Given a prototile set P, a tiling is a union of P-tiles that
cover Rd and overlap only on their boundaries.

I A patch is a finite collection of P-tiles that overlap only on
their boundaries.

I Often assumed to be connected or simply connected

I Standing assumptions: finite local complexity,
nonperiodicity
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Tiling substitutions
a.k.a. inflate-and-subdivide rules

We need

I An expansive linear tranformation L : Rd → Rd, typically a
similarity.

I A rule σ for replacing each tile t with a patch of tiles whose
union is L(t).

I σ can be applied to any patch of tiles by applying σ to each
tile t in the patch and placing the result atop L(t).

I We call σ(t) a supertile, σ2(t) a 2-supertile, and σn(t) an
n-supertile
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Half-hex substitution rule

P = {A,B,C,D,E, F}; L(x, y) = (2x, 2y); σ is given by:

A
σ(A) B

σ(B)
C

σ(C)

D
σ(D) E

σ(E)
F

σ(F )

The half-hex substitution rule.

The prototile set P contains six tile types rather than one
because our framework considers tiles the same only if they are
translates of one another.
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A few half-hex supertiles
2-, 3-, and 4-supertiles

σ2(A)
σ3(A)

σ4(A)



Tilings admitted by σ
Elements of Ω

Given: a prototile set P with substitution σ.

Definition. A P-tiling T is admitted by σ if every patch that
appears in T also appears in an n-supertile for sufficiently large
n.

Definition. The tiling space of σ, denoted Ω, is the set of all
tilings admitted by σ.

I The set of all n-supertiles acts as the ‘language’ of Ω

I If T ∈ Ω, then T − ~x ∈ Ω for any translation ~x ∈ Rd
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The big ball metric
How to measure the distance between tilings

Let T and T ′ be tilings of Rd from a prototile set P.

Informally, we say T and T ′ are within ε of one another if they
agree on a ball of radius 1/ε, except for a small translation:

Definition. Let R(T, T ′) be the supremum of all r ≥ 0 such
that there exists ~x, ~y ∈ Rd with

1. |~x| < 1/2r and |~y| < 1/2r, and

2. On the ball of radius r around the origin, T − ~x = T ′ − ~y.

We define

d(T, T ′) = min

{
1

R(T, T ′)
, 1

}
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Substitution tiling spaces: topological basics

Lemma. If Ω is of finite local complexity, then Ω is complete
and compact.

Lemma. Under mild conditions, Ω is connected. Each tiling in
Ω defines a path component that is homeomorphic to Rd, and
there are uncountably many path components.

I The fundamental group of Ω is not a useful invariant.

I The homology group is too complicated does not interact
well with the inverse limit structure of Ω.

I Simplicial, singular, and cellular cohomology don’t work
well either, since they study path connected components.

I Čech cohomology is computable and we will do the
half-hex.
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The local topology of Ω
Cylinder sets

To visualize any T ′ ∈ Bε(T ) ⊂ Ω, take T ∩B1/ε(0), a big central
patch in T .

I This patch, translated by at most ε, will appear in every
T ′ ∈ Bε(T ). (a continuous set of choices).

I Tile the rest of Rd in a fashion allowed by σ to make a
particular T ′ (a discrete set of choices).

Every tiling we make via this process is in Bε(T ).

Theorem (SW)

A tiling space that satisfies certain WLOG1 hypotheses is a fiber
bundle over the torus, with totally disconnected fiber.

1Translationally finite polygonal tiles meeting edge-to-edge.



The local topology of Ω
Cylinder sets

To visualize any T ′ ∈ Bε(T ) ⊂ Ω, take T ∩B1/ε(0), a big central
patch in T .

I This patch, translated by at most ε, will appear in every
T ′ ∈ Bε(T ). (a continuous set of choices).

I Tile the rest of Rd in a fashion allowed by σ to make a
particular T ′ (a discrete set of choices).

Every tiling we make via this process is in Bε(T ).

Theorem (SW)

A tiling space that satisfies certain WLOG1 hypotheses is a fiber
bundle over the torus, with totally disconnected fiber.

1Translationally finite polygonal tiles meeting edge-to-edge.



The local topology of Ω
Cylinder sets

To visualize any T ′ ∈ Bε(T ) ⊂ Ω, take T ∩B1/ε(0), a big central
patch in T .

I This patch, translated by at most ε, will appear in every
T ′ ∈ Bε(T ). (a continuous set of choices).

I Tile the rest of Rd in a fashion allowed by σ to make a
particular T ′ (a discrete set of choices).

Every tiling we make via this process is in Bε(T ).

Theorem (SW)

A tiling space that satisfies certain WLOG1 hypotheses is a fiber
bundle over the torus, with totally disconnected fiber.

1Translationally finite polygonal tiles meeting edge-to-edge.



The local topology of Ω
Cylinder sets

To visualize any T ′ ∈ Bε(T ) ⊂ Ω, take T ∩B1/ε(0), a big central
patch in T .

I This patch, translated by at most ε, will appear in every
T ′ ∈ Bε(T ). (a continuous set of choices).

I Tile the rest of Rd in a fashion allowed by σ to make a
particular T ′ (a discrete set of choices).

Every tiling we make via this process is in Bε(T ).

Theorem (SW)

A tiling space that satisfies certain WLOG1 hypotheses is a fiber
bundle over the torus, with totally disconnected fiber.

1Translationally finite polygonal tiles meeting edge-to-edge.



The local topology of Ω
Cylinder sets

To visualize any T ′ ∈ Bε(T ) ⊂ Ω, take T ∩B1/ε(0), a big central
patch in T .

I This patch, translated by at most ε, will appear in every
T ′ ∈ Bε(T ). (a continuous set of choices).

I Tile the rest of Rd in a fashion allowed by σ to make a
particular T ′ (a discrete set of choices).

Every tiling we make via this process is in Bε(T ).

Theorem (SW)

A tiling space that satisfies certain WLOG1 hypotheses is a fiber
bundle over the torus, with totally disconnected fiber.

1Translationally finite polygonal tiles meeting edge-to-edge.



The local topology of Ω
Cylinder sets

To visualize any T ′ ∈ Bε(T ) ⊂ Ω, take T ∩B1/ε(0), a big central
patch in T .

I This patch, translated by at most ε, will appear in every
T ′ ∈ Bε(T ). (a continuous set of choices).

I Tile the rest of Rd in a fashion allowed by σ to make a
particular T ′ (a discrete set of choices).

Every tiling we make via this process is in Bε(T ).

Theorem (SW)

A tiling space that satisfies certain WLOG1 hypotheses is a fiber
bundle over the torus, with totally disconnected fiber.

1Translationally finite polygonal tiles meeting edge-to-edge.



Substitution tiling spaces as inverse limits
Overview

Let’s recall the half-hex substitution rule:

A
σ(A) B

σ(B)
C

σ(C)

D
σ(D) E

σ(E)
F

σ(F )

A tiling T (left) is made of 1- and 2-supertiles (right).
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Substitution tiling spaces as inverse limits
Overview

I Under standard assumptions, supertiles in every T ∈ Ω are
uniquely determined [Sol2].

I If σ “forces the border”, any T ∈ Ω can be reconstructed by
knowing the precise location of 0 in all of its n-supertiles.

I We make a sequence of CW complexes out of the
n-supertiles called the “Anderson-Putnam” complexes.

I Since every (n+ 1)-supertile is composed of n-supertiles,
the CW complex for the (n+ 1)-supertiles maps onto that
of the n-supertiles.

I Every tiling T ∈ Ω corresponds to an element of the inverse
limit by noting the location of 0 in each of its n-supertiles.
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(Substitution) tiling spaces as inverse limits
Anderson-Putnam complex

Γ0 is the CW complex given by all prototiles, with edges
identified if they meet in a tiling in Ω.

The AP complex Γ0 for the half-hex tiling.

I Every tiling in Ω corresponds to a point in Γ0, and we have
a continuous map π : Ω→ Γ0

I Conversely, a point interior to Γ0 unambiguously tells how
to place a tile at the origin.

I A branch point in Γ0 yields a few choices of patches.
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(Substitution) tiling spaces as inverse limits
Anderson-Putnam complex and approximants

Γ1 is the CW complex given by all 1-supertiles, with superedges
identified if they meet in a tiling in Ω.

The AP complex Γ1 for the half-hex tiling.

I Again π : Ω→ Γ1 is continuous.

I A point in Γ1 tells how to place 1-supertiles around the
origin.

I A branch point in Γ1 yields a few choices of patches.

I Important: Γ1 is homeomorphic to Γ0.

We make Γn in exactly the same fashion, using n-supertiles.
This gives instructions for tiling larger and larger regions.
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(Substitution) tiling spaces as inverse limits
Forcing the border

A substitution forces the border if there is an N such that every
N -supertile determines the tiles immediately adjacent to it.

−→ −→

The half-hex substitution forces the border with N = 2.



(Substitution) tiling spaces as inverse limits
The ‘forgetful’ map φn : Γn+1 → Γn

−→

The forgetful map φ1 on part of Γ2

I Each (n+ 1)-supertile is composed of n-supertiles, and
φn : Γn+1 → Γn is a continuous cellular map.

I Each (n+ 1)-supertile in Γn+1 wraps over the n-supertiles
according to the substitution rule σ.

I All of the Γns are homeomorphic.
I All of the φns are the same.
I Convenient for constructing inverse limit lim

←−
(Γn, φn)
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(Substitution) tiling spaces as inverse limits
The inverse limit formalism

Consider
∏

Γn with the product topology.

lim
←−

(Γn, φn) = {(p0, p1, p2, ...) ∈
∏

Γn | for all n, pn = φn(pn+1)}

I Elements of lim
←−

(Γn, φn) give instructions for making tilings:

I p0 tells what tile to place at the origin, and precisely where
I p1 tells what supertile to place around that tile
I p2 tells what 2-supertile to place around the 1-supertile, etc.

Theorem (AP)

When the substitution forces the border, Ω and lim
←−

(Γn, φn) are

homeomorphic.

(If it doesn’t force the border we use a trick called “collaring”)
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Čech cohomology
(We need it but can avoid computing it directly)

I We already know that it is fruitless to try to compute the
singular, simplicial, or cellular cohomology of Ω because of
its uncountably many path components.

I Čech cohomology does better but is a more complicated.

I To get the Čech cohomology, we rely on:

I Ȟ∗(Ω,Z) = Ȟ∗(lim
←−

(Γn, φn),Z) (the spaces are

homeomorphic)
I Ȟ∗(lim

←−
(Γn, φn),Z) = lim

−→
Ȟ∗(Γn,Z) (inverse becomes direct

limit)
I Ȟ∗(Γn,Z) = H∗(Γn,Z) because each Γn is a CW complex
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←−

(Γn, φn),Z) (the spaces are

homeomorphic)
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Čech cohomology
What we do in practice

To compute the Čech cohomology of the tiling space Ω of a
substitution σ:

I If σ does not force the border, use a collaring trick to
ensure that Ω and lim

←−
(Γn, φn) are homeomorphic.

I Since all of the Γns and φns are the same, we denote
Γn = Γ and φn = φ.

I Compute the cohomology H∗(Γ,Z).

I Figure out how φ∗ acts on H∗(Γ,Z). For each dimension
0, 1, ..., d the result is a matrix.

I Take the direct limit of the matrix to get the cohomology
of the inverse limit and thus of Ω.
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Top Čech cohomology of the half-hex
Cohomology of approximants

d

b

aA

D

c
B

E
e C Ff

The labelled CW complex Γ

After a bit of linear algebra we obtain that

H0(Γ,Z) = Z H1(Γ,Z) = Z2 H2(Γ,Z) = Z3

Let A∗, B∗, C∗, D∗, E∗, F ∗ represent the dual cochains to the
2-chains A,B,C,D,E, F . The equivalence relation in the
quotient for H2 gives A∗ = D∗, B∗ = E∗, and C∗ = F ∗.

Generators for H2(Γ,Z) are A∗, B∗, C∗



Top Čech cohomology of the half-hex
Forgetful map as substitution

The six 2-cells of Γ1, with the map onto Γ0 indicated:

σ(A)
σ(B) σ(C)

σ(D)
σ(E) σ(F )

When A is in Γ1 it represents a 1-supertile of type A, so under
the forgetful map it covers tiles of type A,C,D, and E in Γ0.

The forgetful map φ on 1-chains is computed to be:

A→ A+ C +D + E B → B +D + E + F C → A+ C + E + F

D → A+B +D + F E → A+B + C + E F → B + C +D + F
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σ(A)
σ(B) σ(C)

σ(D)
σ(E) σ(F )

When A is in Γ1 it represents a 1-supertile of type A, so under
the forgetful map it covers tiles of type A,C,D, and E in Γ0.

The forgetful map φ on 1-chains is computed to be:
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Pullback of the forgetful map

We compute the pullback φ∗ : C2(Γn)→ C2(Γn+1):

φ∗(ω)(q) = ω(φ(q)), ω ∈ C2(Γn) and q ∈ C2(Γn+1)

Consider A∗ ∈ C2(Γn) and any q ∈ C2(Γn+1).

I φ∗(A∗(q)) = A∗(φ(q)) = 0 if φ(q) contains no A, =⇒
q = B and F

I For all other choices of q, A∗(φ(q)) = 1 since φ(q) contains
one copy of A

I Thus φ∗(A∗) = A∗ + C∗ +D∗ + E∗ ∼= 2A∗ +B∗ + C∗

A
φ−→ A+ C +D + E B

φ−→ B +D + E + F C
φ−→ A+ C + E + F

D
φ−→ A+B +D + F E

φ−→ A+B + C + E F
φ−→ B + C +D + F
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The direct limit of φ∗

Using similar logic for the other two generators of H2(Γn,Z) we
find that in the basis A∗, B∗, C∗, φ∗ acts as the matrix2 1 1

1 2 1
1 1 2


Ȟ2(Ω,Z) = lim

−→
(H2(Γ,Z), φ∗) = lim

−→

Z3,

2 1 1
1 2 1
1 1 2


The eigenvalues are 4, 1, 1 and in the final analysis we arrive at:

Ȟ2(Ω,Z) = Z[1/4]⊕ Z⊕ Z



Top Čech cohomology of the half-hex
Intuitive interpretation

Ȟ2(Ω,Z) = Z[1/4]⊕ Z⊕ Z

1 ∈ Z[1/4] is the cochain that knows when it sees a tile

1/4 ∈ Z[1/4] is the cochain that knows when it sees a supertile

1/4n ∈ Z[1/4] is the cochain that knows when it sees an n-supertile

The two copies of Z are generated by cochains that can tell an
A from a B and a B from a C.

Taken together the cohomology has the ability to recognize
types of supertiles of all orders, up to the identification
A∗ = D∗, B∗ = E∗, and C∗ = F ∗.
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In a similar fashion we can compute that

Ȟ1(Ω,Z) = lim
−→

(H1(Γ,Z), φ∗) = lim
−→

(
Z2,

(
2 0
0 2

))
And ultimately

Ȟ1(Ω,Z) = Z[1/2]⊕ Z[1/2].

This is harder to interpret but reflects the linear expansion
factor of two on edges.
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