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NATALIE PRIEBE FRANK AND LORENZO SADUN

Abstract. We propose a formalism for tilings with infinite local complexity (ILC), and
especially fusion tilings with ILC. We allow an infinite variety of tile types but require that
the space of possible tile types be compact. Examples include solenoids, pinwheel tilings,
tilings with fault lines, and tilings with infinitely many tile sizes, shapes, or labels. Special
attention is given to tilings where the infinite local complexity comes purely from geometry
(shears) or comes purely from combinatorics (labels). We examine spectral properties of the
invariant measures and define a new notion of complexity that applies to ILC tilings.

1. Definitions

In the standard theory of tiling dynamical systems, which is motivated in part by the

discovery of aperiodic solids, tilings are constructed from a finite number of tile types that

can be thought of as atoms. It is usually assumed that these prototiles have only a finite

number of possible types of adjacencies and this is called finite local complexity, or FLC.

Recently, many interesting tiling models have arisen that do not satisfy this property.

In a tiling with infinite local complexity (ILC), there are infinitely many 2-tile patterns,

that is, infinitely many ways for two tiles to meet. Consider an ILC tiling that is made from a

finite set of tile types. If we then ‘collar’ the tiles by marking each tile by the pattern of tiles

around it, we obtain an equivalent tiling with infinitely many tile types. We therefore allow

arbitrarily many tile types from the start, but require that the space of tile types should be

compact. In particular, it should only be given the (usual) discrete topology when the set

of possible tiles is finite.

1.1. Tiles, labels, patches, tilings, and hulls. We will construct tilings of Euclidean

space Rd. A tile t is a pair t = (supp(t), label(t)), where supp(t), the support, is a closed set

homeomorphic to a ball in Rd, and label(t) is an element of some compact metric space L.

We will move tiles around using the action of translation by all elements of Rd. An element

x ∈ Rd acts on a tile t by acting on its support: t − x = (supp(t) − x, label(t)). Two tiles

t1 and t2 are said to be equivalent if there is an x ∈ Rd such that t1 − x = t2. In particular,

they must have the same label. Equivalent tiles are said to have the same tile type. For

convenience we collect one representative of each tile type into a prototile set P . This is
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equivalent to picking a point in the tile, called a control point, that is placed at the origin.

If the tiles are convex, then it is often convenient to pick each tile’s control point to be its

center of mass.

If a sequence of tile labels converges in L to a limiting label, we require that the supports of

the corresponding prototiles converge in the Hausdorff metric to the support of the prototile

with the limiting label. This condition constrains both the shapes of the prototiles and the

locations of the control points. This is where our paradigm separates from the ‘usual’ tiling

theory: not only can there be infinitely many tile types, but those tile types may approximate

one another.

The condition also implies that all tiles with a given label are equivalent. Labels serve

primarily to distinguish between tile types whose prototiles have identical supports.

Given a fixed prototile set P , we can form patches and tilings using copies of tiles from P .

A P-patch (or patch, for short) is a connected union of tiles equivalent to tiles from P , whose

supports intersect only on their boundaries. A tiling T is an infinite patch whose support

covers all of Rd. An equivalent definition of finite local complexity (FLC) is that T contains

only a finite number of two-tile patches up to translational equivalence.

We make a metric on tiles that will be extended to tilings. The distance between two

tiles is d(t1, t2) = max{dH(supp(t1), supp(t2)), dL(label(t1), label(t2))}, where dH is Hausdorff

distance on subsets of Rd and dL is the metric on L. We can extend this to finite patches

that have a one-to-one correspondence between their tiles by letting the distance between two

patches be the maximum distance between pairs of corresponding tiles. Finally we extend

this to tilings by saying that the distance between two tilings is the minimum ε for which

the two tilings have patches containing the ball of radius 1/ε around the origin that differ by

at most ε. If there is no ε ≤ 1 for which this is true, we simply define the distance between

the tilings to be 1.

Given a fixed tiling T, the continuous hull ΩT of T is the closure of the translational orbit

of T:

ΩT = {T− x such that x ∈ Rd}

More generally, a tiling space Ω is a closed, translationally invariant set of tilings constructed

using some fixed prototile set. In both cases we have a dynamical system (Ω,Rd) which we

can study from topological or measure-theoretic perspectives.

The tiling space Ω is necessarily compact. This follows from the compactness of P together

with the fact that the possible offsets between the control points of two adjacent tiles lie

in a closed and bounded subset of Rd. Given any sequence of tilings Tn ∈ Ω, there is a

subsequence whose tiles at the origin converge in both label and position, a subsequence of

that for which the tiles touching the “seed” tile converge, a further subsequence for which

a second ring of tiles converges, and so on. From Cantor diagonalization we then get a

subsequence that converges everywhere. Note that if P were not required to be compact,
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then Ω typically would not be compact, either; a sequence of tilings with a non-convergent

sequence of tiles at the origin does not have had a convergent subsequence.

1.2. Forms of infinite local complexity. There are a number of standard examples of

tilings with ILC, exhibiting different ways that ILC emerges. In some tilings, tiles appear in

an infinite number of shapes, or even an infinite number of sizes. In others, the geometry of

the tiles is simple, but tiles come with an infinite number of labels. In others, there are only

finitely many tile types, but infinitely many ways for two tiles to meet.

Bratteli-Vershik systems [7] are associated with 1-dimensional subshifts (and hence with

FLC tilings) and also with non-expansive automorphisms of a Cantor set. These non-

expansive automorphisms can be realized as ILC fusion tilings with an infinite tile set.

In the pinwheel tiling [10], all tiles are 1–2–
√

5 right triangles, but the triangles point in

infinitely many directions, uniformly distributed on the circle. With respect to translations,

that means infinitely many tile types. Versions of the generalized pinwheel [12] exhibit tiles

that are similar triangles, pointing in infinitely many directions and having infinitely many

different sizes.

ILC tilings can also occur with finite tile sets. One can have shears along a “fault line”

where the tiles on one side of the line are offset from the tiles on the other side. For instance,

imagine a tiling of R2 by two types of tiles, one a rectangle of irrational width α and height

1, and the other a unit square. Imagine that these tiles assemble into alternating rows of

unit-width and width-α tiles. There will be infinitely many offsets between adjacent tiles

along each boundary between rows. This behavior occurs frequently in tilings generated by

substitutions and generalized substitutions when the linear stretching factor is not a Pisot

number [2, 4, 5, 8, 12].

1.3. Outline. In Section 2 we review the formalism of fusion for FLC tilings and adapt the

definitions to the ILC setting. Most well-known examples of ILC tilings are fusion tilings,

and much can be said about them. Many of the results of [6] carry over, only with finite-

dimensional vectors replaced by measures and with matrices replaced by maps of measures.

In Section 3 we consider dynamical properties such as minimality and expansivity. Some

well-known results concerning expansivity do not carry over to the ILC setting, and we

define strong expansivity to account for the differences. In Section 4 we address the measure

theory of ILC tilings, especially ILC fusion tilings. In Section 5 we adapt ideas of topological

pressure and topological entropy to define a complexity function for ILC tilings. We also

relate this complexity to expansivity. Finally, in Section 6 we survey the landscape of ILC

tilings, defining different classes of ILC tilings, and seeing how various examples fit into the

landscape. In the Appendix we present several examples in detail.
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2. Compact fusion rules and fusion tilings

In previous work [6] we defined fusion rules for tilings with finite local complexity, and

now we adapt this definition to handle compact tiling spaces. Given two P-patches P1 and

P2 and two translations x1, x2 ∈ Rd, if the union P1 − x1 ∪ P2 − x2 forms a P-patch, and if

P1 − x1 and P2 − x2 have no tiles in common, we call the union of P1 − x1 and P2 − x2 the

fusion of P1 to P2. Patch fusion is simply a version of concatenation for geometric objects.

Intuitively, a fusion tiling develops according to an atomic model: we have atoms, and

those atoms group themselves into molecules, which group together into larger and larger

structures. Let P0 = P be our prototile set, our “atoms”. P is labeled by a compact

set L0. The first set of “molecules” they form is a set P1 of finite P0-patches. To each

element of P1 we associate a (distinct) label from a compact set L1. We use the notation

P1 = {P1(c)|c ∈ L1}, where for each c ∈ L1 the patch P1(c) is a finite fusion of elements of

P0.

Similarly, P2 is a set of finite patches, indexed by a compact label set L2, that are fusions

of the patches in P1, and we write P2 = {P2(c)|c ∈ L2}. We continue in this fashion,

constructing Pn as a set of finite patches that are fusions of elements of Pn−1, labeled by

some compact set Ln. While the elements of Pn are technically P-patches, we can also think

of them as Pk-patches for any k ≤ n by considering the elements of Pk as prototiles. At each

stage we assume that the locations of the patches are chosen such that Pk is homeomorphic

to Lk. We require consistency between the metrics on the supertile sets in a way we will

describe in section 2.1.

The elements of Pn are called n-supertiles. We collect them together into an atlas of

patches we call our fusion rule:

R = {Pn, n ≥ 0} = {Pn(c) | n ∈ N and c ∈ Ln} .

We say that a finite patch is admitted by R if it can be arbitrarily well approximated by

subsets of elements of R. If it actually appears inside Pn(c) for some n and c ∈ Ln, we say

it is literally admitted and if it appears only as the limit of literally admitted patches we

say it is admitted in the limit. A tiling T of Rd is said to be a fusion tiling with fusion rule

R if every patch of tiles contained in T is admitted by R. We denote by ΩR the set of all

R-fusion tilings.

For any n we may consider the related space Ω
(n)
R that consists of the same tilings as ΩR,

except that the prototiles are elements of Pn instead of P0. That is, we ignore the lowest

n levels of the hierarchy. In a fusion tiling, we can break each n-supertile into (n − 1)-

supertiles using the subdivision map σn, which is a map from Ω
(n)
R to Ω

(n−1)
R . It is clear that
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this subdivision map is always a continuous surjection, but it may not be an injection. If

for all n it is, then we call the fusion rule recognizable. Recognizability means that there is

a unique way to decompose each tiling as a union of n-supertiles.

To avoid trivialities, we assume that each Pn consists only of supertiles that actually appear

in some tiling in Ω
(n)
R . We can always achieve this by shrinking each set Pn, eliminating those

spurious supertiles that do not appear in any tilings. We also assume that each Pn is non-

empty, which is equivalent to ΩR being non-empty.

2.1. Metric on Ln and Pn. Each Ln is assumed to be a compact metric space, with a

metric compatible with the metric defined on lower levels of the hierarchy. Specifically, if

two labels in Ln are within ε, then the prototiles P, P ′ ∈ Pn that represent them must have

constituent (n− 1)-supertiles that are in one-to-one correspondence, that differ by no more

than ε in the Hausdorff metric on their supports, and whose labels differ by no more than ε

in Ln−1.

In most examples we will want the metric on Ln to be induced directly from the metric on

Ln−1. That is, for two n-supertiles to be considered close if and only if all of their constituent

(n − 1)-supertiles are close, and (by induction) if and only if all of their consitutent tiles

are close. However, there are important examples where this is not the case, where two

n-supertiles with different labels may have identical decompositions into (n− 1)-supertiles.

This can occur naturally when Ln contains collaring information, and is essential to a variety

of collaring schemes.

Besides being compact metric spaces, the sets Ln must admit well-defined σ-algebras of

measurable subsets. We will henceforth assume that these algebras have been specified, and

speak freely of measurable subsets of Ln. Since Pn is homeomorphic to Ln, we can also

speak of measurable subsets of Pn.

2.2. The transition map. A standard construct in both self-similar tiling and substitution

sequence theory is the transition matrix, whose (i, j) entry counts how many tiles of type i

are found in a substituted tile of type j. A similar analysis applies to fusions with FLC [6],

where Mn,N(i, j) tells how many n-supertiles of type i are found in an N -supertile of type

j. These matrices satisfy Mn,N = Mn,mMm,N for each integer m between n and N . Many

ergodic properties of a fusion tiling space, such as whether it is uniquely ergodic, reduce to

properties of these matrices [6].

An apparent obstacle for fusion rules on non-FLC spaces is that the spaces Ln that label

n-supertiles need not be finite. However, since we require each n-supertile to be a finite

fusion of (n− 1)-supertiles, we can still define the transition map Mn,N : Pn × PN → Z by

Mn,N(P,Q) = #(P in Q)

:= the number of n-supertiles equivalent to P in the N -supertile Q.
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Thus the Qth ‘column’ Mn,N(∗, Q) gives the breakdown of Q in terms of the n-supertiles that

it contains, and will consist of 0’s except in finitely many places. If there is more than one

way that the n-supertiles can be fused to create Q (that is, if the fusion is not recognizable),

we fix a preferred one to use in this and all other computations.

We will use the transition map in three different ways throughout this paper: as defined

above, as a measure on Pn, and as an operator mapping (“pushing forward”) measures on

PN to measures on Pn. We give the details on these three views in subsection 4.4. As in

the FLC case, the transition map determines quite a bit about the invariant probability

measures on ΩR.

Example 1. Pinwheel tilings. In the pinwheel tiling, all tiles are 1, 2,
√

5 right triangles, but

tilings consist of tiles pointing in infinitely many directions. We call a triangle with vertices

at (−1.5,−.5), (.5,−.5) and (.5, .5) right-handed and give it label (R,0), and a triangle with

vertices at (−1.5, .5), (.5, .5) and (.5,−.5) is called left-handed and has label (L,0). Our label

set L0 consists of two circles, and the prototile with label (R,θ) (resp.(L,θ)) is obtained by

rotating the (R,0) (resp. (L,0)) prototile counterclockwise around the origin by θ. Two tiles

are close in our tile metric if they have the same handedness, if their angles θ are close, and

if their centers are close. This is the same as being close in the Hausdorff metric.

Likewise, Ln consists of two circles, with the (R, θ) n-supertile being an expansion by 5n/2

of the (R, θ) tile, and likewise for the (L, θ) n-supertile. Let α = tan−1(1/2). Each (R, θ) n-

supertile is built from five (n−1)-supertiles, two of type (L, θ+α), one of type (L, θ+α+
π

2
),

one of type (R, θ+α) and one of type (R, θ+α+π), arranged as in Figure 1. Likewise, each

Figure 1. The pinwheel fusion rule builds n-supertiles from five (n− 1)-supertiles

(L, θ) n-supertile is built from (n−1)-supertiles of type (R, θ−α), (R, θ−α− π
2

), (L, θ−α)

and (L, θ − α + π).

To compute the transition map, consider Mn,(n+1)((H,ω), (R, θ)). It equals 1 if (H,ω) =

(R, θ + α), (R, θ + α + π), or (L, θ + α + π/2), it equals 2 when (H,ω) = (L, θ + α), and it

equals 0 otherwise. Transition for the (n+ 1)-supertile of type (L, θ) is similar.
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Since this example involves infinite many tile orientations, it necessarily involves infinitely

many tile labels. The infinite local complexity has both a combinatorial and a geometrical

aspect, but both are consequences of rotational symmetry. We call this rotational infinite

local complexity.

Example 2. Shear infinite local complexity. In our next example, each Pn consists of only

four supertiles, and the infinite local complexity comes from the geometry of how two tiles

can touch. Let P0 =

{
, , ,

}
, where the long edges are of some fixed length

α and the short edges are of length 1.

For the 1-supertiles we choose P1 =

 , , ,

 . It is conve-

nient to think of the four supertiles as being of types a, b, c, d, using the notation P1 =

{P1(a), P1(b), P1(c), P1(d)}. We construct the n-supertiles from the level (n − 1)-supertiles

using the same combinatorics as we did to make the 1-supertiles from the prototiles. For

instance, P2(a) = = .

If α is chosen irrational, then fault lines develop. There are countably many 2-tile patterns

that are literally admitted and uncountably many that are admitted in the limit. If α is

chosen rational, then there are only finitely many ways for two n-supertiles to meet, but

this number increases with n. Either way, the large-scale structure of the tilings is different

from that of a self-similar FLC substitution tiling. These differences show up in the spectral

theory, cohomology, and complexity. (See [4, 5] and references therein.)

Since at each stage there are only four supertile types, the transition operator Mn,n+1 is

the matrix


1 1 1 1
3 0 3 0
3 3 0 0
9 0 0 0

 and Mn,N is the (N − n)th power of this matrix.

Example 3. Combinatorial infinite local complexity. Because its (translational) dynamical

system is not expansive, the dyadic solenoid system is not topologically conjugate to a tiling

system with finite local complexity. However, it can be expressed as an ILC fusion tiling

with infinitely many tile labels. In this example the geometry is trivial and the infinite local

complexity is purely combinatorial.
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The prototiles are unit length tiles that carry labels {A0, A1, . . .}∪{A∞}, such that A∞ =

lim
n→∞

An is the only accumulation point of the label set. We define

P1 = {A1A0, A2A0, A3A0, ..., A∞A0},

in other words P1(k) = AkA0 for k = 1, 2, . . . ,∞. Similarly we define

P2 = {P1(2)P1(1), P1(3)P1(1), ..., P1(∞)P1(1)}.

In general, every element of Pn+1 takes the form Pn+1(k) = Pn(k)Pn(n), for all k ≥ n + 1

including k =∞.

Tilings admitted by this fusion rule have A0 in every other spot, A1 in every fourth spot,

and so on, with each species Ak with k <∞ appearing in every (2k+1)-st spot. In addition,

there may be one (and only one) copy of A∞. Since all An tiles with n ≥ k have the same

location (mod 2k), the location of an arbitrary An with n ≥ k gives a map to S1 = R/2kZ.

Taken together, these maps associate a tiling with a point in the dyadic solenoid lim←−(R/2kZ).

A discrete version of this construction, mimicking an odometer rather than a solenoid, is

called a “Toeplitz flow”. [3]

Mn,n+1(k, l) equals 1 if k = n or if k = l, and otherwise it is 0. For N > n and relevant

values of (k, l), Mn,N(k, l) equals 2N−k−1 if k < N , 1 if k = l, and 0 otherwise.

The complexity and ergodic theory of these examples will be worked out in the Appendix.

2.3. Primitivity and the van Hove property. A fusion rule is said to be primitive if

for any positive integer n and any open set U of supertiles in Pn, there is an N > n such

that every element of PN contains an element of U . Primitivity means that the space ΩR

is fairly homogeneous, in that each tiling contains patches arbitrarily close to any particular

admissible patch.

A van Hove sequence {Am} of subsets of Rd consists of sets whose boundaries are increas-

ingly trivial relative to their interiors in a precise sense. For any set A ∈ Rd and r > 0,

let

A+r = {x ∈ Rd : dist(x,A) ≤ r},
where “dist” denotes Euclidean distance. A sequence of sets {An} of sets in Rd is called a

van Hove sequence if for any r ≥ 0

lim
n→∞

Vol ((∂An)+r)

Vol(An)
= 0,

where ∂A is the boundary of A and Vol is Euclidean volume.

Given a fusion rule R, we may make a sequence of sets in Rd by taking one n-supertile

for each n and calling its support An. We say R is a van Hove fusion rule if every such

sequence is a van Hove sequence. Equivalently, a fusion rule is van Hove if for each ε > 0

and each r > 0 there exists an integer n0 such that each n-supertile A, with n ≥ n0, has

Vol(∂A)+r < εVol(A).
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3. Dynamics of ILC tiling spaces

A compact tiling space ΩR, by definition, is invariant under translation by elements of Rd.

The action of translation is continuous in the tiling metric and gives rise to a topological

dynamical system (ΩR,Rd). Tiling dynamical systems have been studied extensively in the

FLC case, and in this section we investigate the dynamics of ILC tiling systems in general

and in the fusion situation. We show under what circumstances a fusion tiling dynamical

system is minimal, and we discuss what expansivity means and introduce the related concept

of strong expansivity.

3.1. Minimality. Recall that a topological dynamical system is said to be minimal if every

orbit is dense.

Proposition 3.1. If the fusion rule R is primitive, then the fusion tiling space (ΩR,Rd) is

minimal. Conversely, if R is recognizable and van Hove but is not primitive, then (ΩR,Rd)

is not minimal.

Proof. First suppose that R is primitive. Fix any T ∈ ΩR and let T′ be any other element

of ΩR. We will show that for any ε > 0 there is a ~v such that d(T− ~v,T′) < ε. Let P ′ ⊂ T′

be the patch of tiles in T′ containing the ball of radius 1/ε about the origin. We know that

P ′ is admitted by R, so there is an n and an Pn(c) ∈ Pn for which the distance between P ′

and a subpatch of Pn(c) is less than ε/2.

Consider an open subset I ⊂ Pn that contains Pn(c) and is less than ε/2 in diameter.

By primitivity, there is an N > n such that every element of PN contains an element of I.

Choose any N -supertile in T and let ~v be the translation that brings that N -supertile to the

origin in such a way that I ∩ (T − ~v) 6= ∅. That is, T − ~v has a patch at the origin that is

within ε/2 of P ′. This means that d(T− ~v,T′) < ε, as desired.

Now suppose that R is recognizable and van Hove but not primitive. Pick an n-supertile

P and a neighborhood U ∈ Pn of P such that there exist supertiles of arbitrarily high order

that do not contain any elements of U . By recognizability, this means that there is an open

set Ũ of patches such that there are supertiles of arbitrarily high order that do not contain

patches equivalent to elements of Ũ . (The difference between U and Ũ is that elements of

U may be marked with labels that carry additional information, as with collaring, while

elements of Ũ are not.) Let T0 be a tiling featuring an element of Ũ near the origin. For

each sufficiently large N , let TN be a tiling where a ball of radius N around the origin sits

in a supertile that does not contain any elements of Ũ . The existence of such supertiles is

guaranteed by the van Hove property. By compactness, the sequence TN has a subsequence

that converges to a tiling T∞, and none of the patches of Ũ appear anywhere in T∞. This

means that T0 is not in the orbit closure of T∞, and hence that ΩR is not minimal. �
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If a fusion rule is neither primitive nor van Hove, then the tiling space may or may not

be minimal. For instance, the Chacon substitution a→ aaba, b→ b yields a minimal tiling

space, but the substitution a→ aaba, b→ b, c→ ccdc, d→ d does not.

3.2. Expansivity and transversals. A tiling space is said to have expansive translational

dynamics if there is an ε > 0 such that the condition d(T − x,T′ − x) < ε for all x implies

that T′ = T − y for some y ∈ Rd with |y| < ε. In other words, in an expansive system,

tilings that are close must have translates that are no longer close, unless they were small

translates of each other to begin with.

Every tiling in a tiling space is a bounded translate of a tiling that has a control point at

the origin (and therefore contains a tile in P0). These tilings comprise the transversal Ξ of

a tiling space.There is a neighborhood of any tiling T in a tiling space that is homeomorphic

to the product of a disk in Rd (for instance, an open set containing the origin in its tile in

T) and a neighborhood in Ξ (for instance, all tilings that are equivalent to T in a ball of

some radius around the origin). We can think of the transversal as a sort of global Poincaré

section for the action of translation.

When a tiling has finite local complexity, the transversal is totally disconnected and in most

standard examples is in fact a Cantor set. Tiling spaces with infinite local complexity can also

have totally disconnected transversals. This property is invariant under homeomorphism.

Lemma 3.2. If two tiling spaces are homeomorphic and one has a totally disconnected

transversal, then so does the other.

Proof. Let Ξ and Ξ′ be transversals for homeomorphic tiling spaces Ω and Ω′, and let φ :

Ω→ Ω′ be the homeomorphism. Suppose T ∈ Ξ, with Ξ totally disconnected. We construct

a neighborhood of T in Ω by taking the product of an ε-disc in Rd with a neighborhood of

T in Ξ. In other words, a neighborhood of T in Ξ parametrizes the path components of

a neighborhood of T in Ω. To align the control points, we adjust the homeomorphism by

a translation, so that φ(T) ∈ Ξ′. Since homeomorphisms preserve local path components,

there is a neighborhood of φ(T) in Ξ′ that is homeomorphic to a neighborhood of T in Ξ.

Since Ξ and Ξ′ are locally homeomorphic, and since total disconnectivity is a local property,

Ξ′ is totally disconnected. �

In addition to their transversals being totally disconnected, FLC tiling spaces always have

expansive translational dynamics. The converse does not hold.

Theorem 3.3. There exists a tiling space Ω with totally disconnected transversal and ex-

pansive translational dynamics that is not homeomorphic to an FLC tiling space.

Proof. The dyadic solenoid has a totally disconnected transversal (namely an odometer) and

is known not to be homeomorphic to any FLC tiling space, due to its lack of asymptotic

composants. We will construct tilings that are combinatorially the same as those of the
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dyadic solenoid, but in which the tiles do not all have unit length. By choosing the tile lengths

appropriately, we can make the translational dynamics expansive. Changing all the tile sizes

to 1 while preserving the position of the origin within a tile gives a homeomorphism from this

tiling space to the dyadic solenoid, showing that this tiling space cannot be homeomorphic

to an FLC tiling space.

In this example, our label set is a union of subsets of intervals, one such subset for each

non-negative integer, plus a single limit point. The n-th interval describes the possible

lengths of tiles of general type n, which we denote An. The possible sequences of general

tile types is exactly as with the dyadic solenoid, and the lengths of the tiles are determined

from the sequence.

For each tile t in such a sequence, let St be the set of integers n > 10 such that there is an

An tile within n2 tiles of t. The length of t is defined to be 1 +
∑
n∈St

n−1. If a tile is within n2

tiles of an An, then it must be at least 2n−n2 tiles away from any Am with m > n. For this

to be within m2, we must have m of order 2n/2. The expression 1 +
∑
n∈St

n−1 thus converges

quickly, and each tile has a well-defined length. A limiting tile A∞ must have length exactly

1.

Note that the stretching changes the lengths of each An tile by less than 21−n
2 . However,

it stretches out the 2n2 tiles surrounding the An tile by a total amount between 2n and

2n+ n222−n
2 . If two tilings T and T′ are very close, with T having an An tile at a location

y and T′ having an Am tile at the same location (up to a tiny translation), with m > n or

m =∞, then for some x < (n+ 1)2, the tiles of T and T′ near x+ y are offset by more than

1/4. Therefore, the tiling dynamics are expansive, while the transversal remains a totally

disconnected odometer. �

3.3. Strong Expansivity. In the proof of Theorem 3.3, we introduced expansivity in the

tiling flow via a small change to the sizes of some tile types, changes that accumulated to

give macroscopic offsets. However, this stretching does not change the dynamics of the first

return map on the transversal, which remains addition by 1 on an odometer. In particular,

the action of the first return map is not expansive, and in fact is equicontinuous. In general,

it is the first return map, and not the tiling flow itself, that determines the homeomorphism

type of a 1-dimensional tiling space.

Lemma 3.4. If Ω is a 1-dimensional tiling space whose canonical transversal is totally dis-

connected, and if the first return map on the transversal is expansive, then Ω is homeomorphic

to an FLC tiling space.

Proof. Suppose that the (iterated) first return map eventually separates any two distinct

points in the transversal by a distance of ε or more. Partition the transversal into a finite

number of clopen sets of diameter less than ε, and associate each clopen set with a tile type.
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Make each tile have length 1. For each point in the transversal we associate a tiling, with a

tile centered at the origin, and with the n-th tile marking which clopen set the n-th return

of the point is in. That is, the transversal is isomorphic to a (bi-infinite) subshift on a finite

number of symbols, with the first return map corresponding to a shift by one. This extends

to a homeomorphism between Ω and an FLC tiling space. (Note that this homeomorphism

need not be a topological conjugacy. It commutes with translations if and only if every tile

in the Ω system has length exactly 1.) �

For analogous results in higher dimensions, we need a property that generalizes the ex-

pansivity of the first return map.

Definition 3.5. A tiling space Ω (or any space with an Rd action) is called strongly expansive

if there exists an ε > 0 such that, for any T,T′ ∈ Ω, if there is a homeomorphism h of Rd

with h(0) = 0 and d(T − x,T′ − h(x)) < ε for all x ∈ Rd , then T = T′ − x0 for some

x0 ∈ Rd with |x0| < ε.

In other words, the flow separates points that are not already small translates of one

another, even if you allow a time change between how the flow acts on T and how it acts on

T′.

The stretched solenoid of theorem 3.3 was expansive but not strongly expansive. This

distinction between regular and strong expansivity is essential for ILC tiling spaces, but

unnecessary for FLC tiling spaces.

Theorem 3.6. Strong expansivity implies expansivity. For FLC tiling spaces, expansivity

implies strong expansivity.

Proof. Expansivity is a special case of strong expansivity, where we restrict the homeomor-

phism h to be the identity. For the partial converse, suppose that Ω is an FLC tiling space

with an expansive flow with constant ε. Without loss of generality, we can assume that ε is

much smaller than the size of any tile, and is smaller than the distance between any distinct

connected 2-tile patches. We will show that Ω is strongly expansive with constant ε/3.

Suppose that we have tilings T and T′ and a self-homeomorphism h of Rd such that

h(0) = 0 and d(T− x,T′ − h(x)) < ε/3 for all x. Then we claim that |x− h(x)| < 2ε/3 for

all x, and hence that d(T− x,T′− x) < ε/3 + 2ε/3 = ε, implying that T′ is a translate of T

by less than ε. Since the tiling metric on any small piece of a translational orbit is the same

as the Euclidean metric, and since d(T,T′) < ε/3, T′ is a translate by less than ε/3.

To prove the claim, suppose that there is an x with |x| < 3/ε such that |h(x)− x| ≥ 2ε/3.

By continuity, we can find such an x with |h(x)− x| = 2ε/3. However, since d(T,T′) < ε/3,

the pattern of tiles in T and T′ is exactly the same out to distance 3/ε (up to an overall

translation of less than ε/3). Since the local neighborhoods of T − x and T′ − x agree to

within an ε/3 translation, and since T′− x and T′− h(x) disagree by at least 2ε/3, the tiles
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near the origin of T − x and T′ − h(x) are offset by at least ε/3 (and by much less than

the spacing between tiles) which is a contradiction. This is the base case of an inductive

argument.

Next, assuming there are no points with |x| < 3k/ε where |x − h(x)| ≥ 2ε/3, we show

that there are no points with |x| < 3(k + 1)/ε with |x − h(x)| ≥ 2ε/3. If such an x exists,

take y = kx/(k + 1), so |y| < 3k/ε and |x − y| < 3/ε. Since d(T − y,T′ − h(y)) < ε/3 and

|y− h(y)| is small, the pattern of tiles in T and T′ are the same out to distance 3/ε from y.

Repeating the argument of the previous paragraph shows that x cannot exist. �

Theorem 3.7. If Ω is a strongly expansive tiling space and Ω′ is a tiling space homeomorphic

to Ω, with the homeomorphism sending translational orbits to translational orbits, then Ω′ is

strongly expansive.

Proof. Suppose that Ω is strongly expansive with constant ε, that Ω′ is not strongly expan-

sive, and suppose that f : Ω′ → Ω is a homeomorphism that preserves orbits. Since f is

uniformly continuous, there is a δ such that any two points within δ in Ω′ are mapped to

points within ε in Ω. We can find a pair of tilings T′1,T
′
2 ∈ Ω′, not small translates of one

another, and an h′ : Rd → Rd such that d(T′1 − x,T′2 − h′(x)) < δ for all x. Let T1 = f(T′1)

and T2 = f(T′2). Since f maps orbits to orbits, there is a homeomorphism γ1,2 : Rd → Rd

such that f(T′1 − x) = T1 − γ1(x) and f(T′2 − x) = T2 − γ2(x). Note that γ1,2(0) = 0.

Since d(T′1 − x,T′2 − h′(x)) < δ, d(T1 − γ1(x),T2 − γ2 ◦ h′(x)) < ε. Taking y = γ1(x) and

h(y) = γ2 ◦ h′ ◦ γ−1
1 , we have that d(T1 − y,T2 − h(y)) < ε, which implies that T1 and T2

are small translates of one another, which implies that T′1 and T′2 are small translates of one

another, which is a contradiction. �

Lemma 3.8. A 1-dimensional tiling space is strongly expansive if and only if the first return

map on the transversal is expansive.

Proof. If the first return map is not expansive, then one can find arbitrarily close tilings T,T′

whose orbits on the first return map remain close. The type of the nth tile of T encountered

under translation must therefore be close to the tile type of T′, and so the length of each tile

in T must be close to the length of the corresponding tile in T′. By taking h(x) to increase

by the length of a tile in T′ when x increases by the length of a corresponding tile in T, and

by keeping the derivative h′(x) constant on each such interval, we ensure that T−x remains

close to T′ − h(x) for all x.

Conversely, if the first return map is expansive, then any two tilings eventually have

substantially different sequences of tiles. If T − x and T′ − h(x) remain close, then, as x

increases, the number of vertices that cross the origin will be the same for T and T′, since

if there is a vertex at the origin in T− x, then there must be a vertex within ε of the origin

in T′ − h(x) (and vice-versa). Thus the nth tile of T must line up with the nth tile of T′.

But these are eventually different by more than ε. �
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Corollary 3.9. A 1-dimensional tiling space is homeomorphic to a 1-dimensional FLC tiling

space if and only if it is strongly expansive and has totally disconnected transversal.

Proof. Suppose that Ω is a one-dimensional tiling space homeomorphic to an FLC tiling space

Ω′. Then since Ω′ has a totally disconnected transversal, so must Ω by Lemma 3.2. Moreover,

since the homeomorphism must preserve path components and those are the translational

orbits, by Theorem 3.7, Ω must be strongly expansive.

On the other hand suppose Ω is strongly expansive and has a totally disconnected transver-

sal. The result follows from Lemmas 3.4 and 3.8. �

A natural conjecture is that higher-dimensional tiling spaces are homeomorphic to FLC

tiling spaces if and only if they are strongly expansive and have totally disconnected transver-

sals. We believe this conjecture to be false, and we present the tiling of subsection A.3.1 as

a likely counterexample. However, if the geometry of the tiles can be controlled, then the

result is true.

Theorem 3.10. Let Ω be a tiling space with totally disconnected transversal and with strongly

expansive translational dynamics. If Ω is homeomorphic to a tiling space Ω′ that has a finite

number of shapes and sizes of 2-tile patches (albeit possibly an infinite number of tile labels),

then Ω is homeomorphic to an FLC tiling space.

Proof. We will construct a homeomorphism from Ω′ (and hence from Ω) into a tiling space Ω′′

that is a suspension of a Zd action on a totally disconnected space. Since strong expansivity is

preserved by homeomorphisms, Ω′′ has strongly expansive dynamics, and hence has expansive

dynamics. Standard results about Cantor maps then imply that Ω′′ is topologically conjugate

to the suspension of a subshift, and hence to an FLC tiling space.

We first convert Ω′ to a tiling space with a finite set of polyhedral tile shapes whose tiles

meet full-face to full-face using Voronöı cells as follows. Assign a point to the interior of each

prototile, such that prototiles of the same shape have the same marked point. Instead of

having a collection of labeled tiles, we then have a collection of labeled points. Then associate

each marked point to its Voronöı cell — the set of points that are at least as close to that

marked point as to any other marked point. This operation is a topological conjugacy.

Next we apply the constructions of [14] to our tiling, noting that the arguments of [14] only

used the finiteness of the geometric data associated with a tiling, and not the finiteness of

the tile labels. We deform the sizes of each geometric class of tile such that the displacement

between any two vertices is a vector with rational entries. By rescaling, we can then assume

that the relative position of any two vertices is an integer vector. These shape deformations

and rescalings are not topological conjugacies, but they do induce a homeomorphism of Ω′

to the space Ω′′ of tilings by the deformed and rescaled tiles. There is then a natural map

from Ω′′ to the d-torus, associating to any tiling the coordinates of all of its vertices mod 1.
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Our Rd action on Ω′′ is then the suspension of a Zd action on the fiber over any point of the

torus. �

4. Invariant measures

The frequencies of patches in FLC tilings can be computed from translation-invariant Borel

probability measures. There are only countably many possible patches, and it is possible to

assign a nonnegative frequency to each one. When the system has infinite local complexity

the space of patches can be uncountable. Frequencies should then be viewed not as numbers

but as measures on appropriate spaces of patches. We consider the general case first before

proceeding to fusion tilings.

4.1. Measure and frequency for arbitrary ILC and FLC tilings. Consider any com-

pact translation-invariant tiling space Ω with a translation-invariant Borel probability mea-

sure µ. Whether or not Ω has FLC, the measure µ provides a reasonable notion of patch

frequency that we now describe. Let F̃n be the space of all connected n-tile patches that

appear in Ω, modulo translation. F̃n inherits a σ-algebra of measurable sets from P0. 1

Definition 4.1. Let F̃∞ = ∪nF̃n be the space of all finite patches. A set I ⊂ F∞ of patches

is called trim if, for some open set U ⊂ Rd and for every T ∈ Ω, there is at most one pair

(P,~v) ∈ I × U such that T− ~v contains the patch P . For each U ⊂ Rd, define the cylinder

set

ΩI,U = {T ∈ Ω such that there exists (P,~v) ∈ I × U with P ∈ T− ~v.}
The property of being trim, together with translation invariance, implies that µ(ΩI,U) is

proportional to V ol(U) for all sufficiently small open sets U . The abstract frequency of a

trim set I of patches is

(1) freqµ(I) = µ(ΩI,U)/V ol(U),

for any open set U sufficiently small that each tiling is contained in ΩI,U in at most one way.

This use of the word “frequency” is justified by the ergodic theorem as follows. Let χI,U

be the indicator function for ΩI,U and let BR(0) be the ball centered at the origin of radius

R. For µ-almost every T ∈ Ω can define

freqµ,T(I)V ol(U) = lim
R→∞

1

V ol(BR(0))

∫
~v∈BR(0)

χI,U(T− ~v)dλ,

where λ is Lebesgue measure on Rd. Notice that the integral counts V ol(U) each time an

element of I is in BR(0) ∩T, up to small boundary effects. Thus the ergodic average is the

average number of occurrences of I per unit area and represents a näıve notion of frequency.

1A patch with n tiles is described by specifying n labels and n locations, and each patch can be so
described in n! ways, one for each ordering of the tiles. Thus, F̃n is a subset of [(P0)n ×R(n−1)d]/Sn, where
Sn is the group of permutations of the n tiles.
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If µ is ergodic, then freqµ,T(I) = freqµ(I); if not, we must integrate freqµ,T(I) over all

T ∈ Ω to get the true frequency freqµ(I).

Since a subset of a trim set is trim, freqµ can be applied to all (measurable) subsets of I,

and is countably additive on such subsets. This follows from the countable additivity of µ,

and the fact that, for small U , the cylinder sets based on disjoint subsets of I are disjoint.

As a result, we can view freqµ as a measure on any trim subset of F̃∞.

However, freqµ should not be viewed as a measure on all of F̃∞, since F̃∞ itself is not

trim. If I1 and I2 are trim and disjoint but I1 ∪ I2 is not trim, then ΩI1,U and ΩI2,U are not

disjoint and in general µ(ΩI1∪I2,U) 6= µ(ΩI1,U) + µ(ΩI2,U). If we defined freqµ(I1 ∪ I2) to be

µ(ΩI1∪I2,U)/V ol(U) anyway, then freqµ would not be additive.

4.2. Measures for FLC fusion tilings. We begin our investigation of invariant measures

for fusion tilings by reviewing how they work when the local complexity is finite. In this case

an individual patch P will usually have nonzero frequency and it suffices to look at cylinder

sets ΩP,U . When the fusion is van Hove and recognizable, it is possible to compute the

frequency of an arbitrary patch from the frequencies of high-order supertiles, which depend

primarily on the transition matrices of the fusion rule. The reader can refer to [6] to flesh

out the sketch we provide here.

Let jn denote the number of distinct n-supertiles. For each invariant measure µ, let

ρn(i) ≥ 0 be the frequency of the i-th n-supertile Pn(i). Defining these frequencies requires

recognizability, so that we can uniquely determine whether a certain supertile lies in a certain

place in a tiling T. (Strictly speaking, ρn(i) is the sum of the frequencies of a family of larger

patches that consists of all possible extensions of the supertile out to a specific ball that is

larger than the recognizability radius.)

The vectors ρn ∈ Rjn satisfy the volume normalization condition

(2)

jn∑
i=1

ρn(i)V ol(Pn(i))

and the transition consistency condition

(3) ρn = Mn,NρN

for each N > n. For each patch P ,

freqµ(P ) = lim
n→∞

jn∑
i=1

#(P in Pn(i))ρn(i),

where #(P in Pn(i)) denotes the number of patches equivalent to P contained in the supertile

Pn(i).

Since the supertile frequencies determine all the patch frequencies, and since the patch

frequencies are tantamount to the measures on cylinder sets, an invariant measure on Ω



FUSION TILINGS WITH INFINITE LOCAL COMPLEXITY 17

is equivalent to a sequence of vectors ρn that are non-negative, volume normalized, and

transition consistent.

It is possible to parameterize the space of invariant measures on ΩR because of this result.

Transition consistency means that ρn is a non-negative linear combination of the columns of

Mn,N . Let ∆n,N ⊂ Rjn be the convex polytope of all such non-negative linear combinations

of the columns of Mn,N that are volume normalized, and let ∆n = ∩N∆n,N . The matrix

Mn,m maps ∆m to ∆n. The inverse limit ∆∞ of these polytopes parametrizes the invariant

measures. So we can see, for instance, whether or not a certain fusion system is uniquely

ergodic by looking at its transition matrices.

4.3. The frequency measure on Pn induced by µ. Now we begin to develop the par-

allel structures needed to handle the situation where µ is a translation-invariant probability

measure on an ILC fusion tiling space. Since the space Pn may not be finite, instead of a

vector ρn ∈ Rjn , we have a measure on Pn that represents frequencies of sets of n-supertiles.

Recall that Ln, and hence Pn, comes equipped with a σ-algebra of measurable sets. As long

as we have exercised reasonable care in constructing Pn (e.g., if we have chosen our control

points so that every element of P contains an ε-ball around the origin), every subset I ⊂ Pn
is automatically trim. Thus for small enough U , µ(ΩI,U) is proportional to V ol(U), and we

define

ρn(I) =
µ(ΩI,U)

V ol(U)
.

The non-negativity and (finite and countable) additivity properties of ρn follow from the

corresponding properties of µ. Furthermore, we will show in Theorem 4.2 that ρn satisfies

the volume normalization condition

(4)

∫
P∈Pn

V ol(P )dρn = 1.

4.4. Three ways to view Mn,N . An n × N matrix can be viewed as a collection of nN

numbers, as an ordered list of N vectors in Rn, or as a linear transformation from RN to

Rn. Likewise, Mn,N(P,Q) is a number, Mn,N(∗, Q) is a measure on Pn, and Mn,N is a linear

map from measures on PN to measures on Pn.

For a fixed N -supertile Q, we can view the Qth “column” Mn,N(∗, Q) of Mn,N as a measure

on Pn, which we denote ζn,Q. For any measurable I ⊂ Pn, let

ζn,Q(I) =
∑
P∈I

Mn,N(P,Q) := #(I in Q),

the number of n-supertiles in Q equivalent to those in I. Although I may be uncountable,

there are only finitely many n-supertiles in Q, so the sum is guaranteed to be finite. Likewise,

for any measurable function f on Pn, and for fixed Q,

(5)

∫
P∈Pn

f(P )dζn,Q =
∑
P∈Pn

f(P )Mn,N(P,Q).
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As a linear transformation, Mn,N maps measures on PN to measures on Pn. Consider a

measure νN on PN . Define Mn,NνN on any measurable subset I of Pn to be

(6)

(Mn,NνN)(I) =

∫
Q∈PN

Mn,N(I,Q)dνN =

∫
Q∈PN

∑
P∈I

Mn,N(P,Q)dνN =

∫
Q∈PN

ζn,Q(I)dνN .

Every measure in the range of Mn,N is a sum or integral over the frequency measures ζn,Q =

M(∗, Q) for different Q’s, just as every vector in the range of a matrix is a linear combination

of the columns of the matrix.

For brevity, we write νn for Mn,NνN . Computing νn(I) involves a sum over P and an

integral over Q. Likewise, using νn to integrate functions over Pn also involves summing

over P and integrating over Q, with the sum inside the integral. Specifically,∫
P∈Pn

f(P )dνn =

∫
Q∈PN

∑
P∈Pn

f(P )Mn,N(P,Q)dνN

It is straightforward to check that the composition of these linear transformations is nat-

ural: for n < m < N , Mn,NνN = Mn,m(Mm,NνN). Measures ρn on Pn and ρN on PN are

said to be transition consistent if

(7) ρn = Mn,NρN .

This has exactly the same form as the transition consistency condition (3) for FLC fusions,

only with the right hand side now denoting the induced measure rather than simple matrix

multiplication. We say that a sequence of measures {ρn}∞n=0 is transition consistent if ρn and

ρN are transition consistent for all n < N .

Note that the measures ζn,Q are not volume normalized, since if f(P ) = V ol(P ), then∫
P∈Pn

V ol(P )dζn,Q =
∑
P∈PN

V ol(P )Mn,N(P,Q) = V ol(Q).

However, if νN is volume normalized then so is νn, since∫
P∈Pn

V ol(P )dνn =

∫
Q∈PN

∑
P∈Pn

V ol(P )Mn,N(P,Q)dνN =

∫
Q∈PN

V ol(Q)dνN = 1.

4.5. Invariant measures for fusion tilings. Specifying a measure for a tiling space is

equivalent to specifying the measure for all cylinder sets, which in turn is equivalent to

specifying the (abstract) frequency for all trim families of patches. For a large class of fusion

rules, this can be reduced to specifying a sequence of volume normalized and transition

consistent measures ρn on Pn:

Theorem 4.2. Let R be a fusion rule that is van Hove and recognizable. Each translation-

invariant Borel probability measure µ on ΩR gives rise to a sequence of volume normalized
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and transition consistent measures {ρn} on Pn. Moreover, for any trim set of patches I

(8) freqµ(I) = lim
n→∞

∫
P∈Pn

#(I in P )dρn,

where #(I in P ) denotes the number of translates of patches in the family I that are subsets of

P . Conversely, each sequence {ρn} of volume normalized and transition consistent measures

corresponds to exactly one invariant measure µ via equation (8).

Proof. Since volume normalization, transition consistency and equation (8) are linear condi-

tions, and since all measures are limits of (finite) linear combinations of ergodic measures,

it is sufficient to prove these three conditions for ergodic measures.

Recall from Section 4.3 that ρn(I) =
µ(ΩI,U)

V ol(U)
is well-defined and independent of our choice

of (sufficiently small) U . We will first prove that each ρn is volume normalized, and then

that the sequence is transition consistent.

We begin with ρ0. For any (measurable) set I ⊂ P0 of prototiles, let UI be the intersection

of the supports of the prototiles in I, let VI be the union of the supports, and let ΩI be the set

of tilings where the origin is in a tile from I. Then ΩI,UI ⊂ ΩI ⊂ ΩI,VI , so V ol(UI)freqµ(I) =

µ(ΩI,UI ) ≤ µ(ΩI) ≤ V ol(VI)freqµ(I). If all of the prototiles in I had the same support, then

ΩI,UI would equal ΩI , and, for any P ∈ I, we would have V ol(P )freqµ(I) = µ(ΩI).

Since the supports in I are not all the same, this equality does not hold exactly. How-

ever, for each ε > 0 we can find a δ > 0 such that, for all I of diameter less than δ,

V ol(UI)/V ol(VI) > 1− ε. Furthermore, for any prototile P ∈ I, we have UI ⊂ P ⊂ VI . This

implies that∫
P∈I

V ol(P )dρ0 ≥ V ol(UI)ρ0(I) ≥ (1− ε)µ(ΩI,VI ) ≥ (1− ε)µ(ΩI), and∫
P∈I

V ol(P )dρ0 ≤ V ol(VI)ρ0(I) ≤ (1− ε)−1V ol(UI)ρ0(I) ≤ (1− ε)−1µ(ΩI).

Now partition P0 into finitely many classes I1, I2, . . . of Hausdorff diameter less than δ.

Then 1 = µ(Ω) =
∑

µ(ΩIi), since the sets ΩIi overlap only on the set of measure zero where

the origin is on the boundary of two tiles. However,∫
P∈P0

V ol(P )dρ0 =
∑
i

∫
P∈Ii

V ol(P )dρ0,

which is bounded between (1 − ε) and (1 − ε)−1. Since ε is arbitrary,

∫
P0

V ol(P )dρ0 must

equal 1, and ρ0 is volume normalized. Exactly the same argument works for ρn, using

recognizability to replace Ω with Ω(n).

Next we prove transition consistency under the assumption that µ is ergodic. From the

ergodic theorem, there is a tiling T such that spatial averages over the orbit of T can be used

to compute the integral of every measurable function on Ω. In particular, for any measurable
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I ⊂ Pn, we can compute the number of occurrences of n-supertiles of type P ∈ I in a ball

BR(0) of radius R around the origin, sum over P , divide by V ol(BR(0)), and take a limit as

R→∞. This limit must equal ρn(I). In fact it is possible to show that for any measurable

function f on PN ,

(9) lim
R→∞

1

V ol(BR(0))

∑
Q∈PN

f(Q) #(Q in BR(0)) =

∫
Q∈PN

f(Q)dρN ,

where we let #(P in BR(0)) be the number of occurrences of the n-supertile P in the ball of

radius R around the origin in T, counting only copies of P that are completely in the ball.

We then have

#(P in BR(0)) ≈
∑
Q∈PN

Mn,N(P,Q)#(Q in BR(0)),

with the error coming from occurrences of P in N -supertiles that are only partially in BR(0),

an error that is negligible in the R→∞ limit. Summing over P ∈ In, dividing by the volume

of the ball, and taking the R → ∞ limit, the left hand side becomes ρn(In) = freqµ(In).

Letting f(Q) be the function Mn,N(In, Q) in equation (9) and using equation (6), the right-

hand side becomes (Mn,NρN)(In). In other words, ρn and ρN are transition consistent.

We now turn to equation (8). Let I be a trim set of patches. Let Ir ⊂ I be those

patches whose diameter is at most r. Restricting to integer values of r, we have that

I = ∪rIr, and hence that freqµ(I) = lim
r→∞

freqµ(Ir). As with supertiles, freqµ(Ir) =

lim
R→∞

#(Ir in BR(0))/V ol(BR(0)). However,

#(Ir in BR(0)) =
∑
Q∈PN

#(Ir in Q)#(Q in BR(0))

+#(Ir that spread over 2 or more N -supertiles in BR(0))

+#(Ir that intersect an N -supertile that is only partially in BR(0)).

The contribution of the last term goes to zero as R → ∞, since the fractional area of the

region within one N -supertile’s diameter of the boundary of the ball goes to zero as R→∞.

We then take the limit as N →∞, which eliminates the second term, since the fusion is van

Hove and the patches in Ir have bounded diameter. Using equation (9) gives the formula

(10) freqµ(Ir) = lim
N→∞

∫
Q∈PN

#(Ir in Q)dρN .

Taking a limit of equation (10) as r → ∞, and interchanging the order of the r → ∞ and

N → ∞ limits, gives (8). This interchange is justified by the fact that the integral on the

right-hand-side of (10) is an increasing function of both r and N , so lim
r→∞

lim
N→∞

= sup
r

sup
N

=

sup
r,N

= sup
N

sup
r

= lim
N→∞

lim
r→∞

. This completes the proof that a measure µ induces a volume

normalized and transition consistent sequence {ρn} of measures on Pn satisfying equation

(8).
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Conversely, equation (8) gives frequencies of trim families, and hence measures on cylinder

sets, in terms of the measures ρn. The axiomatic properties of these measures (e.g., additiv-

ity) follow directly from analogous properties of frequencies, exactly as for FLC fusions (see

[6] for details). �

Corollary 4.3. If R is a recognizable and van Hove fusion rule, then the patches that are

admitted in the limit have frequency zero.

Proof. In equation (8), the right hand side is identically zero for any trim collection of patches

that are admitted in the limit. �

Theorem 4.4. If R is a recognizable and van Hove fusion rule, and if each set Pn is finite,

then frequency is atomic. That is, for any trim set I of patches, freqµ(I) =
∑
P∈I

freqµ(P ).

Proof. Without loss of generality, we can assume that all patches in I are literally admitted,

since all other patches have frequency zero. However, since there are only finitely many

supertiles at any level and finitely many patches in each supertile, there are only countably

many literally admitted patches. Since I is countable, the frequency of I is the sum of the

frequencies of its elements. �

4.6. Parameterization of invariant measures for fusion tilings. We next parametrize

the space of invariant measures in terms of the transition matrices Mn,N . The construction

is entirely analogous to the parametrization of invariant measures for FLC tilings, only with

measures on Pn instead of vectors in Rjn .

Let M(n) denote the space of volume normalized measures on Pn. As noted above, Mn,N

mapsM(N) toM(n). Let ∆n,N = Mn,NM(N). (In the FLC case, this is the set of normalized

non-negative linear combinations of the columns of Mn,N .) Note that for n < m < N ,

∆n,N = Mn,m∆m,N ⊂ ∆n,m. If we have a sequence of volume-normalized measures {ρn},
then ρn ∈ ∆n,N for every N , and we define ∆n = ∩N∆n,N .

Note that Mn,m maps ∆m onto ∆n. Define ∆∞ to be the inverse limit of the spaces ∆n

under these maps. By definition, a point in ∆∞ is a transition consistent sequence {ρn} of

volume normalized measures on {Pn}.
By Theorem 4.2, ∆∞ is the space of all invariant probability measures on Ω. We emphasize

the following important corollary.

Theorem 4.5. Ω is uniquely ergodic if and only if each ∆n is a single point.

4.7. Measures arising from sequences of supertiles. It is often possible to describe

invariant measures in terms of increasing sequences of supertiles. For each N -supertile Q,

let δQ be the volume-normalized measure on PN that assigns weight V ol(Q)−1 to Q and zero

to all other N -supertiles. This induces measures Mn,NδQ on all Pn with n < N . If In ⊂ Pn,
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then (Mn,NδQ)(In) = #(In in Q)/V ol(Q). In other words, Mn,NδQ describes the frequency

(number per unit area) of n-supertiles in Q.

Let µ be an invariant measure on Ω and let {ρn} be the sequence of measures on Pn induced

from µ. We say that µ is supertile generated if there is a sequence of supertiles {QN}, with

each QN ∈ PN and N ranging from 1 to ∞, such that, for every n, ρn = lim
N→∞

Mn,NδQN .

Supertile generated measures need not be ergodic (see [6] for a counterexample), but all

ergodic tiling measures known to the authors are supertile generated. In most tiling spaces of

interest, sequences of supertiles provide a useful means of visualizing the ergodic measures.

5. Complexity

An extremely powerful concept in the study of 1-dimensional subshifts is that of com-

plexity. For each natural number n, let the combinatorial complexity c(n) be the number of

possible words of length n. Usually this is done by examining words within a fixed infinite

(or bi-infinite) sequence, but one can equally well consider words within any sequence in a

subshift. Many results about combinatorial complexity are known, such as:

• If c(n) is bounded, then all sequences are eventually periodic.

• If c(n) = n + 1 for all n and the sequences are not eventually periodic, then each

sequence is Sturmian and the space of sequences is minimal.

• If the sequences are non-periodic and come from a substitution, then c(n) is bounded

above and below by a constant times n.

• The topological entropy is lim sup log(c(n))/n.

Likewise, for Z2 (or higher dimensional) subshifts we can count the number of n× n square

patterns, or n × m rectangular patterns, but far less is known about higher dimensional

combinatorial complexity.

At first glance, computing the complexity of a tiling with infinite local complexity would

seem absurd. However, by adapting a construction from studies of the topological pressure

and topological entropy of flows, we can formulate a notion of complexity that applies to

tilings, both FLC and ILC.

Let Ω be a space of p-dimensional tilings (not necessarily a fusion tiling space), equipped

with a metric on the space of prototiles and hence a metric d on the tiling space. For each

L > 0, let

dL(T1,T2) = sup
x∈[0,L]p

d(T1 − x,T2 − x).

That is, two tilings T1 and T2 are within dL distance ε if they agree on the region [ε−1, L+

ε−1]p, up to ε changes in the labels, shapes, or locations of the tiles. A collection X of points

in Ω is said to be (dL, ε)-separated if the dL distance between distinct points in X is bounded

below by ε.
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Definition 5.1. The tiling complexity function C(ε, L) of a tiling space Ω is the maximum

cardinality of a (dL, ε)-separated set.

C(ε, L) is closely related to the number of balls of dL radius ε or ε/2 needed to cover X.

Specifically, the minimum number of ε-balls in an open cover is at most C(ε, L) and the

minimum number of ε/2-balls is at least C(ε, L).

In a 1-dimensional FLC tiling space where all tiles have length 1, C(ε, L) is approximately

ε−1c([L + 2ε−1]), where c is the combinatorial complexity of the underlying subshift, since

there are c([L+ 2ε−1]) choices for the sequence of tiles appearing in [−ε−1, L+ ε−1] and ε−1

choices for where the origin sits within a tile. In such examples, tiling complexity carries

essentially the same information as combinatorial complexity.

Definition 5.2. A tiling system has

• bounded complexity if C(ε, L) is bounded by a function of ε, independent of L.

• polynomial complexity if C(ε, L) < f(ε)(1 + L)γ for some exponent γ and some

function f(ε).

• ε-entropy equal to lim sup
L→∞

(log(C(ε, L))/Lp). A priori this is non-decreasing as ε→ 0.

• finite entropy if the limit of the ε-entropy as ε→ 0 is finite. The entropy of the tiling

space is defined to be that limit.

Note that entropy is not a pure number, but comes in units of (Volume)−1 since it describes

the log of the number of patches of a given size per unit volume.

This next theorem implies that the way that C(ε, L) scales with L is preserved by topo-

logical conjugacy.

Theorem 5.3. Let Ω and Ω′ be topologically conjugate tiling spaces with metrics d and d′

and tiling complexity functions C and C ′. Then, for every ε > 0 there exists an ε′ > 0 such

that, for every L, C(ε, L) ≤ C ′(ε′, L).

Proof. Let f : Ω → Ω′ be the topological conjugacy. Since f−1 is uniformly continuous,

there exists an ε′ such that d′(f(T1), f(T2)) < ε′ implies d(T1,T2) < ε. Thus, every (d, ε)-

separated set in Ω maps to a (d′, ε′)-separated set in Ω′. Since f commutes with translation,

f also maps (dL, ε)-separated sets to (d′L, ε
′)-separated sets of the same cardinality. Thus

C ′(ε′, L) is bounded below by C(ε, L). �

Corollary 5.4. Suppose that the function C(ε, L) exhibits a property that applies for all

sufficiently small ε. (For instance, that C is bounded in L, or has polynomial growth with a

particular γ, or has a particular entropy.) Then, for all sufficiently small ε, C ′ has the same

property.

By contrast, the way that C(ε, L) scales with ε is not topological. It is even possible

to have an FLC tiling space that is topologically conjugate to an ILC space (see [11], or

subsection A.1, below).
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Definition 5.5. We say that the complexity function C(ε, L) goes as a given function f(ε, L)

if C(ε, L) is bounded both above and below by a constant times f(ε, L). This is distinct from

big-O notation, which only indicates an upper bound.

Example 4. Solenoids and random tilings. The dyadic solenoid, as described in Example 3,

has bounded complexity. Recall that the tile set P0 is a 1-point compactification of a discrete

set A0, A1, . . . labeled by the non-negative integers. For any ε, let N(ε) be an integer such

that the diameter of {AN(ε), AN(ε)+1, . . . , A∞} ⊂ P0 is less than ε. Then, for purposes of tiling

complexity, the solenoid is essentially periodic with period 2N(ε), so the tiling complexity is

bounded by 2N(ε)/ε, regardless of how big L is. The precise way that the tiling complexity

scales with ε is somewhat arbitrary, depending on our choice of metric on P , and hence on

how N(ε) depends on ε.

Now consider the space of all tilings by the tiles A0, A1, A2, . . . , A∞ of the solenoid. For

each ε, let N ′(ε) be the cardinality of a maximal ε-separated subset of P0. The tiling

complexity C(ε, L) then goes as N ′(ε)L+ 2
ε /ε, and the ε-entropy is log(N ′(ε)). For each ε, the

complexity is exponential in L, but the rate of exponential growth is different for different

ε. Since N ′(ε)→∞ as ε→ 0, this tiling space does not have finite entropy.

The dyadic solenoid has bounded complexity, and the translational dynamics are equicon-

tinuous. This is not a coincidence.

Theorem 5.6. If a tiling space has bounded complexity, then the translational dynamics are

equicontinuous.

Proof. Let Ω be a tiling space with bounded complexity. We need to show that, for each

ε > 0, there is a δ > 0 such that d(T,T′) < δ implies that, for all x ∈ Rd, d(T−x,T′−x) < ε.

Let d∞(T,T′) = supxd(T− x,T′ − x). The fact that the complexity C(ε/2, L) reaches a

maximum of N(ε/2) for some L and then never grows implies that there is a d∞-separated

set of cardinality N(ε/2), but not one of cardinality N(ε/2) + 1. Let T1, ...TN(ε/2) be such

a maximal separated set. Since it is maximal, every other point in the tiling space is within

d∞-distance ε/2 of one of these points, so we can find an open cover of our tiling space with

balls of d∞-radius ε/2 centered at each Ti.

Now let δ be the Lebesgue number of this open cover with regard to the original metric d.

That is, if any two tilings are within δ of each other (in the d metric), then there is an open

set in our cover that contains both of them. But that means that both of them are within

d∞-distance ε/2 of some Ti, and hence within d∞-distance ε of each other. Which is to say,

their orbits always remain within ε of one another. �
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While the behavior of the complexity function is invariant under topological conjugacies, it

is not preserved by homeomorphisms. The stretched solenoid of Theorem 3.3 is homeomor-

phic to the dyadic solenoid, but its dynamics are not equicontinuous, and so its complexity

function is not bounded.

6. Geography of the ILC landscape

There are several ways to classify ILC tiling spaces. One is by how close the dynamical

and topological properties of the space come to those of an FLC tiling space.

(1) Is Ω an FLC tiling space?

(2) If not, is it topologically conjugate to an FLC tiling space?

(3) If not, is it homeomorphic to an FLC tiling space?

(4) If not, does it have a totally disconnected transversal?

(5) If not, does the transversal have finite topological dimension?

The answer to any of these questions can be ‘yes’ when the answers to the previous

questions were ‘no’. In Section A.1 we will exhibit an ILC tiling space that is topologically

conjugate to an FLC tiling space. By applying the tile-stretching trick of Theorem 3.3 to

that example, we can construct a space that is homeomorphic to an FLC tiling space but that

is not topologically conjugate. The dyadic solenoid has a totally disconnected transversal

but is not homeomorphic to an FLC tiling space. The pinwheel tiling has a 1-dimensional

transversal. Finally, a space of tilings of the line by arbitrary intervals of length at least

1 and at most 2 has an infinite-dimensional transversal. These assertions are discussed in

detail in the examples of the appendix.

Another approach is to ask questions about the geometry and combinatorics of the tiles

themselves:

(1) Are there finitely many tile labels (and hence shapes and sizes)?

If so, then infinite local complexity can only come from the ways that tiles slide

past one another. In two dimensions Kenyon showed [8] that infinite local com-

plexity arises only along arbitrarily long line segments of tile edges (fault lines),

or along a complete circle of tile edges (fault circles). The common situation is

to see shears along fault lines as in Example 2. We say that tilings of this type

have shear infinite local complexity. They are discussed in [2, 8, 4, 5, 12].

(2) If not, are there finitely many tile shapes and sizes?

In this situation, ILC arises automatically, due to the infinitude of labels. How-

ever, these spaces can have additional ILC arising geometrically, for instance

from fault lines or circles.

(3) If so, do the tiles meet full-edge to full-edge (or full-face to full-face in dimensions

greater than 2)?



26 NATALIE PRIEBE FRANK AND LORENZO SADUN

If there are only finitely many tile shapes, meeting full-edge to full-edge, then the

infinite local complexity comes entirely from the infinitude of labels. Using the

techniques of [14], we can recast the tiling flow as the suspension of a Zd action

on a transversal. In this case we call the complexity combinatorially infinite.

(4) Are there finitely many two-tile patches if some rotations are allowed?

The pinwheel tilings are an example of this phenomenon. Although it and other

tilings of this class can be handled with the methods of [1, 9, 13], many questions

remain. We call this type of local complexity rotationally infinite.

(5) If any of these answers are “no”, is the tiling space topologically conjugate (or home-

omorphic) to another tiling space where the answer is “yes”?

The answers to these questions can depend on how we present the tilings. If an ILC tiling

has only finitely many tile labels, then by working with collared tiles we get a space with

infinitely many tile labels. It is always possible to get tiles to meet full-edge to full-edge

by using the Voronöı trick we used in the proof of Theorem 3.10: convert the tiling the a

point pattern, and then consider the Voronöı cells of the resulting points. However, this will

typically result in an infinite number of tile shapes. In 1 dimension, it is always possible to

resize the tiles to have unit length, so every 1-dimensional ILC tiling space is homeomorphic

(but not necessarily topologically conjugate) to a space with combinatorially infinite local

complexity. This is essentially the same as studying the first return map on the transversal.

Shear, combinatorial or rotational infinite local complexity are very special conditions but

these are the forms of ILC about which most is known. We expect there to be a wide variety

of ways for the complexity of a tiling space to be infinite, each with potentially different

properties that have yet to be discovered. An important question will be to understand how

these properties are influenced by the topology, geometry, and combinatorics of the tiles,

tilings, and tiling spaces.

Appendix A. Examples

In this section we go into more detail about the measures and complexity of several

ILC fusion tiling spaces. These include the pinwheel, shear, and solenoid examples already

introduced elsewhere in the paper and also some new tiling spaces.

A.1. Toeplitz flows. Toeplitz flows are variations on the dyadic solenoid construction of

Example 3. In all cases that we will study, P0 is a compactification of the set {A0, A1, A2, . . .},
and the supertiles take the form Pn+1(k) = Pn(k)Pn(n), where k is either an integer greater

than n or a limit point. The tilings all have an A0 in every other position, an A1 in every 4th

position, and generally an An in every (2n+1)-st position, and may include a single instance of

a limiting tile (such as the dyadic solenoid’s A∞). The structure of the tiling space depends

on how many limit points there are, and on which sequences of tiles converge to each limit
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point. The resulting tiling spaces are all measurably conjugate, and hence have the same

spectral properties, but are typically not homeomorphic. They can often be distinguished

by cohomology and by gap-labeling group, and sometimes by complexity.

A particularly interesting example involves two limit points A∞ and A′∞, where the pro-

totiles A2n with even labels converge to A∞ and the prototiles A2n+1 with odd labels converge

to A′∞. Call this ILC fusion tiling space Ω2.

Theorem A.1. The space Ω2 is topologically conjugate to the (FLC) tiling space ΩPD ob-

tained from the period-doubling substitution X → Y X, Y → XX.

Proof. The map from Ω2 to ΩPD just replaces each A2n or A∞ tile with an X tile and

replaces each A2n+1 or A′∞ tile with a Y tile. The inverse map ΩPD → Ω2 is slightly more

complicated. Start with a period-doubling tiling. Pick an arbitrary Y tile t0, and give the

label A0 to all the tiles that are an odd distance from t0. Then pick a remaining X tile t1,

and give the A1 label to all tiles a distance 2 (mod 4) from t1. Pick a remaining Y tile t2 and

give the A2 label to all tiles a distance 4 (mod 8) from t2, etc. If a tile does not eventually

get a finite label Ak from this process, replace it with an A∞ if it is an X and with an A′∞
if it is a Y . �

We compute the complexity C2(ε, L) of Ω2 in two ways, once from the conjugacy to ΩPD

and once from the definition.

Since ΩPD is an FLC substitution tiling, its complexity (which we denote CPD(ε, L) ) must

be linear in that it goes as L/ε for L > 1/ε. As noted earlier, the dependence on ε is not

a topological invariant, but the dependence on L is. Thus, for all sufficiently small ε, the

complexity of Ω2 must grow linearly with L also. However, this argument does not indicate

how C2(ε, L) scales with ε.

Next, consider Ω2 directly. Let ε0 = d(A∞, A
′
∞) in the metric on P0. If ε > ε0, there exists

an N such that all tiles An with n ≥ N are within ε of each other, and also within ε of A∞

and A′∞. To within ε, every tiling is then periodic with period 2N , and so the complexity is

bounded.

However, when ε < ε0, then there exists an N such that all An with n ≥ N are either

within ε of A∞ or within ε of A′∞, but not both. Furthermore, for N sufficiently large, it is

precisely the even labels that are close to A∞ and the odd labels that are close to A′∞. For

counting purposes, we can replace all even labels 2n ≥ N with X and odd labels 2n+ 1 ≥ N

with Y , as well as replacing A∞ with X and A′∞ with Y . The remaining tiles An with

n < N are arranged periodically (with period 2N) and do not affect the complexity for

L > 2N . Thus for ε < ε0 and L > 2N(ε), C2(ε, L) is exactly the same as CPD(ε, L), and goes

as L/ε.

We can also consider Toeplitz flows with two limit points, only with the limiting structure

more complicated than “A2n → A∞, A2n+1 → A′∞.” Partition the non-negative integers into
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two infinite sets S and S ′, and suppose that An with n ∈ S converges to A∞ while An with

n ∈ S ′ converges to A′∞. Let α =
∑
n∈S

2−n. Since S and S ′ are both infinite, α is not a dyadic

rational; all numbers between 0 and 1 that are not dyadic rationals are possible values of α.

Call the resulting tiling space Ωα.

All spaces Ωα are measurably conjugate to the dyadic solenoid. However, they are not

homeomorphic to the dyadic solenoid, and are typically not homeomorphic to each other.

The first Čech cohomology of Ωα works out to be Z[1/2] ⊕ Z (as opposed to Z[1/2] for the

solenoid). The gap-labeling group, which is the Abelian group generated by the measures

of the clopen subsets of the transversal, is Z[1/2] + αZ. If α and α′ differ by a dyadic

rational, then the gap labeling groups of Ωα and Ωα′ are the same, and in fact Ωα and Ωα′

are topologically conjugate. If α− α′ is not a dyadic rational, then the gap-labeling groups

are different and the spaces are not topologically conjugate. If furthermore α and α′ are not

both rational, then it turns out that the spaces are not even homeomorphic.

We can even consider Toeplitz flows with an infinite limit set. For instance, imagine that

the limit set is a k-sphere, with the points A0, A1, . . . corresponding to a dense subset of

that sphere. In that case, the limit structure is detected by higher cohomology groups, with

Ȟk+1 = Z.

A.2. The pinwheel tiling. The pinwheel tiling is the most famous example of a tiling

with rotational ILC. The fusion rules shown in Figure 1 are rotationally invariant. The

decomposition of a right-handed supertile involves rotation by α = arctan(1/2) plus multiples

of π/2, while decomposition of a left-handed supertile involves rotation by −α. Since each

N -supertile consists of both right-handed and left-handed (N −1)-supertiles, a right-handed

N -supertile will contain tiles that are rotated by Nα, (N − 2)α, . . . , (2 − N)α relative to

the supertile (plus multiples of π/2). In the N →∞ limit, the orientation and directions of

the tiles are uniformly distributed on Z2 × S1. Likewise, for any fixed n the distribution of

n-supertiles is uniform in the N →∞ limit. This establishes the uniqueness and rotational

invariance of the translation-invariant measure on Ωpin. (For details of this argument, see

[10].) Specifically, dρn is dθ/[4π × 5n] on each of the two circles in Pn.

For small ε, the complexity C(ε, L) of the pinwheel tiling goes as L3/ε3. To specify a patch

of size L to within ε, one must specify the type of supertile containing the patch, and then

specify where in the supertile the patch lies. (If the patch straddles two supertiles, then

one must specify two supertiles, but for each supertile there are only a bounded number of

choices for the nearest neighbors, so this does not affect the scaling.) The direction of the

supertile must be specified to within ε/L, since a rotation by ε/L of a patch of size L will

move some tiles a distance ε. Thus the number of possible supertiles goes as L/ε, while the

number of possible positions in the supertile goes as L2/ε2, for a total complexity that goes

as L3/ε3.
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This is in contrast to the situation for self-similar FLC fusion tilings. In a self-similar

FLC fusion, there are a bounded number of n-supertiles and a bounded number of ways

that two n-supertiles can meet. To specify a patch to within ε, one must choose among the

finitely many supertiles of a given size and pick a location within that supertile, resulting in

a complexity C(ε, L) that goes as L2/ε2. As noted earlier, the difference between scaling as

ε−2 vs. ε−3 is not significant, but the difference between scaling as L2 vs. L3 is topological.

This remark applies to our next three examples as well.

A.3. The anti-pinwheel and two hybrids. The anti-pinwheel tilings [10] have tiles and

supertiles with the same shape as pinwheel tiles and supertiles. The difference is that n-

supertiles are built from (n − 1)-supertiles as shown in Figure 2. An n-supertile of type

Figure 2. The anti-pinwheel fusion rule

(R, θ) is comprised of three (n− 1)-supertiles of type (L, θ + α), one of type (L, θ + α + π)

and one of type (L, θ+α+π/2). Likewise, an n-supertile of type (L, θ) is comprised of three

(n−1)-supertiles of type (R, θ−α), one of type (R, θ−α+π) and one of type (R, θ−α−π/2).

Note that every daughter (n−1) supertile has the same handedness and the same direction

(up to multiples of π/2), hence that every grand-daughter (n − 2) supertile has the same

handedness and direction (up to π/2), and so on. If N is even, then an (R, θ) N -supertile

consists only of tiles of type (R, θ), (R, θ + π/2), (R, θ + π) and (R, θ − π/2). If N is odd,

the only tiles are of type (L, θ + α), (L, θ + α + π/2), (L, θ + α + π), and (L, θ + α − π/2).

Each anti-pinwheel tiling exhibits only four of the uncountably many tile types!

The anti-pinwheel tiling space is neither minimal nor uniquely ergodic. There is a minimal

component for each handedness and each direction (mod π/2). Each minimal component

is uniquely ergodic, with a measure for which ρn is supported on a single handedness and

four angles, spaced π/2 apart. As with any self-similar FLC tiling, each ergodic component

has complexity that goes as L2/ε2, while the entire tiling space has complexity that goes as

L3/ε3, for the same reasons as the pinwheel.



30 NATALIE PRIEBE FRANK AND LORENZO SADUN

Figure 3. A right-handed 2-supertile expressed as a union of 125 1-supertiles.
Only two of the 1-supertiles (shaded) are right-handed.

We next develop a hybrid between the pinwheel and anti-pinwheel. This hybrid admits

an action of the Euclidean group and is minimal with respect to translation. However, the

system is not uniquely ergodic and the ergodic measures are not rotationally invariant.

The hybrid n-supertiles have the same supports as the pinwheel (or anti-pinwheel) n2-

supertiles. That is, they are 1-2-
√

5 right triangles scaled up by 5n
2/2. Note that each

n-supertile consists of 52n−1 (n− 1)-supertiles.

The decomposition of n-supertiles into (n − 1)-supertiles is as follows. First decompose

the n-supertile into 5 smaller triangles as with the anti-pinwheel. Repeat this process 2n−2

times. Then pick one of the 52n−2 triangles and subdivide it using the pinwheel pattern, while

subdividing the other 52n−2−1 triangles using the anti-pinwheel pattern. The choice of which

triangle to subdivide using the pinwheel rule is arbitrary but has to be made consistently —

it is part of our fusion rule. For definiteness, we can choose to apply the pinwheel rule to

the triangle that contains the center-of-mass of the n-supertile, as shown in Figure A.3.

An n-supertile of type (R, θ) will then consist of two right-handed (n− 1)-supertiles and

52n−1 − 2 left-handed (n − 1)-supertiles, all with angle θ + α plus multiples of π/2. An

n-supertile of type (L, θ) will consist of two left-handed (n − 1)-supertiles and 52n−1 − 2

right-handed (n−1)-supertiles, all with angle θ−α plus multiples of π/2. As a consequence,

in a 2n-supertile, a fraction greater than
n∏
k=2

(
1− 2

52n−1

)
> 0.98 of the tiles will have the

same angle θ as the supertile (up to multiples of π/2), and 3/5 of those will have the same

handedness as the supertile. The distribution of angles and handedness within a supertile is

far from uniform, even in the 2n→∞ limit.
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For each (H, θ), there is a supertile generated measure coming from the sequence of N =

2n-supertiles of type (H, θ). Two such measures, one with (H, θ) and one with (H ′, θ′), agree

only if H ′ = H and if θ − θ′ is a multiple of π/2. It is not hard to see that these measures

are extreme points of ∆∞, insofar as they maximize the frequency of (H, θ) tiles, and hence

are ergodic.

For these ergodic measures, ρn is atomic. If n is even, then there is a large frequency of

(H, θ + mπ/2) n-supertiles, a smaller frequency of (H, θ ± 2α + mπ/2), or of supertiles of

the opposite handedness, a still smaller frequency with angle θ± 4α±mπ/2, etc. There are

countably many possibilities, but they occur with rapidly decreasing frequency.

However, the fusion rule is primitive, and hence the tiling space is minimal. Each N -

supertile contains both right and left-handed n-supertiles, each in 4(N − n − 1) different

directions. As N →∞, these directions become dense in S1. For any n-supertile P and any

ε > 0, one can therefore find an N such that every N -supertile contains an n-supertile with

handedness and direction within ε of P .

This hybrid, like the pinwheel and (complete) anti-pinwheel spaces, has complexity that

goes as L3/ε3. As before, the number of possible directions of a supertile goes as L/ε, while

the number of locations for the origin goes as L2/ε2.

A.3.1. A hybrid with totally disconnected transversal and strongly expansive dynamics. Since

the fusion rule for the hybrid pinwheel-anti-pinwheel is rotationally invariant, there is an S1

action on the transversal. In particular, the transversal is not disconnected. By modifying

the construction to break this rotational invariance, we can get a tiling space that is minimal,

has totally disconnected transversal, and is strongly expansive.

Let C be a Cantor set obtained by disconnecting the circle at the countable set of points

nα + mπ/2 (mod 2π), where n ∈ Z and α = arctan(1/2). That is, we remove each point x

of the form nα + mπ/2 from the circle and replace it with 2 points, x+ considered as the

limit from above and x− considered as a limit from below. For definiteness, pick a metric on

C. There is an obvious continuous map from C to S1, and we call elements of C “angles”

and denote them θ, with the understanding that some angles require a superscript. Note

that addition of α is well-defined on C, sending θ± to (θ + α)±. Likewise, subtraction of α

and addition of multiples of π/2 are well-defined.

Let Pn = Z2 × C, with the n-supertiles having the same supports as with the hybrid

pinwheel. To the two points in C with angle θ = kα + mπ/2 we associate two different

(super)tiles. These (super)tiles will have the same support but have different labels and may

have different decompositions into lower-level supertiles.

For each n > 1, consider a partition of C into 52n−3 clopen sets, such that the diameter of

these sets (in the metric on C) goes to zero uniformly as n → ∞. To each of these clopen

sets, associate a triangle in the anti-pinwheel decomposition of the n-supertile into 52n−2

smaller triangles.
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To decompose an n-supertile of type (H, θ) into (n − 1)-supertiles, first divide it into

52n−2 smaller triangles by applying the anti-pinwheel decomposition 2n − 2 times. Then

pick the triangle associated to θ, and decompose it into 5 triangles using the pinwheel rule.

Decompose the other 52n−2 − 1 triangles using the anti-pinwheel rule.

As a result of the θ-dependence, this fusion rule breaks rotational symmetry and the

rotation group does not act on Ω. For any distinct θ1,2 ∈ C, there exists an n such that

θ1 and θ2 are not in the same division of C into 52n−3 clopen sets. This implies that an

n-supertile of type (H, θ2) is combinatorially different from an n-supertile of type (H, θ1).

This makes the dynamics strongly expansive and makes the transversal totally discon-

nected. Two points T1 and T2 in the same transversal must have supertiles at some level

that are different. This means that the combinatorics of the two tilings are different, so it

is possible to find a clopen subset of the transversal, defined using combinatorial data, that

contains T1 but not T2. Furthermore, there is a translation x such that T1 and T2 differ by

more than ε, which establishes expansivity. To see that the tiling space is strongly expansive,

note that the combinatorics of T1 and T2 are the same out to some distance and then are

suddenly different; a time change could not account for the difference while preserving the

match out to that point.

This example is minimal but not uniquely ergodic, for the exact same reasons that the

hybrid pinwheel is minimal but not uniquely ergodic. The ergodic measures are obtained

from sequences of 2n-supertiles with fixed (H, θ), and the complexity goes as L3/ε3. The

existence of uncountably many ergodic measures is evidence that this tiling space is not

homeomorphic to an FLC tiling space.

A.4. A direct product variation with shears. We return to the tiling of Example 2 as

an example of shear ILC. Each label set Ln consists of just four points, and the transition

matrices Mn,n+1 all equal


1 1 1 1
3 0 3 0
3 3 0 0
9 0 0 0

. This means that the transition-consistency require-

ments on the measures ρn are exactly the same as for an FLC substitution with the same

matrix. Each ρn must be proportional to the Perron-Frobenius eigenvector,

(
λ
3
3
−3λ̄

)
, where

λ = (1 +
√

13)/2 and λ̄ = (1 −
√

13)/2. The measures of all literally admitted patches can

then be recovered from equation (8), while the patches that appear in the limit have total

frequency zero.

The measures ρn are independent of the side length α (except for overall normalization

constants). Perron-Frobenius theory tells us that each ∆n consists of a single element, so by

Theorem 4.5 this DPV must be uniquely ergodic.

However, the set of possible patches, and the count #(I in P ) on the right hand side of

equation (8) very much do depend on α. When α is rational, the tiling has FLC since if
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α = p/q then the offsets between neighboring tiles must be multiples of 1/q. In fact, all such

multiples occur. Moreover, the offsets between neighboring n-supertiles is also all multiples

of 1/q, up to the size of the supertiles in question. Despite being FLC, the complexity goes

as qL3/ε2, since the number of ways that two supertiles of size L can meet is qL. As long as

L > ε−1 > q, C(ε, L) goes as qL3/ε2.

When α is irrational, then the tiling has ILC [4], and the offsets between neighboring

supertiles is arbitrary. A countable and dense set of offsets is literally admitted, a continuum

of offsets appears in the limit, and the transversal has topological dimension 1. To distinguish

patches to within ε, we must specify the offset to within ε, and there are L/ε ways to do so.

C(ε, L) then goes as L3/ε3. (This argument also applies to rational α when ε > 1/q. The

distinction between rational and irrational α disappears when looking at structures of size

greater than 1/q.)

A.5. A tiling of R with variable size tiles. We next consider a 1-dimensional tiling whose

tiles appear in a continuum of sizes. The possible lengths of n-supertiles are [(3/2)n, 3(3/2)n],

and the fusion rule making an n-supertile depends on its length x. If x is above a certain

threshold (namely 2(3/2)n), then it is composed of two (n− 1) supertiles, one of length x/3

and the other of length 2x/3. If x is below the threshold the n-supertile is composed of one

(n− 1) supertile, whose length is x, which we have ensured is an allowable (n− 1)-supertile

length.2

We would like to allow the label sets of n-supertiles to be their possible lengths, but doing

so would make the fusion rule discontinuous. To force continuity, we disconnect the line at

each length x of discontinuity, making two new points we call x+ and x−. The discontinuities

happen for x = 3k(3/2)m, where k and m are nonnegative integers; we call such values of

x special. If x is special, then for small ε > 0 we say that x − ε is close to x− but not x+,

while x + ε is close to x+ but not x−. Our label sets are intervals Ln = [(3/2)n+, 3(3/2)n−]

in the disconnected line, each of which breaks up into O(n) ordinary closed intervals. (E.g.,

[1+, 3−] = [1+, (3/2)−] ∪ [(3/2)+, (9/4)−] ∪ [(9/4)+, 3−].) These labels describe the lengths

of the n-supertiles. 1-supertiles of label 3+ and 3− each have length 3, but have different

decompositions into ordinary tiles.

To extend the fusion rule described above to our newly labeled supertile sets, note that

if x is special, then either x/3 or 2x/3 is special (or both). In this case we use the (n− 1)-

supertiles with the same superscript as x itself. Since 2(3/2)n = 3(3/2)n−1 is special, we

have eliminated the discontinuity in the rule.

The fusion rule is van Hove, recognizable, and primitive. Thus the tiling dynamical system

is minimal and we may use Theorem 4.2 to determine the invariant measures. In the next

2Readers familiar with inflate-and-subdivide rules can think about this as an inflation by a factor of 3/2
followed by a subdivision only if the tile length is above the threshold.
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few sections we will show that the system is uniquely ergodic and compute the invariant

measure.

A.5.1. Transition-consistency.

Lemma A.2. Every transition-consistent and volume-normalized family of measures {ρn}
is non-atomic.

Proof. Consider an n-supertile of size x. We will show that, for N large, dividing an N -

supertile of size y into n-supertiles results in relatively few n-supertiles of label exactly x.

Specifically, we will argue that the fraction of the n-supertile descendants that are of size x

is bounded above by a constant times N−1/2, implying that no transition-consistent measure

can give weight greater than cN−1/2 to n-supertiles of label x. Since N can be chosen

arbitrarily large, the measure of the n-supertiles of label x is zero.

If some of the descendants of y have length x, then y = x3k(3/2)m for some non-negative

integers k and m. Since y/x is also approximately (3/2)N−n, N is bounded above and below

by a constant times k +m. When dividing y, 2/3 of the length winds up in a chunk of size

2y/3 and 1/3 winds up in a chunk of size y/3. Dividing k + m times, we get size x only

if we go to the larger daughter m times and the smaller daughter k times. There are at

most

(
k +m

m

)
ways to do this, so the fraction of the length of y consisting of n-supertiles

of type x is at most

(
1

3

)k (
2

3

)m(
k +m

m

)
. This is the probability of getting k heads and

m tails when flipping a biased coin k +m times. Since the variance in the number of heads

is proportional to the number of flips, and since the distribution is approximately normal

(by the central limit theorem), the probability of getting exactly k heads is bounded by a

constant times (k +m)−1/2, and hence by a constant times N−1/2. �

Since ρn is non-atomic, we can treat ρn as a continuous measure on the (ordinary) interval

[(3/2)n, 3(3/2)n]. We write

dρn = fn(x)dx,

to represent the frequency of n-supertiles whose lengths are between x and x + dx. In

principle, ρn could have a singular component, in which case fn should be understood as a

distribution rather than as an ordinary function.

Transition-consistency for the ρns requires the fns to be related, which is key to computing

the ergodic measure. By definition, for any measurable I ⊂ Pn we need∫
I

fn(x)dx =

∫
y∈Pn+1

Mn,n+1(I, y)fn+1(y)dy.

To compute Mn,n+1 we identify three subsets of Pn. If x ∈ [(3/2)n+, (3/2)n+1−], then the

n-supertile of label x must be the small daughter of an (n + 1)-supertile of label 3x. An

n-supertile with x ∈ [(3/2)n+1+
, 2(3/2)n−] must be the only child of an (n + 1) supertile of
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label x, and an n-supertile of length x ∈ [2(3/2)n+, 3(3/2)n−] can either be the only child

of an (n+ 1)-supertile of label x or the large daughter of an (n+ 1)-supertile of label 3x/2.

Thus, if I ⊂ [(3/2)n+, (3/2)n+1−] we see that Mn,n+1(I, y) = χ3I(y) and we have∫
I

fn(x)dx =

∫
3I

fn+1(y)dy =

∫
I

3fn+1(3x)dx,

implying that on this interval we have fn(x) = 3fn+1(3x). The computation for the other

two intervals is similar and we obtain

fn(x) =


3fn+1(3x) (3/2)n ≤ x ≤ (3/2)n+1

fn+1(x) (3/2)n+1 < x ≤ 2(3/2)n

fn+1(x) + (3/2)fn+1(3x/2) 2(3/2)n < x ≤ 3(3/2)n.

Because the transition-consistency relationship does not depend on n, we can renormalize

all of the fn’s and induce a map from L2([1, 3]) to itself. Define

f̃n(x) = (3/2)2nfn((3/2)nx).

The quantity f̃n(x)dx represents (3/2)n times the frequency of n-supertiles of length between

(3/2)nx and (3/2)n(x + dx), and x ranges from 1 to 3. Equivalently, if we were to rescale

all lengths by (3/2)n, it would represent the frequency (number per rescaled length) of n-

supertiles of length between x and x+ dx.

The transition consistency equations become

f̃n(x) =


(4/3)f̃n+1(2x) 1 ≤ x ≤ 3/2

(4/9)f̃n+1(2x/3) 3/2 < x ≤ 2

(4/9)f̃n+1(2x/3) + (2/3)f̃n+1(x) 2 < x ≤ 3,

or equivalently f̃n(x) = T f̃n+1(x), where

T f̃(x) =


(4/3)f̃(2x) 1 ≤ x ≤ 3/2

(4/9)f̃(2x/3) 3/2 < x ≤ 2

(4/9)f̃(2x/3) + (2/3)f̃(x) 2 < x ≤ 3.

In the next section we see that T is a diagonalizable operator on L2([1, 3]) and compute its

spectrum in order to show that there is a unique invariant measure.

A.5.2. The invariant measure.

Theorem A.3. The tiling space is uniquely ergodic, and the unique measure has

(11) f̃n(x) =


c

x2
x ≤ 2

3c

x2
x > 2,

for every n, where c = (3 ln(3)− 2 ln(2))−1.
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Proof. The proof follows the same general lines as the proof of Theorem 8 of [12]. To prove

unique ergodicity, we show that the spectrum of T is entirely in the unit disk, that 1 is the

only eigenvalue on the unit circle, and that there is a unique solution to T f̃ = f̃ , up to

normalization, namely the function listed above.

Suppose that f̃ is an eigenfunction of T with eigenvalue λ. The equations T f̃ = λf̃ reduce

to:

f̃(2x)/f̃(x) = 3λ/4 1 ≤ x ≤ 3/2

f̃(2x/3)/f̃(x) = 9λ/4 3/2 < x ≤ 2

f̃(2x/3)/f̃(x) = 3(3λ− 2)/4 2 < x ≤ 3

Note that f̃(x) determines f̃(2x) or f̃(2x/3), which determines f̃(4x/3) or f̃(4x/9), which

determines the next power of 2 times x, divided by an appropriate power of 3. At every

stage, we add ln(2) to ln(x) (mod ln(3)). Since f̃(x) determines a dense set of function

values, there is at most one function (up to scale) with eigenvalue λ. Irrational rotations

yield a uniform measure on the circle, so we find ourselves in the range [1,3/2] a fraction

ln(3/2)/ ln(3) of the time, in the range [3/2, 2] a fraction ln(4/3)/ ln(3) of the time and in

the range [2,3] a fraction ln(3/2)/ ln(3) of the time, regardless of the initial value of x. This

means that we multiply by 3λ/4 an average of ln(3/2) times for every ln(4/3) times that we

multiply by 9λ/4 and for every ln(3/2) times that we multiply by 3(3λ − 2)/4. Since the

values of f̃ do not grow or shrink in the long run, we must have

(12)

∣∣∣∣3λ4
∣∣∣∣ln(3/2) ∣∣∣∣9λ4

∣∣∣∣ln(4/3) ∣∣∣∣3(3λ− 2)

4

∣∣∣∣ln(3/2)

= 1,

or equivalently

(13) ln(2) ln |λ|+ ln(3/2) ln |3λ− 2| = 0.

If |λ| > 1, then both terms on the left hand side of (13) are positive. If |λ| = 1 and λ 6= 1,

the first term is zero and the second term is positive. Thus, the only possible eigenvalues

are +1 and points that are strictly inside the unit circle.

It is straightforward to check that the function of equation (11) is in fact an eigenfunction

of T with eigenvalue 1. The constant c comes from the volume normalization condition∫ 3

1

xf̃n(x)dx = 1. �

Knowing the λ = 1 eigenfunction is enough to determine the invariant measure. However,

it is also useful to identify the other eigenvalues and eigenfunctions, as these describe how

averages over finite regions can differ from the the ergodic limit. If γ is a complex number

such that

(14) 3γ = 2γ + 1,
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then the function:

f̃(x) =

{
x−(γ+1) 1 ≤ x < 2

3γx−(γ+1) 2 < x ≤ 3

is an eigenfunction of T with eigenvalue λ = (3/2)γ−1. There are countably many solutions

to (14), each corresponding to a solution to (12). (Condition (12) is necessary but not

sufficient for λ to be an eigenvalue.) 1 is an accumulation point for the spectrum of T , so

convergence under T to the unique invariant measure is not exponential.

A.5.3. Complexity and transversal. The complexity C(ε, L) goes as L2/ε2. To specify a patch

of size L up to ε error, one must identify a supertile of size bigger than L, specify the length

of the supertile to within ε, and pick a location within that supertile to within ε, leaving

L2/ε2 possibilities.

Despite having a continuum of tile lengths, this tiling space has totally disconnected

transversal. The clopen sets describe the combinatorics of how tiles fit into supertiles of

various orders out to a certain distance from the origin. To see this, imagine that tilings T

and T ′ are in the transversal and are close. This occurs when T is, to a large distance, a

small dilation of T ′ (or vice-versa). However, eventually T ′ will have a tile whose length is

slightly less than 3, while the corresponding region of T , having length slightly greater than

3, consists of two tiles. Using this difference in combinatorics, we can construct a clopen set

that contains T but not T ′.
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