Flow views and infinite interval exchange transformation for substitution tilings

Natalie P. Frank

Vassar College Department of Mathematics and Statistics

One World Numeration, March 9, 2021

Canonical IIETs for substitutions.

I'll show you how to construct an infinite interval exchange transformation (IIET) \mathfrak{F} to represent any minimal and recognizable substitution subshift in \mathbb{Z} .

Natalie P. Frank

Advantage: strong "approximation" by IETs

Efficiency. All but ϵ of [0, 1] is contained in $\mathcal{O}(|\ln(\epsilon)|)$ intervals in the domain of \mathfrak{F} .

The graphs of $\mathfrak{F}_1, \mathfrak{F}_2$, and \mathfrak{F}_3 for \mathcal{S}_{PD} .

Vassar Colleg

Definition

A *flow view* is the graph of a conjugacy $\Phi : \Sigma \to [0, 1]$ between σ and \mathfrak{F} .

- ▶ It literally graphs the a.e. one-to-one correspondence between [0, 1] and the subshift by showing each $\tau \in \Sigma$ (in colored unit interval tiles) at a height of $\Phi(\tau)$.
- ▶ The IIET can be understood as a shift on the flow view.

Flow views for Fibonacci and Thue–Morse subshifts.

The red line highlights the $\boldsymbol{\tau} \in \boldsymbol{\Sigma}$ for which $\Phi(\boldsymbol{\tau}) = 1/e$.

Natalie P. Frank

Advantage: the shift is in the flow view

Shifting moves the central interval representing [0, 1] one unit to the right.

This fun example is of constant length 3 with height 2 and no coincidences.

Natalie P. Frank

- ► A straightforward adaptation to the proof makes IIETs for a large class of **S-adic systems**
- ▶ Self-similar and fusion tilings of ℝ are suspensions; the IIET represents the first return map to a transversal.
- The construction works in some higher dimensional situations to produce commuting IIETs on [0, 1]

Flow view comparison: Tribonacci

Top: unit length tiles. Bottom: natural length tiles. For the tiling flow, the IIET is the first return map to the transversal of all tilings with an endpoint at 0.

Natalie P. Frank

Flow views for $A \to A B B B$, $B \to A$.

Top: unit length tiles. Bottom: natural length tiles.

Natalie P. Frank

Advantage: applications and connections

- ▶ Spectral theory. Φ is a particularly nice element of $L^2(\Sigma, \mu)$
- Self-similar functions. The graphs of the IIETs always show some form of it.
- ▶ IIETs provide an unlimited stable of translation surfaces that are probably of infinite genus and retain some kind of self-inducing properties
- ▶ There are tons of questions this whole theory brings up. If you are/have a student that is interested, I am happy to share.
 - Side note: mathematica users could use/help develop my package for these images

Spectral theory: \mathfrak{F}_{20}^{j} , where $j = 2^{8}, 2^{9}$, and 2^{10} .

Dyadic odometer, period-doubling, Thue–Morse, and Rudin–Shapiro.

Three main ingredients

1. A system for associating each $\tau \in \Sigma$ with an address $\mathbf{a}(\tau) = (\mathbf{a}_1, \mathbf{a}_2, ...),$

$$\blacktriangleright \ \mathsf{a}_n \in \mathsf{A} \neq \mathcal{A} \subset \mathcal{A} \times \mathbb{N}$$

- ▶ the label a_n represents how the (n 1)-supertile sits inside its *n*-supertile
- 2. A function ϕ on the alphabet A.
 - ▶ This function depends on a choice of dual substitution
 - \blacktriangleright Uses the frequency vector of S as a modified length vector
- 3. A function $\Phi(\mathbf{a}) = \Phi_0(\mathbf{a}_1) + \sum_{n=1}^{\infty} \phi(\mathbf{a}_n) \lambda^{-n}$,
 - \triangleright λ is the expansion constant
 - $\Phi_0(a_1)$ depends on the letter at the origin
 - Note: a_1 is the most significant digit

Setting: symbolic and substitution dynamical systems

- $\blacktriangleright \text{ Finite } alphabet \ \mathcal{A}$
- ▶ substitution rule map $S : A \to A^+$
- For each $\alpha \in \mathcal{A}$ we write $\mathcal{S}(\alpha) = \alpha_1 \alpha_2 \dots \alpha_l$
- $S^n(\alpha)$ is called an *n*-supertile of type α

$$\mathcal{S}^{n}(\alpha) = \mathcal{S}^{n-1}(\alpha_1) \, \mathcal{S}^{n-1}(\alpha_2) \dots \mathcal{S}^{n-1}(\alpha_l). \tag{1}$$

- This is a *fusion* perspective, so it will work for S-adic systems
- The word $\mathcal{S}^n(\alpha)$ is assumed to begin at $1 \in \mathbb{Z}$ for any $n \ge 1$.

Use $\mathcal{L} = \{\mathcal{S}^n(\alpha), n \in \mathbb{N} \text{ and } \alpha \in \mathcal{A}\}$ as a 'language':

We say $\boldsymbol{\tau} \in \mathcal{A}^{\mathbb{Z}}$ is admitted by S if and only if every finite subword of $\boldsymbol{\tau}$ is a subword of an element of \mathcal{L} .

Definition

The set $\Sigma = \{ \tau \in \mathcal{A}^{\mathbb{Z}} \text{ admitted by } \mathcal{L} \}$, if nonempty, is endowed with the subspace topology, shift σ , and a shift-invariant Borel probability μ to become the *substitution subshift* (Σ, σ, μ) .

Period-doubling substitution, our illustrating example

The A tile (top left) and the B tile (top right) with 1-, 2, and 3-supertiles below.

Measure stuff

- **transition matrix** of S is the matrix M for which M_{ij} is the number of α_i 's in $S(\alpha_j)$.
- ▶ The "**PF** eigenvalue" $\lambda \ge |\lambda'|$ for any other eigenvalue.
 - We call λ the *expansion factor* of S.
 - ▶ In the non-primitive case it may not be unique
- Supertile lengths are given by $[1 \ 1 \dots 1] M^n = [|S^n(\alpha_1)| |S^n(\alpha_2)| \dots |S^n(\alpha_{|\mathcal{A}|})|].$
- A left eigenvector for λ represents the *natural lengths* for self-similar tilings.
- A right probability eigenvector \vec{r} for λ represents relative frequencies of letters in \mathcal{A} , at least in a subspace of Σ .
- There is an invariant measure μ such that $\mu([\alpha_j]) = \vec{r}(j)$ for all $j = 1, 2, ..., |\mathcal{A}|$.

• Handy fact:
$$\mu(\mathcal{S}^n([\alpha_j])) = \vec{r}(j)/\lambda^n$$
.

S is **Recognizable**:

there is R > 0 s.t. if $\boldsymbol{\tau}, \boldsymbol{\tau}' \in \boldsymbol{\Sigma}$ and $\boldsymbol{\tau}[n-R, ...n+R] = \boldsymbol{\tau}'[n-R, ...n+R]$, then $\boldsymbol{\tau}(n)$ and $\boldsymbol{\tau}'(n)$ are in exactly the same location of the same supertile.

- For $\boldsymbol{\tau} = \{\alpha_n\}_{n \in \mathbb{Z}}$, define $\mathcal{S}(\boldsymbol{\tau})$ to be $...\mathcal{S}(\alpha_{-1})\mathcal{S}(\alpha_0)\mathcal{S}(\alpha_1)...$ where $\mathcal{S}(\alpha_1)$ starts at 1.
- ▶ Recognizability extends to supertiles of any level

The canonical partitition sequence of n-cylinders

- For $\alpha \in \mathcal{A}$ let $[\alpha] = \{ \boldsymbol{\tau} \in \boldsymbol{\Sigma} \text{ with } \boldsymbol{\tau}(1) = \alpha \}.$
- Define the *n*-cylinder to be the set of all tilings with a true *n*-supertile of type α starting at 1:

$$\mathcal{S}^n([\alpha]) = \{\mathcal{S}^n(\boldsymbol{\tau}), \boldsymbol{\tau} \in [\alpha]\}$$

• For each
$$n = 0, 1, 2, ...,$$

$$\mathcal{B}_n = \left\{ \sigma^k(\mathcal{S}^n([\alpha])), \alpha \in \mathcal{A} \text{ and } 1 \le k < |\mathcal{S}^n(\alpha)| \right\}$$
(2)

forms a partition of Σ .

Sets of the form $\sigma^k(\mathcal{S}^n([\alpha]))$ with $1 \le k < |\mathcal{S}^n(\alpha)|$ are called *n-cylinders*.

• There may be a difference between $[\mathcal{S}(\alpha)]$ and $\mathcal{S}([\alpha])$.

▶ The *domain* of *S* is the subset of $A \times \mathbb{N}$ given by

$$\mathsf{A} = \{ \mathsf{a} := (\alpha, j) \text{ such that } 1 \le j \le |\mathcal{S}(\alpha)| \}.$$

- ▶ The projection maps $\pi_{\mathcal{A}}(\mathsf{a})$ and $\pi_{\mathbb{N}}(\mathsf{a})$ are used when needed.
- Two crucial uses:
 - 1. To specify the word $\mathcal{S}(\mathsf{a}) := \sigma^j(\mathcal{S}(\alpha))$.
 - 2. To identify the the letter in the *j*th position of $S(\alpha)$, which is $S(\alpha)(j) = \sigma^j(S(\alpha))(0) = S(\mathsf{a})(0)$.

Premise: The 1-supertile at the origin in any $\tau \in \Sigma$ has a unique label in A by recognizability. So do all n-supertiles, being concatenations of (n-1)-supertiles

The 1-address of τ is given by $\mathbf{a}_1(\tau) = \mathbf{a} \in A$, where $\tau(0)$ is in the *j*th spot of the 1-supertile $\mathcal{S}(\alpha)$. Equivalently, $\tau \in \sigma^j(\mathcal{S}[\alpha])$.

We define the 1-*cylinder* of $a = (\alpha, j)$ to be

 $[\mathcal{S}(\mathsf{a})] = \{ \boldsymbol{\tau} \in \boldsymbol{\Sigma} \text{ such that } \mathbf{a}_1(\boldsymbol{\tau}) = \mathsf{a} \} = \sigma^j(\mathcal{S}([\alpha])).$

First hint of the dual substitution

By recognizability, the origin is inside a unique nested sequence of *n*-supertiles in any $\boldsymbol{\tau} \in \boldsymbol{\Sigma}$.

- The 0-cylinder of type $\alpha \in \mathcal{A}$ is the union of 1-cylinders that have α at the origin.
- ▶ The set of all positions α appears in 1-supertiles is

$$T(\alpha) = \{ \mathbf{b} \in \mathsf{A} \, | \, \mathcal{S}(\mathbf{b})_0 = \alpha \}$$
$$= \{ (\beta, j) \in \mathsf{A} \, | \, \alpha \text{ is the } j \text{th letter of } \mathcal{S}(\beta) \}.$$

Vassar College

2-addresses for elements of $\pmb{\Sigma}$

- The position of $\tau(0)$'s 1-supertile inside of its 2-supertile is uniquely determined and can be labeled by A.
- ▶ The *2-address* is $\mathbf{a}_2(\boldsymbol{\tau}) = (a_1, a_2)$ if
 - 1. $\boldsymbol{\tau}(0)$ is in a 1-supertile of type $\pi_{\mathcal{A}}(\mathsf{a}_1) = \alpha_1$ in position $\pi_{\mathbb{N}}(\mathsf{a}_1) = j_1$, and
 - 2. that 1-supertile is contained in a 2-supertile of type $\pi_{\mathcal{A}}(\mathsf{a}_2) = \alpha_2$ at position $\pi_{\mathbb{N}}(\mathsf{a}_2) = j_2$.
- ► There is an appropriate $k \in \{1, 2, ..., |S^2(\alpha_2)|\}$ for which $S(a_1, a_2) = \sigma^k(S^2(\alpha_2)).$
- \blacktriangleright All of these things are true for *n*-supertiles and addresses.

n-addresses, -cylinders, and -supertiles

- ▶ We say $\mathbf{a} = (\mathbf{a}_1, \mathbf{a}_2, ...) \in \mathsf{A}^{\mathbb{N}} \cup \mathsf{A}^{\infty}$ is an *address* if $\mathbf{a}_k \in \mathsf{T}(\alpha_{k-1})$ for all $1 \le k \le |\mathbf{a}|$.
- ▶ The set of all addresses of lengths n, ∞ , or "any" are denoted $\mathbf{A}_n, \mathbf{A}_\infty$, and \mathbf{A} , respectively.
- For $\tau \in \Sigma$, the *n*-address of τ , denoted $\mathbf{a}_n(\tau)$, is the address of $\tau(0)$'s *n*-supertile.
- When $n < \infty$ and $\mathbf{a} = (a_1 a_2, ..., a_n)$, we define
 - the *n*-supertile addressed by a to be
 S(a) = σ^j(Sⁿ(π_A(a))) for the appropriate value of j
 the *n*-cylinder denoted [S(a)] = σ^j(Sⁿ([π_A(a)]))

Building a supertile from an address string.

Recall $S_{PD}(A) = A B$ and $S_{PD}(B) = A A$.

Instructions for placing the supertile $S_{PD}(B2, A2, A1)$:

- 1. Place $S_{PD}(B)$ so that the origin is in the 2nd spot.
- 2. Slide a copy of $\mathcal{S}_{PD}^2(A)$ to match its 2nd 1-supertile to the one in place already.
- 3. Move a copy of $\mathcal{S}^3_{PD}(A)$ to match its 1st 2-supertile to the existing one.

Building a supertile from an address string.

Natalie P. Frank

From Σ to [0,1]: the big picture

(a) The shaded path leads to the correct interval for $S_{PD}(B2, A2, A1)$.

(b) The shifted supertile $\sigma(\mathcal{S}_{PD}(B2, A2, A1))$ has address

Natalie P. Frank

Definition of Φ : Initial partition

$$\blacktriangleright \sum_{\alpha \in \mathcal{A}} \mu([\alpha]) = 1$$

▶ for each $\alpha \in \mathcal{A}$, choose a left endpoint $\Phi_0(\alpha) \in [0, 1)$ such that the intervals $\mathbf{I}(\alpha) := [\Phi_0(\alpha), \Phi_0(\alpha) + \mu([\alpha]))$ cover [0, 1).

The initial partition is
$$\mathcal{I}_0 = \{\mathbf{I}(\alpha), \alpha \in \mathcal{A}\}.$$

 $\Phi_0(A) = 0, \Phi_0(B) = 2/3.$

The initial partition for the alphabet S_{PD} , in dual subdivision graph (left) and flow view (right).

Natalie P. Frank

Making ϕ

For
$$\mathbf{b} = (\beta, j) \in \mathbf{A}$$
 we have

$$\mu([\mathcal{S}(\mathbf{b})]) = \mu(\mathcal{S}([\beta])) = \mu([\beta)]/\lambda$$

$$\mu([\alpha]) = \sum_{\mathbf{b} \in \mathsf{T}(\alpha)} \mu([\mathcal{S}(\beta)]) = \sum_{\mathbf{b} \in \mathsf{T}(\alpha)} \mu([\beta)]/\lambda.$$
(3)

For each $\alpha \in \mathcal{A}$, choose a function $\phi : \mathsf{T}(\mathsf{a}) \to [0, \mu([\alpha]) \text{ for which }$

$$[0,\mu([\alpha])) = \bigcup_{\mathbf{b}\in\mathsf{T}(\mathbf{a})} \left[\phi(\mathbf{b}), \, \phi(\mathbf{b}) + \frac{\mu([\beta])}{\lambda}\right), \text{ where } \pi_{\mathcal{A}}(\mathbf{b}) = \beta.$$
(4)

Natalie P. Frank

Making ϕ

For period-doubling, $A = \{A1, A2, B1, B2\}$.

Since $T(A) = \{A1, B1, B2\}$ and $T(B) = \{A2\}$, we choose the dual substitution $S_* : A \to ABB$ and $B \to A$.

 $\phi(A1) = 0, \quad \phi(B1) = 1/3, \quad \phi(B2) = 1/2, \text{ and } \phi(A2) = 0, \text{ and so}$ $\Phi_1(A1) = 0, \quad \Phi_1(B1) = 1/3, \quad \Phi_1(B2) = 1/2, \text{ and } \Phi_1(A2) = 2/3.$

The definition of ϕ .

Natalie P. Frank

The first dual subdivision and the level-1 flow view for S_{PD} .

- ▶ The refinement \mathcal{I}_2 is given by sets of the form $\mathbf{I}(\mathsf{a}_1,\mathsf{a}_2)$, where $(\mathsf{a}_1,\mathsf{a}_2) \in \mathbf{A}_2$.
- ► Each $I(a_1) \in \mathcal{I}_1$ is partitioned by $\{I(a_1, a_2), a_2 \in T(a_1)\}$ placed in the order given by $\mathcal{S}_*(\alpha)$.

Suppose
$$\pi_{\mathcal{A}}(\mathsf{a}_i) = \alpha_i, i = 1, 2.$$

$$\mu([\mathcal{S}(\mathsf{a}_1)]) = \sum_{\mathsf{a}_2 \in \mathsf{T}(\mathsf{a}_1)} \mu([\mathcal{S}(\mathsf{a}_1,\mathsf{a}_2)]) = \sum_{\mathsf{a}_2 \in \mathsf{T}(\mathsf{a}_1)} \mu([\pi_{\mathcal{A}}(\mathsf{a}_2)])/\lambda^2.$$

• Because the interval $[0, \mu([\mathcal{S}(\alpha_1)]))$ is scaled by $1/\lambda$ from $[0, \mu([\alpha_1]))$, we use $\phi(\mathsf{a}_2)/\lambda$ to partition it.

• Take $\Phi_1(\mathcal{S}(\mathsf{a}_1))$ and add on $\phi(\mathsf{a}_2)/\lambda$:

$$\Phi_2(\mathsf{a}_1,\mathsf{a}_2) = \Phi_1(\mathsf{a}_1) + \phi(\mathsf{a}_2)/\lambda$$

•
$$\mathbf{I}(\mathsf{a}_1,\mathsf{a}_2) = [\Phi_2(\mathsf{a}_1,\mathsf{a}_2), \Phi_2(\mathsf{a}_1,\mathsf{a}_2) + \mu([\pi_{\mathcal{A}}(\mathsf{a}_2)])/\lambda^2).$$

The level-2 dual subdivision and flow view for S_{PD} .

nth level flow view

► For notational convenience $\mathbf{A}_0 = \mathsf{A}$ and $\Phi_0 : \mathsf{A} \to [0, 1]$ is defined as $\Phi_0(\mathsf{a}) := \Phi_0(\pi_{\mathcal{A}}(\mathsf{a})).$

$$\blacktriangleright \text{ If } \mathbf{a} = (\mathsf{a}_1, \mathsf{a}_2, ... \mathsf{a}_n), \text{ then }$$

$$\Phi_n(\mathbf{a}) = \Phi_{n-1}(\mathbf{a}_1 \dots, \mathbf{a}_{n-1}) + \phi(\mathbf{a}_n)/\lambda^{n-1} = \Phi_0(\mathbf{a}_1) + \sum_{k=1}^n \phi(\mathbf{a}_k)/\lambda^{k-1}$$
(5)

▶ The interval corresponding to **a** is thus

$$\mathbf{I}(\mathbf{a}) = [\Phi_n(\mathbf{a}), \Phi_n(\mathbf{a}) + \mu(\pi_{\mathcal{A}}(\mathbf{a}_n)))/\lambda^n) = [\Phi_n(\mathbf{a}), \Phi_n(\mathbf{a}) + \mu([\mathcal{S}(\mathbf{a}), \Phi_n(\mathbf{a})]))/\lambda^n)$$

making the Lebesgue measure of $\mathbf{I}(\mathbf{a})$ is equal to $\mu([\mathcal{S}(\mathbf{a})])$.

We define the canonical partition sequence of [0,1) given by S_∗ to be
 I_n = {I(a₁, a₂, ...a_n), such that (a₁, a₂, ...a_n) ∈ A_n}.

Natalie P. Frank

Definition

The coordinate map given by S_* is the map $\Phi: \Sigma \to [0, 1]$ given by

$$\begin{split} \Phi(\boldsymbol{\tau}) &= \lim_{n \to \infty} \Phi_n(\boldsymbol{\mathsf{a}}_n(\boldsymbol{\tau})) \\ &= \Phi_0(\boldsymbol{\mathsf{a}}_1) \ + \sum_{k=1}^{\infty} \phi(\boldsymbol{\mathsf{a}}_k) / \lambda^{k-1}, \text{ where } \boldsymbol{\mathsf{a}}(\boldsymbol{\tau}) = (\boldsymbol{\mathsf{a}}_1, \boldsymbol{\mathsf{a}}_2, \ldots). \end{split}$$

The *flow view given by* S_* is the graph of a canonical isomorphism Φ , with each $\tau \in \Sigma$ shown at the height $\Phi(\tau)$. The *n*th level flow view is the graph of Φ_n .

- For any a = (a₁, a₂, ...) ∈ A define n(a) to be the first index at which an element of a can be increased
- ▶ the smallest k for which $\mathbf{a}_{[1,..,k]} \neq \overline{\mathbf{a}_k}(\alpha)$ for any α .

Definition

The *Vershik* map $\mathcal{V} : \mathbf{A} \to \mathbf{A}$ is defined for any **a** for which $\mathbf{n}(\mathbf{a}) = N < \infty$ with $\mathbf{a} = (\overline{\mathbf{a}_{N-1}}(\alpha), (\alpha_N, j_N), \mathbf{a}_{N+1}...)$ to be

$$\mathcal{V}(\mathbf{a}) = \left(\underline{\mathbf{a}_{N-1}}(\beta), (\alpha_N, j_N + 1), \mathbf{a}_{N+1}, \dots\right), \text{ where } \beta \text{ is the } (j_N + 1)\text{th le}$$
(6)

$$\mathfrak{F}(x) = x - \Phi_N(\mathbf{a}_N(x)) + \Phi_N(\mathcal{V}(\mathbf{a}_N(x))).$$
(7)

The final results for period-doubling. The blue vertical lines in the IIET connect the ends of jump discontinuities.

Proposition Given $\boldsymbol{\tau} \in \boldsymbol{\Sigma}$ with $\mathbf{a}_{\infty}(\boldsymbol{\tau}) = \{\mathbf{a}_n\}_{n=1}^{\infty}$, the map

$$\Phi(\boldsymbol{\tau}) = \Phi_0(\boldsymbol{\tau}(0)) + \sum_{n=1}^{\infty} \frac{\phi(\mathbf{a}_n)}{\lambda^{n-1}} = \Phi_K(\mathbf{a}_K(\boldsymbol{\tau})) + \sum_{n=K+1}^{\infty} \frac{\phi(\mathbf{a}_n)}{\lambda^{n-1}}$$
(8)

is uniformly continuous everywhere and bijective almost everywhere.

Theorem

Let S be a recognizable substitution and let $\Phi: (\Sigma, \mu) \to ([0, 1], m)$ be a canonical isomorphism. For $x \in [0, 1]$ with $\mathbf{n}(x) = N < \infty$ we define

$$\mathfrak{F}(x) = x - \Phi_N(\mathbf{a}_N(x)) + \Phi_N(\mathcal{V}(\mathbf{a}_N(x))). \tag{9}$$

Then \mathfrak{F} is defined for m-almost every x and Φ is a measurable conjugacy between (Σ, σ, μ) and $([0, 1], \mathfrak{F}, m)$.

Corollary

For any $n \in \mathbb{N}$ there is an exchange of $n(|\mathsf{A}| - |\mathcal{A}|) + |\mathcal{A}|$ intervals that is equal to \mathfrak{F} on all but $|\mathcal{A}|$ intervals of total measure $\leq \lambda^{-n}$.

Proof: $\mathfrak{F}(\Phi(\boldsymbol{\tau})) = \Phi(\sigma(\boldsymbol{\tau}))$ a.e.

Let $\boldsymbol{\tau} \in \boldsymbol{\Sigma}$ with $\mathbf{n}(\boldsymbol{\tau}) = M < \infty$ so that $\Phi(\boldsymbol{\tau})$ lies in $\mathbf{I}(\mathbf{a}_M(\boldsymbol{\tau}))$. We can write $\Phi(\boldsymbol{\tau}) = \Phi_M(\mathbf{a}_M(\boldsymbol{\tau})) + \sum_{n=M+1}^{\infty} \frac{\phi(\mathbf{a}_n)}{\lambda^{n-1}}$. We have

$$\begin{split} \mathfrak{F}(\Phi(\boldsymbol{\tau})) &= \Phi(\boldsymbol{\tau}) - \Phi_M(\mathbf{a}_M(\boldsymbol{\tau})) + \Phi_M(\mathcal{V}(\mathbf{a}_M(\boldsymbol{\tau}))) \\ &= \left(\Phi(\mathbf{a}_M(\boldsymbol{\tau})) + \sum_{n=M+1}^{\infty} \frac{\phi(\mathbf{a}_n)}{\lambda^{n-1}} \right) - \Phi_M(\mathbf{a}_M(\boldsymbol{\tau})) + \Phi_M(\mathcal{V}(\mathbf{a}_M(\boldsymbol{\tau})) \\ &= \Phi_M(\mathcal{V}(\mathbf{a}_M(\boldsymbol{\tau}))) + \sum_{n=M+1}^{\infty} \frac{\phi(\mathbf{a}_n)}{\lambda^{n-1}} \\ &= \Phi_M(\mathbf{a}_M(\sigma(\boldsymbol{\tau}))) + \sum_{n=M+1}^{\infty} \frac{\phi(\mathbf{a}_n)}{\lambda^{n-1}} = \Phi(\sigma(\boldsymbol{\tau})), \end{split}$$

with the last two equalities following from lemma 11 and the fact that $\boldsymbol{\tau}$ and $\sigma(\boldsymbol{\tau})$ are tail equivalent with $\mathbf{a}_{[M+1,\infty)}(\boldsymbol{\tau}) = \mathbf{a}_{[M+1,\infty)}(\sigma(\boldsymbol{\tau})).$

Natalie P. Frank

Proposition

Suppose there are $\beta, \gamma \in \mathcal{A}$ such that $\mathcal{S}(\alpha)$ begins with β and ends with γ for all $\alpha \in \mathcal{A}$. Then there is a canonical IIET of (Σ, σ, μ) and a constant $\kappa \in [0, 1)$ for which

$$\mathfrak{F}(x) = \lambda(\mathfrak{F}(x/\lambda) + \kappa) \text{ for a.e. } x \in [0, 1].$$
 (10)

Shazam! A self-similar IIET for $A \to BBA$, $B \to BA$.

Key lemmas

Lemma If (Σ, σ) is minimal and μ is shift invariant, the subset $\Sigma_0 = \{ \tau \in \Sigma \mid each \ a \in \mathcal{A} \text{ appears infinitely often in } \mathbf{a}(\tau) \}$

has full measure.

$$\mathfrak{Les} = \{ \Phi_n(\mathbf{a}), \, \mathbf{a} \in \mathbf{A}_{\mathbb{N}} \text{ and } n \in \mathbb{N} \}.$$
(12)

(11)

Remark

What sequences map to \mathfrak{LGS} ?88 include sequences whose supertile sequence at the origin only covers a half-line, but there are others. A problematic such case appears in the proof of theorem ??. 88 understand the relationship between Σ_0 and \mathfrak{LGS} .

Lemma

For all
$$\boldsymbol{\tau} \in \boldsymbol{\Sigma}$$
 with $\mathbf{n}(\mathbf{a}(\boldsymbol{\tau})) < \infty$, $\mathbf{a}(\sigma(\boldsymbol{\tau})) = \mathcal{V}(\mathbf{a}(\boldsymbol{\tau}))$.

Natalie P. Frank

tion Lebesgue measure is the push-forward of μ under Φ and so

Corollary

For all integrable $f: [0,1] \to \mathbb{C}, \ \int_0^1 f(x) dm = \int_{\Sigma} f(\Phi(\boldsymbol{\tau})) d\mu.$

At points where Φ is one-to-one its inverse is continuous in the following sense.

Corollary

Let $x_0 \in [0,1)/\mathfrak{LCs}$. For every $\delta > 0$ there exists an $\epsilon' > 0$ such that if $|x - x_0| < \epsilon'$, then $d(\Phi^{-1}(x), \Phi^{-1}(x_0)) < \delta$ for any element of $\Phi^{-1}(x)$.

The IIET \mathfrak{F}_{20}^{j} for the Chacon substitution $\mathcal{S}_{C}(0) = 0.010$ and $\mathcal{S}_{C}(1) = 1$, where j = 121,364, and 1093. This substitution is weakly mixing.

The IIET \mathfrak{F}_{20}^{j} for the 'tribonacci' substitution $A \to AB, B \to AC, C \to A$, for j = 204, 574, and 927.

The IIET \mathfrak{F}_{20}^{j} for the substitution $A \to ABBB, B \to A$, for

Natalie P. Frank

The first three approximants for the IIET of S_{fib}^2 .