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Abstract. In this paper, a technique for analyzing levels of hierarchy in a
tiling T of Euclidean space is presented. Fixing a central configuration P
of tiles in T , a “derived Voronöı” tessellation TP is constructed based on
the locations of copies of P in T . A family of derived Voronöı tilings F(T )
is formed by allowing the central configurations to vary through an infinite
number of possibilities. The family F(T ) will normally be an infinite one,
but we show that for a self-similar tiling T it is finite up to similarity. In
addition, we show that if the family F(T ) is finite up to similarity, then T is
pseudo-self-similar. The relationship between self-similarity and pseudo-self-
similarity is not well understood, and this is the obstruction to a complete
characterization of self-similarity via our method. A discussion and conjecture
on the connection between the two forms of hierarchy for tilings is provided.

1. Introduction

Our study of tilings takes a dynamical viewpoint, where tilings can be seen as
higher-dimensional analogues of points in symbolic dynamical systems. Any such
generalization is complicated due to the presence of nontrivial geometry in two or
more dimensions. Important work has been done on tilings and their associated
“tiling dynamical systems” by a variety of authors, including C. Radin [10, 11], E.
A. Robinson Jr. [14], and B. Solomyak [19, 20].

In this work we study tilings with hierarchical properties. These tilings are
intended to be generalizations of limit points of substitutions on sequences (many
results on such sequences are presented in M. Queffelec’s book [9]). An exposition on
hierarchy in tilings was given by C. Radin in [12]. A generalization of fixed points
of constant-length substitutions is “self-similar” tilings, defined by W. Thurston
[21]. We will also present a definition of “pseudo-self-similar” tilings, a slightly less
restrictive condition which may ultimately be seen to be equivalent. There are many
examples of and dynamical results about self-similar tilings and pseudo-self-similar
tilings in the literature, some of which will be mentioned in Section 3.1.

The main results to be presented here were inspired by the work of F. Durand
[2] in the context of substitutive sequences. He defined “derived sequences” and
used them to characterize the limit points of primitive substitutions on sequences.
Given a minimal sequence X and a finite block u from X, the sequence Du(X) is
derived based on a recoding of X in terms of the occurrences of u in X. Durand’s
result is as follows.
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Theorem (Durand). X is a primitive substitutive sequence if and only if the num-
ber of derived sequences Du(X) is finite, as u ranges throughout all possible finite
initial words of X.

In order to generalize this result to the tilings case we define “derived Voronöı
(DV) tilings”, the analogue of Durand’s derived sequences. Given a tiling T and a
patch P ⊂ T , we describe how to derive a new tiling TP using a Voronöı construction
on the locations of copies of the patch P in T . The resulting DV tiling contains
information about the layout of translates of P in T and provides a notion of which
translates of P are “first returns” of one another.

We can use DV tilings to study hierarchy of various kinds. In addition to self-
similar tilings, combinatorially substitutive tilings as well as pseudo-self-similar
tilings were studied by the author in terms of DV tilings in [8]. The results con-
cerning self-similar and pseudo-self-similar tilings are presented in this work. In
order to use DV tilings to study hierarchy, we construct the DV tiling TPr = Tr of
a central patch Pr determined by the ball of radius r centered at 0. Letting r vary,
we obtain an (infinite) family F(T ) of DV tilings. One way to classify elements
of F(T ) is via similarity of Rd; we give a precise definition later. Our two main
results can be summarized as follows:

Theorem. If T is a nonperiodic self-similar tiling of Rd, then the DV family F(T )
is finite up to similarity.

Theorem. If for a nonperiodic tiling T of Rd the DV family F(T ) is finite up to
similarity, then it is pseudo-self-similar.

Taken together, these results nearly classify the set of all self-similar tilings.
Attempts to make a complete classification are under way—possible ways to form a
characterization are listed in Section 5. There may be a way to use these results to
prove that any pseudo-self-similar tiling is a self-similar tiling with “deformed” tiles
(the tilings are “mutually locally derivable”). Currently, this is just a conjecture.

The second result is quite important as it provides a system for checking an
arbitrary tiling for hierarchy. Upon examination of the proof, we find that the DV
tiling is a useful tool for detecting hierarchy on a very practical level. Given a tiling
T , we need not necessarily construct a DV tiling for every initial configuration and
then classify them all in order to deduce that there is hierarchical structure in T .
The proof shows that it is enough to find two similar DV tilings constructed from
initial patches of sufficiently different sizes to deduce that there is hierarchy in the
tiling. How different the sizes of the central patches need to be will depend on
estimates on the sizes of the return tiles in each DV tiling. This could be a very
usable method for determining hierarchy in specific examples.

The results presented here are based on the author’s Ph.D. dissertation [8] written at

the University of North Carolina at Chapel Hill under the direction of Karl Petersen.

2. Tilings and Tiling Dynamical Systems

2.1. Prototiles and tilings. Prototiles are the basic tile shapes which can be
used to form a tiling. A tiling will be constructed from some finite set of prototiles
by covering Rd with translates of the prototiles, allowing them to overlap only on
their boundaries.

Definition 2.1. Given a set A ⊂ Rd homeomorphic to the closed unit disk {x ∈
Rd : ‖x‖ ≤ 1} and an integer l ∈ {1, 2, ..., L}, define a prototile t as the pair (A, l).
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The support of t is supp(t) = A; the label (or tile type) of t is l(t) = l. A prototile set
is a set τ of prototiles so that if t ∈ τ , then l(t) ∈ {1, 2, ..., L}, and if l(t1) = l(t2),
then supp(t1) = supp(t2).

The labels in this definition make available a high level of control to distinguish
(or not distinguish) the various tile shapes as we choose. We could use the labelling
to distinguish prototiles having congruent supports which are not translates of one
another, but are instead rotations or reflections of one another. Or we could use
the labelling to color tiles which have translationally congruent supports so that
they appear distinct. If the requirement that labels uniquely determine a prototile’s
shape and orientation was dropped, then all of the prototiles in a prototile set could
be given the same label. From a combinatorial standpoint, the study of such a tiling
would lose all consideration for the geometry of the tiles, since any homeomorphism
of Rd produces a tiling which carries the same combinatorial structure. We avoid
this situation, preferring to allow labellings on graph elements to preserve their
geometric connection to the tiling.

In order to tile the plane with copies of the prototiles, a subgroup G of Rd is
selected which must at least contain Zd. These are the allowable translations of
the prototiles. A tiling is created out of copies of the prototile set under allowable
translations.

Definition 2.2. Given a prototile set τ and a group of allowable translations G,
a tile T is a pair (supp(t) − g, l(t)) for some g ∈ G and t ∈ τ (making supp(T ) =
supp(t) − g and l(T ) = l(t)). We say

T = {Tj = (supp(tij − gj), l(tij)) for j ∈ N, tij ∈ τ, and gj ∈ G},(1)

is a (τ, G)-tiling if Rd =
⋃
j

supp(Tj) and int(Ti)∩ int(Tj) = ∅ for i (= j.

When the prototile set and allowable group of translations are unambiguous we
will refer to T simply as a tiling. For convenience of notation we will suppress
subscripts and refer to any T -tile as T ∈ T .

Example 1. Suppose we let t1 = ([0, 1] × [0, 1], 1) and t2 = ([0, 1] × [0, 1], 2) be
two prototiles forming the prototile set τ . We can let the subgroup G of allowable
translations be either Z2 or R2; in either case an example of a (τ, G)-tiling is
shown in Figure 1. Since the tiles have congruent supports, the labelling plays
an important role in the appearance of the tiling. One can see this tiling as a
configuration in Z2; sometimes it is more useful to consider it as part of a dynamical
system whose action in Rd instead.

Remark 2.1. Note that a tiling can be seen as a higher-dimensional analogue of
a sequence on a finite number of letters (prototile types). The introduction of
nontrivial geometry can cause complex patterns of adjacency between tiles in a
tiling. Unlike the situation for sequence spaces, arbitrary concatenation of the tiles
may not result in a tiling at all. Whether or not a given prototile set can actually
form a tiling is an undecidable question [15, 22].

Remark 2.2. At this point we should also note that a more general framework is
used by many authors, (C. Radin has contributed to the theory of tiling dynamical
systems in this framework), in which rotations of prototiles can be used along
with translations to tile Rd. Although the format used here can allow rotations
of prototiles, it restricts us to a finite group of rotations. However, most of the
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Figure 1. A tiling of R2 with colored unit square tiles.

results in this work could be generalized to the case in which an infinite number
of rotations of prototiles is allowed. This would require alterations of several key
estimates used in the proofs.

Definition 2.3. A T -patch P is given by

P = {Ti1 , ..., Tin} ⊂ T .

Patches in tilings are analogous to words in sequences. To a subset U of Rd we
can associate two T -patches in a natural fashion: one has support contained in U
and the other has support containing U . Using the notation of [19], call the inner
patch of U

]U [T = {T ∈ T such that supp(T ) ⊆ U}(2)

and the outer patch of U

[U ]T = {T ∈ T such that supp(T ) ∩ U (= ∅}.(3)

An important outer patch is the one associated to a point y ∈ Rd given by the
elementary patch [y]T . The elementary patches can be used to form a sort of atlas
of local tile configurations, since they show every possible way (up to translation)
any point in Rd is covered by the tiles in a tiling. Elementary patches can be (1)
a single tile, (2) two tiles meeting along an edge, or (3) several tiles which share
a common vertex and whose collective support contains a neighborhood of that
vertex.

Tiles and patches can be acted upon by translation. This action will be of
primary importance since it is the action that will produce the dynamical system
that we intend to study.
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Definition 2.4. Given a patch P , and a translation g ∈ G to which it corresponds,
define the patch

P − g = {(supp(T ) − g, l(T )) : T ∈ P }.

The T -patches P1 and P2 are said to be equivalent and we write

P1 ∼ P2 if and only if there exists g ∈ G with P1 = P2 − g.(4)

Definition 2.5. A tiling T is normal if all of its tiles are uniformly bounded topo-
logical disks which intersect in connected sets. A tiling T has a finite number of
local patterns if for any R > 0 there is an integer n and T -patches P1, ..., Pn such
that for any x ∈ Rd, [BR(x)]T is equivalent to Pi for some i ∈ {1, ..., n}.

Tilings in this work are always assumed to satisfy Definition 2.5.

Definition 2.6. A tiling T of Rd is said to be periodic if there exists a basis
g1, g2, ..., gd of Rd so that T − gi = T for i = 1, 2, ..., d. It will be considered
nonperiodic if there is no nonzero g ∈ Rd with T − g = T . A set τ of prototiles is
called aperiodic if it can tile the plane, but only nonperiodically.

For quite some time the existence of aperiodic prototile sets was an open question,
and was the key to the solution of H. Wang’s Tiling Problem [22]. Once it was shown
that there are aperiodic sets of prototiles, Wang was able to show that the question
of whether an arbitrary set of prototiles can form a tiling is not decidable.

If a tiling is not periodic it can still have strong repetitive properties. The
following is analogous to minimality for sequences.

Definition 2.7. A tiling T is called almost periodic if for any patch P ∈ T there
is a real number R such that for any x ∈ Rd there is a T -patch P ′ such that
supp(P ′) ⊂ BR(x) and P ′ ∼ P . The minimum such R, denoted R(P ), is called the
almost periodicity radius of P .

Using the notation of Solomyak [19] we can associate several positive constants
to any almost periodic tiling with the local finiteness property. These constants
will be useful for a variety of estimates and computations throughout this work.

Definition 2.8. Let T be an almost periodic tiling with a finite number of local
patterns. Define positive constants C1, C2, and C3 such that

C1 = max{diam T : T ∈ T };(5)

if ‖x − y‖ < C2 , then there exists z ∈ Rd such that x, y ∈ supp[z]T ;(6)

Any ball of radius C3 contains copies of all elementary T -patches.(7)

It is clear that C1 exists due to our assumption that the prototile set is finite. The
existence of C2 can be seen from the local finiteness property along with the fact
that there are a finite number of prototiles. It is clear that C3 can be constructed
by taking the maximum of all return radii of elementary T -patches. These return
radii exist by almost periodicity, and since by local finiteness there are only a finite
number of elementary patches, the maximum exists and is also finite.
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2.2. Tiling systems. A tiling space X will be defined to be made up of some or
all of the tilings which can be created from a given set of prototiles using a given
allowable translation group. If it contains all possible such tilings, then it can be
seen as analogous to the full shift.

Definition 2.9. Given a prototile set τ and an allowable translation group G define
the full tiling space

X(τ, G) = {T such that T is a (τ, G)-tiling }.

We define basic open sets which form a topology on the tiling space X(τ, G)
and are akin to cylinder sets in shift spaces. The version of a basic open set which
will be used in this work is given by B. Solomyak in [20]. Let P be a T -patch and
U ⊂ Rd a Borel set. Define a basic open set to be

XP,U = {S ∈ X : P + u ⊂ S for some u ∈ U}.(8)

The topology generated by the basic open sets generates in turn the Borel σ-algebra
B on X.

Radin, Robinson, and Solomyak have proposed metrics for tiling spaces based on
the notion of near-agreement on large balls about the origin. The various metrics are
equivalent on tiling spaces for which they are mutually valid; we present Solomyak’s
version here [20]. Let

ρ̃(T ,S) = inf{ε : there exist P ⊂ T and Q ⊂ S with B(0,
1
ε
) ⊂ P,

B(0,
1
ε
) ⊂ Q and P = Q + g for some g with ‖g‖ < ε}.

(9)

The metric on X is given by

ρ(T ,S) = min(1, ρ̃(T ,S)).(10)

It has been shown [13] that the full tiling space X(τ, G) is compact in this metric.
Since translation can be defined on entire tilings by letting T − g = {Tj − g for j ∈
N}, we can define closed, translation-invariant subspaces which are analogous to
subshifts in symbolic dynamics. It is clear that each g ∈ G is a bijection of the tiling
space X(τ, G) and that the action G × X(τ, G) → X(τ, G) is jointly continuous.

Definition 2.10. Let τ be a prototile set, let G be a group of allowable trans-
lations, and let X(τ, G) be the corresponding full tiling space. A tiling space
is a subset X ⊂ X(τ, G) which is closed in the metric topology and is transla-
tion invariant. Fixing a tiling T , the tiling space of T , denoted XT , is given by
XT = {T − g : g ∈ G}.

Definition 2.11. Let X ⊂ X(τ, G) be a tiling space. A tiling dynamical system
(X, G) is given by the tiling space X acted upon by the group of translations G.

If T is almost periodic, then all of its translates are as well, forcing all of the
limit points of the orbit to be almost periodic. In this case the tiling dynamical
system (XT , G) is a minimal system.
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2.3. Local derivability. In symbolic dynamics, there is a notion of a “sliding-
block coding”: given a sequence one can construct another sequence by keeping
track of the order in which the blocks of size (2N + 1) appear in the original
sequence. Given a code f that replaces each (2N +1)-block on an alphabet A by a
symbol in the alphabet B, f extends to a shift-commuting map from any subshift of
AZ into BZ by defining (f(x))k = f(xk−n...xk+n) for each k in Z. If two sequences
have sliding-block codes between them which are inverse to one another, then they
are the same for some purposes—the dynamical systems which they generate are
topologically conjugate. We define a similar notion for tilings.

Fix an R > 0 and let P = {P1, P2, ..., Pm} be a set of patches in T so that for
every x ∈ Rd there exists a unique i ∈ 1, 2, ..., m so that ]BR(x)[T ∼ Pi. Then T
can be seen as an infinite concatenation of the Pi’s: it is covered by overlapping
translates of elements of P. Let τ ′ be a finite set of prototiles, and let P ′ be a finite
set of (τ ′, G)-patches. Let C : P → P ′ be a map which associates to each patch in P
a patch in P ′. (It is not necessary to assume that the locations of the patches and
their associated images coincide, but it is not hard to show that this assumption
can be added without loss of generality.) We can extend C to a map of the tiling
T “by concatenation”:

C∞(T ) = {C(Pij) − gj : Pij − gj ⊂ T }.(11)

This set may or may not form a (τ, G)-tiling. If it does, then we will consider C to
be a local code which extends to a coding of one tiling onto another.

Definition 2.12. Let P, τ ′,P ′, C, and C∞ be as above. If C∞(T ) is a (τ ′, G)-tiling
then C is an local code from T to C∞(T ), and we say that the tiling C∞(T ) is locally
derivable from T . If, in addition, there exists an local code taking C∞(T ) onto T ,
then C∞(T ) and T are mutually locally derivable.

Notice that the full tiling space X(τ ′, G) may be empty. In this case, any tiling
using the prototiles in τ ′ must have been formed with a different translation group
G′. Such a tiling is not locally derivable from a (τ, G) tiling for any prototile set τ .

Once a local code has been established between a tiling T and a tiling S, C∞ can
be extended to a mapping from XT to XS . In fact, the tiling dynamical system
(XS , G) is a topological factor of (XT , G):

Proposition 2.1. Let S be locally derivable from T with local code C and let G
be the group of allowable translations of T . Then C∞ uniquely determines a factor
map from XT to XS , and (XS , G) is a topological-dynamical factor of (XT , G).

Proof. Let P, τ ′, and P ′, be defined for C as above. First we will show that C∞
is well-defined and continuous by demonstrating that it is uniformly continuous on
the orbit O(T ) = {T − g : g ∈ G}.

For g ∈ G, C∞(T − g) = C∞(T ) − g:

C∞(T − g) = {C(Pij − gj) : Pij − gj ∈ T − g}
= {C(Pij − hj − g) : Pij − hj − g ∈ T − g where gj = hj + g}

= {C(Pij − hj − g) : Pij − hj ∈ T }
= {C(Pij − hj) − g : Pij − hj ∈ T }
= {C(Pij − hj) : Pij − hj ∈ T }− g

= C∞(T ) − g

= S − g.
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Now fix ε > 0. We must show that there exists a δ > 0 such that for any
T1, T2 ∈ O(T ) with d(T1, T2) < δ, we have that d(C∞(T1), C∞(T2)) < ε. Let D
be the minimum number such that Pi and C(Pi) are contained in a closed ball
of diameter D for all i = 1, ..., m. Let 1/δ = D + 1/ε. Let T1, T2 ∈ O(T ) with
d(T1, T2) < δ. Then there exists g ∈ G with ‖g‖ < δ and

[B1/δ(0)]T1 = [B1/δ(0)]T2 − g.

Every tile in [B1/ε(0)]C∞(Ti) is given by an R-patch in [B1/δ(0)]Ti, since any R-
patch is within D of its image under C. Since [B1/δ(0)]T1 = [B1/δ(0)]T2 − g for
‖g‖ < δ < ε, we obtain the result

[B1/ε(0)]C∞(T1) = [B1/ε(0)]C∞(T2) − g,

and so we conclude that d(C∞(T1), C∞(T2)) < ε. Hence C∞ is uniformly continu-
ous on O(T ). By basic topology, since XT is a compact space there is a unique
continuous extension of C∞ to the whole space XT .

It is clear that C∞ commutes with translation, so it remains to show that C∞ is
onto. Note that any translate of S is the translate of the image under C∞ of T by
the same vector. Suppose we have a limit point S′ = limn→∞ S − gn. Since XT
is a compact space there is a limit point T ′ of the sequence T − gn. Since C∞ is
continuous,

S′ = lim
n→∞

C∞(T − gn) = C∞( lim
n→∞

T − gn),

proving that S′ = C∞T ′. This implies that C∞ is onto and finishes the proof.

Corollary 2.2. If the (τ, G)-tiling T and the (τ ′, G)-tiling S are mutually locally
derivable, then the dynamical systems (XT , G) and (XS , G) are topologically con-
jugate.

Proof. Suppose T and S are mutually locally derivable. By Proposition 2.1 there
are translation-commuting factor maps C∞ : XT →XS and D : XS→XT such that
C∞(T ) = S and D(S) = T . The factor maps are inverses on the orbits of T and
S: for any g ∈ G,

D ◦ C∞(T − g) = D(S − g) = T − g, and C∞ ◦D(S − g) = C∞(T − g) = S − g.

Since the compositions D ◦ C∞ and C∞ ◦D are continuous, they are identity maps
on XT and XS . So C∞ is a translation-commuting homeomorphism from XT to
XS , establishing that (XT , G) and (XS , G) are topologically conjugate.

3. Hierarchical Tiling Dynamical Systems

A very general definition is given by M. Senechal [17]: “A tiling is said to be
hierarchical if its tiles can be merged (composed) to form a tiling on a larger scale
with a finite protoset, and these tiles can then be composed to form a tiling on a
still larger scale with a finite protoset, and so on ad infinitum.” We will consider
two related types of hierarchy which are based on substitution for sequences. A
substitution for a sequence takes each letter in the sequence and replaces it with a
word; a sequence is a limit point of the substitution if it is invariant under these
replacements. If a tiling is invariant under an analogous replacement process, then
it will be viewed as hierarchical. The two specific variations we consider are self-
similar tilings and pseudo-self-similar tilings.
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Self-similarity is a strict geometric condition: each tile in a self-similar tiling T
is replaced by a configuration of tiles which is geometrically similar to itself. When
every tile has been replaced, the resulting tiling is the same as the original. There
is a large body of dynamical information piling up from sources like [6, 14, 20, 21]
on these tilings.

A tiling T will be defined to be pseudo-self-similar if there is an expanding linear
map φ so that when each patch P belonging to a fixed set of patches is expanded
by φ and replaced by a T -patch which fits ‘almost exactly’ onto φ(P ), the resulting
tiling is T . Pseudo-self-similarity is not quite as strict a condition as self-similarity.

3.1. Self-similar tilings. We begin by defining what it will mean to expand a
tiling with a linear map.

Definition 3.1. Let φ be a linear map of Rd and let T be a (τ, G)-tiling. Let
τ ′ = {(φ(supp(t)), l(t)) : t ∈ τ} and let G′ be the translation group given by
{φ(g) : g ∈ G}. Define φ(T ) to be the (τ ′, G′)-tiling given by

φ(T ) =
⋃

T∈T
(φ(supp(T )), l(T )).

Definition 3.2. A tiling T is φ-subdividing if there exists an expansive, linear,
diagonalizable map φ : Rd → Rd such that:

1. For all T ∈ T , φ(T ) is a union of tiles in T , and
2. If T and T ′ have the same tile type, then the union of T -tiles composing φ(T )

and φ(T ′) are translates of one another.
If T is almost periodic, then it is a self-affine tiling. If it is also true that φ is
a similarity of Rd, (i.e. all of its eigenvalues have equal modulus) then the tiling
will be called a self-similar tiling. If T is a self-similar tiling of Rd we define the
expansion factor λ ∈ R to be the real number | detφ|1/d.

While it is true that a φ-subdividing tiling displays a high degree of self-similar
structure, it can fail to be almost periodic, causing the dynamical system associated
to it to have no nontrivial invariant probability measure. There may be interesting
translation-invariant infinite measures, (see [3] for a measure on a non-primitive
substitution sequence space induced by the first-return map on a cylinder), but we
will not discuss that here.

A tiling which is self-similar with map φ given by φ(z) = 3z for z ∈ R2 is shown
in Figure 2. In Figure 3, the substitution φ(T ) on the tile T is given for several of
the prototile types.

For self-similar tilings of R and R2 we can define the expansion constant λ of
the tiling, which represents the action of the similarity φ: the linear map φ is just
multiplication by λ. The expansion constant of a self-similar tiling has important
implications for the dynamics of the tiling system. Thurston and Kenyon showed
[7] that a complex number can be the expansion constant of a self-similar tiling of
the plane if and only if that number is a Perron number.

Self-similar tilings are uniquely ergodic, i.e. there is only one translation-invariant
probability measure. This result is proved by B. Solomyak [20] using ideas which
mimic the proof for substitution dynamical systems. The unique ergodic measure
is based on the frequency of occurrence of patches in the tiling space.

It is known [18] that substitution and self-similar tiling systems have entropy 0
and are not mixing, mimicing the symbolic substitution system case yet again (in



10 NATALIE M. PRIEBE

Figure 2. A self-similar tiling of R2 with polygonal tiles.

Figure 3. The substitution on some of the prototiles used to make
Figure 2.

fact, in this paper J. Shieh shows that uniquely ergodic tiling systems have entropy
0). Using a constructive proof, a condition for the existence of eigenvalues is given
by B. Solomyak in [20]. For self-similar tilings of R and R2, another result of B.
Solomyak [20] specifies when the tiling systems (XT , G) are weakly mixing in terms
of the expansion constant λ. Part of the spectrum of these systems is identified.

An important property for self-similar tilings is recognizability—the ability to
compose a tiling T into φT -tiles in a unique fashion. This is an extension of the
same idea for symbolic substitution systems.

Definition 3.3. A self-similar tiling T is recognizable if there exists a real number
ρ such that

[Bρ(y)]T = [Bρ(x)]T + (y − x) implies [y]φT = [x]φT + (y − x).(12)

The number ρ is called the recognizability radius of T .

B. Solomyak proved [19] that nonperiodic self-similar tilings are recognizable.
Recognizability implies that we can construct φT from T locally; of course the
reverse is also true, so the two tilings are mutually locally derivable and their
dynamical systems are topologically conjugate.
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3.2. Pseudo-self-similar tilings. The definition proposed here was suggested by
E. A. Robinson, Jr.

Definition 3.4. Let T be a tiling. We call T pseudo-self-affine if there exists an
expansive linear map φ of Rd so that the tiling φ(T ) =

⋃
T∈T (φ(supp(T )), l(T )) is

mutually locally derivable from T . If the map φ is a similarity then we will say
that T is a pseudo-self-similar tiling.

The Penrose tiling with darts and kites (introduced to the public in [4] and
analyzed dynamically in [14]) is pseudo-self-similar. Another example of a pseudo-
self-similar tiling is the one discovered by Godrèche and Lançon [5]. Both of these
tilings are mutually locally derivable from self-similar tilings.

A pseudo-self-similar tiling T with expansion map φ(z) = 3z is given in Section
4 as Figure 8. The local code from T to φ(T ) is not at all obvious. It is because T
is a derived Voronöı tiling of a self-similar tiling that we know that it is pseudo-self-
similar. Using the same expansion map as that for the self-similar tiling along with
the knowledge that the origin is in the center of the portion of the tiling shown, we
can figure out the local code between T and φ(T ).

Self-similar tilings are pseudo-self-similar by recognizablilty. That is, given a
large enough patch in the tiling T around a point x ∈ Rd (the recognizability radius
ρ determines this size) we can determine which φ(T )-tile contains x. Conversely,
the property (1) in Definition 3.2 establishes a local code from φ(T ) back to T .
(Replace a φ(T )-tile by the appropriate configuration of T -tiles.) This establishes
the mutual local derivability of T and φ(T ), showing that T is pseudo-self-similar
if it is self-similar.

E. A. Robinson, Jr. has conjectured that all tilings satisfying the pseudo-self-
similar property are mutually locally derivable from self-similar tilings. In the end
of this paper we discuss a possibility for solving this problem which involves the
use of derived Voronöı tilings.

4. First Returns in Tilings

In the introduction, a result of F. Durand [2] characterizing limit sequences of
symbolic substitutions was discussed. In the characterization, sequences are recoded
in terms of “return words” of a fixed block u—words beginning and ending in u
and containing no other copy of u. There are a variety of ways to interpret the
term “first return” when continuous, multidimensional time is the parameter of the
dynamical system. Given a tiling T and a fixed, finite, central patch P in T , we
will derive a tiling (the DV tiling) which carries all of the information about where
the other copies of P are. If we change the central patch we will see a potentially
different DV tiling; how does it compare?

4.1. Derived Voronöı tilings. Fixing a nonempty patch P in T , we will define
the locator set LP (T ) to be

LP (T ) = {q ∈ Rd : there exists P ′ ⊂ T with P = P ′ − q}.(13)

The elements of this set pinpoint the locations of all equivalent copies of P in the
tiling T . When the tiling T is understood we will suppress it and write LP . A
tiling from unit square tiles with two labels on the tiles (black and white) is seen in
Figure 1 of Section 2. This tiling is a self-similar tiling with substitution shown in
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Figure 4. The substitution on the tiling from Figure 1.

Figure 4. We will illustrate the construction of a Derived Voronöı tiling using this
tiling as an example.

The locator set derived from the two-by-two patch of tiles shown in Figure 5 can
be seen in Figure 6.

Figure 5. A central patch of tiles for which we make a Derived
Voronöı tiling.

Figure 6. A locator set.

Our tilings are assumed to have a finite number of local patterns and to be
almost periodic, therefore LP forms a Delaunay set [17]: a relatively dense set
whose elements are uniformly bounded away from each other. This is exactly the
type of set for which it is possible to form a (normal) Voronöı tessellation [17], a
tessellation which clumps together points which are “closest” to an element of the
set.

Definition 4.1. The Voronöı cell for q, which forms the support of the return tile
tq, is given by

supp(tq) = {x ∈ Rd| d(x, q) ≤ d(x, q′) for all q′ ∈ LP }.(14)
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q

r

Figure 7. The Voronöı cell for q is independent of points as dis-
tant as r.

Since there is the possibility that geometrically congruent return tiles arise from
non-equivalent T -patches, it will be necessary to label them by noting from which
T -patches they originated. To define the label set HP , we must decide on a radius
for the HP -patches which provides the required information. Since the copies of
P in T occur with almost periodicity radius R(P ) (recall Definition 2.7), we can
ensure that all locator points neighboring q in LP appear in a ball of radius 2R(P )
(this is Lemma 4.3). So to figure out the shape of the return tile tq , we need only
search in a ball of radius 2R(P ) in the tiling to find all of the neighboring copies
of P (see Figure 7). In certain situations it may be useful to consider labellings
arising from HP -patches which are given a larger radius than 2R(P ). Such a choice
of radius may produce a larger label set than the one provided by the (minimal)
radius 2R(P ).

Definition 4.2. Fix an R ≥ 2R(P ). The set of HP (T , R)-patches is defined to be

HP (T , R) = {[BR(q)]T : q ∈ LP}.(15)

Considering both T and R fixed, we refer only to the set HP . Since T has a finite
number of local patterns, HP has a finite number of patches up to (translation)
equivalence. We will use the translation equivalence (∼) classes of elements of HP

to provide a finite number of labels on our DV tiles.

Definition 4.3. Let T , P, and R be fixed as above. Let H1, H2, ...HN(P) denote
representatives of the equivalence classes of patches in HP . For any q ∈ LP , the
label of the return tile tq is given by

l(tq) = i, where [BR(q)]T ∼ Hi.(16)

Definition 4.4. Let T , P, and R be fixed as above, and let q ∈ LP . The return
tile tq is defined to be tq = (supp(tq), l(tq)). A DV tiling for the patch P is given
by

TP (R) =
⋃

q∈LP

tq.(17)
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If R(P ) is the almost periodicity radius (Definition 2.7), denote the DV tiling
TP (2R(P )) as TP .

The Voronöı tiling for the locator set shown in Figure 6 is shown in Figure 8.
When labelled by HP -patches, it is the DV tiling TP . It should be noted that this is
an interesting example because it is a DV tiling of a self-similar tiling, and therefore
is pseudo-self-similar.

Figure 8. Part of a Voronöı tiling.

We refer to the DV tiling TP because it has the minimal possible label set. As we
will see below, all DV tilings from a tiling T are mutually locally derivable, so most
salient features of the tilings are preserved under relabelling by differently-sized
HP -patches.

4.2. Properties of DV tilings. By construction, a DV tiling is made from a finite
set of prototiles. The tiles of TP (R) can be constructed locally from the HP -patches
in T ; conversely, patches in T are uniquely determined by tiles in TP (Figure 9).
There is a one-to-one map from LP to HP given by q /→ HP (q) = [BR(q)]T . This
map is easily converted into a local code from TP to T as described in Section 2.3.
It is clear that there is a local code from T to TP given by the reverse of this map.
This implies that T and TP are mutually locally derivable. Using Corollary 2.2, we
conclude that
Proposition 4.1. The dynamical systems (XT , G) and (XTP , G) are topologically
conjugate.

Note that the relationship between patches in T and patches in TP require that
TP inherit the properties of almost periodicity and finite number of local patterns.
It follows that DV tilings have all of the properties we require for tilings. DV tilings
lend themselves to computations as the tiles and their adjacents have the following
known properties (see [17]).
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Copies of P

 q

PH (q)

tq

Figure 9. An HP -patch and the associated return tile tq.

Proposition 4.2. Let L be a Delaunay set in Rd, and let T (L) be the Voronöı
tiling of L. Then

1. The tiles of T (L) are convex polytopes which intersect along whole faces; no
two tiles have a common interior point;

2. The points of L whose Voronöı tiles share a vertex v lie on a sphere, centered
at v, that has no points of L in its interior.

The field of computational geometry has provided a variety of algorithms for
constructing the Voronöı tessellations of point sets in several dimensions. A conve-
nient algorithm for local construction is to construct the perpendicular bisectors of
the line segments qq′, for q, q′ ∈ LP . The smallest open convex region containing q
and bounded by the bisectors is the interior of the tile tq.

A bit of experimentation provides convincing evidence that the appearance of a
copy of P in any ball of radius R implies that the return tiles for P have diameter
no bigger than 2R. We record this observation in the following Lemma.

Lemma 4.3. Let T be a tiling of Rd which is almost periodic and has a finite
number of local patterns, and let P be a T -patch. If there is a translate of P in T
in any ball of radius R, then for any q ∈ LP and return tile tq ∈ TP , we have that

supp(tq) ⊂ BR(q).

Thus all points which are neighbors of q (in that their return tiles share edges with
tq) are contained in B2R(q).

Proof. Let w ∈ tq so that d(w, q) ≤ d(w, q′) for all q′ ∈ LP . If d(w, q) > R, then
d(w, q′) > R, so there are no copies of P in BR(w). This contradiction shows that
for all w ∈ supp(tq), d(w, q) ≤ R.
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4.3. The derived Voronöı family F(T ). Given a fixed tiling T , we consider the
family of DV tilings of central patches of the form Pr = [Br(0)]T , r ≥ 0, where
Br(0) is the closed ball of radius r about 0. We truncate the notation so that the
derived Voronöı tiling TPr is simply Tr, HPr is simply Hr, and so on. Let

F(T ) = {Tr such that r ∈ [0,∞)}(18)

For a nonperiodic tiling, there will be an infinite number of tilings in the family
F(T ); this is a consequence of the following Lemma. Let R(Tr) = sup{R ∈ R :
BR(q) ⊂ supp(tq) for all q ∈ Lr}, the maximum size of a ball contained in any
return tile in Tr. (Note that BR(Tr)(q) ⊂ supp(tq), since supp(tq) is a closed set.)

Lemma 4.4. Let T be a nonperiodic, almost periodic tiling of Rd. Then

R(Tr)→∞ as r→∞.

Proof. In search of a contradiction, suppose that there is an R ∈ R such that for
all r ∈ R there is a q ∈ Lr with BR(q) (⊂ supp(tq). Fixing any such r and q, we see
that there must exist a q′ ∈ Lr with ‖q − q′‖ ≤ 2R.

By local finiteness of the tiling T0, there are only a finite number of distances
q − q′ with ‖q − q′‖ ≤ 2R in L0. For every s ≥ 0, the locator set Ls is contained
in L0. Thus there are only a finite number of distances q − q′ of modulus not
exceeding 2R with q, q′ in any locator set Ls. This implies that there is an z ∈ Rd

with ‖z‖ ≤ 2R such that there are q, q′ ∈ Lr with z = q − q′ for infinitely many r.
We will show that for all T ∈ T , T + z ∈ T , establishing that T + z = T

and contradicting the nonperiodicity of T . Choose r ∈ R such that supp(T ) and
supp(T + z) are contained in Br(0). We have that T ∈ Pr and must show that
T + z ∈ Pr. Choose q and q′ ∈ Lr such that q − q′ = z. Then Pr − q ⊂ T and
Pr − q′ ⊂ T ; in particular T − q ∈ T and T − q′ ∈ T . But T − q′ = T − (q − z),
so (T + z) − q ∈ Pr − q by choice of r. Therefore T + z ∈ Pr, and hence in T , as
desired.

So we see that in general F(T ) is likely to have an infinite number of similarity
classes. If it does not, we will see that this is an indication of hierarchy in the
original tiling T .

5. Hierarchy and Derived Voronöı Tilings

In this section we prove the main results about DV tilings and their connection
to hierarchical tilings. Inspired by Durand’s work on substitution sequences [2],
we will show that the number of similarity isomorphism classes of DV tilings in
F(T ) is linked to the presence or absence of hierarchy in T . We begin by making
a rigorous definition of what it means for a set of tilings to have a finite number of
similarity classes.

Definition 5.1. Let G be a set of tilings of Rd, and suppose φ : Rd→Rd is an
expanding similarity. We say that G is φ-finite if there exist tilings S1, ...,Sm ∈ G
such that for any tiling T ∈ G, there exist i ∈ {1, ..., m} and k ∈ {0, 1, 2, ...} with
T = φk(Si).

Theorem 5.1. Let T be a nonperiodic self-similar tiling of Rd with expansion map
φ. Then the family F(T ) is φ-finite.



HIERARCHY AND DV TILINGS 17

The proof is based on the “core argument”: the locations of a large initial T -
patch in T are given by the locations of φkT -patches (“cores”) with many fewer
(φkT -) tiles in φkT . This proof has little in common with the proof used by Durand
for limit points of primitive substitutions. Although some steps of the proof hold
for self-affine tilings, the proof style holds little promise for generalization beyond
the self-similar case. Problems arise in the self-affine case because an arbitrary
expanding linear map acting on an arbitrary Delaunay set may cause complicated
differences in the Voronöı tilings produced from the original Delaunay set and the
expanded Delaunay set. When the linear map is a similarity, the Voronöı tessella-
tions are simply rescalings of one another. It may be that alterations to either the
Voronöı construction (such as the “Laguerre tilings” cited in [16]) or to the shapes
of the initial patches will result in some other type of derived tiling which would
better suit the self-affine case.

An analogue of the argument proving Theorem 5.1 can be used to prove the
analogous part of Durand’s theorem in the case of substitutions of constant length.
In the case of substitutions of non-constant length, it may be possible to use this
argument in conjunction with Perron-Frobenius theory to prove the “necessary”
part of Durand’s result.

In an attempt to classify self-similar tilings and those locally derived from them,
the following theorem was obtained.

Theorem 5.2. Let T be a nonperiodic, almost periodic tiling of Rd such that there
exists a similarity φ under which F(T ) is φ-finite. Then T is pseudo-self-similar
and there exists an integer I such that φI is the expansion map of T .

In Section 5.2, we prove Theorem 5.2 in detail. Notice that this theorem is very
close to being a converse to Theorem 5.1, except that the relationship between
pseudo-self-similar tilings and self-similar tilings is not understood. It is not clear
whether a core argument and estimates can be applied to pseudo-self-similar tilings
which prove Theorem 5.1 for self-similar tilings, and attempts to make such ad-
justments have broken down in the last step of the proof. Still, we conjecture the
following is true: A tiling T is a pseudo-self-similar tiling if and only if it has a
finite number of DV tilings up to similarity. An alternative suggestion would be
to prove the conjecture: Any pseudo-self-similar tiling is mutually locally derivable
from a self-similar tiling.

5.1. The proof of Theorem 5.1. The proof of this theorem proceeds in the
following manner. First it is shown that the locator sets of initial patches for any
self-similar tiling fall into a finite number of similarity classes. This implies that
there are a finite number of (unlabelled) Voronöı tilings from these locator sets up
to similarity. Finally, it is shown that there are only a finite number of ways the
Hr-patches can produce labellings for DV tilings, and the result follows.

It will be necessary to have the following technical result showing that given a
large enough patch of tiles in a self-similar tiling T , one can uniquely compose a
φkT -tile.

Lemma 5.3. Let φ be the expansion map for the self-similar tiling T , let λ be the
expansion factor | detφ|1/d of T , let l be the minimal integer for which λl(λ−1) > 1,
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(E)

(T)
 k

k-1

k-2
(F)

Figure 10. A patch of φk−2T -tiles reveals how it composes a
unique φkT -tile.

and let k ≥ 0. Let ρ be the recognizability radius of T (recall Definition 3.3). Then

[Bλk+lρ(y)]T = [Bλk+lρ(x)]T + (y − x) implies [y]φ
kT = [x]φ

kT + (y − x).
(19)

Proof. By recognizability of φkT we know that

[Bλk−1ρ(y)]φ
k−1T = [Bλk−1ρ(x)]φ

k−1T + (y − x)

implies [y]φ
kT = [x]φ

kT + (y − x). For any z ∈ Bλk−1ρ(y) we can uniquely write
[z]φ

k−1T as a composition of φk−2T -tiles by looking in [Bλk−2ρ(z)]φ
k−2T .

Thus we can express [Bλkρ(y)]φ
kT as a unique composition of φk−2T -tiles by

looking at [Bλk−1ρ+λk−2ρ(y)]φ
k−2T . (See Figure 5.1.) Continuing in this fashion, we

determine the size of the φk−3T patch uniquely composing [Bλk−1ρ+λk−2ρ(y)]φ
k−2T ,

and so on until we finally conclude that T -patches of radius (Σk−1
j=0λ

j)ρ uniquely
determine φkT -tiles. The first few stages of the composition process are depicted
in Figure 5.1. Formally, if

[B(Σk−1
j=0 λj)ρ(y)]T = [B(Σk−1

j=0 λj)ρ(x)]T + (y − x) then [y]φ
kT = [x]φ

kT + (y − x).

To obtain the final form of the result note that

Σk−1
j=0λ

j =
λk − 1
λ− 1

<
λk

λ− 1
=

λkλl

(λ − 1)λl
.

By choice of l the denominator is greater than 1, and so we can conclude that

Σk−1
j=0λ

j < λk+l.
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The following Proposition shows that a self-similar tiling has a finite number of
locator sets up to similarity using the core argument.

Proposition 5.4. Let T be a self-similar tiling of Rd with expansion map φ and
expansion factor λ = | detφ|1/d. There exist T -patches F1, F2, ..., FN and transla-
tions g1, g2, ..., gN in Rd such that for any r there exist i1, i2, ..., im ∈ {1, 2, ..., N}
and k ∈ Z such that Lr = φk((LFi1

+ gi1) ∪ (LFi2
+ gi2) ∪ ... ∪ (LFim

+ gim)).

Proof. We begin the proof by defining the T -patch E which will be used to form
the cores of initial patches. The core will have a finite list of extensions F1, ..., FN

which can be used to pinpoint the locations of copies of the initial patches. The core
E is defined to be E = [0]T , the elementary patch consisting of all tiles in T whose
supports contain 0. We extend the patch E as follows. Let l be as in Lemma 5.3
and let LE be the locator set for E in T ; that is, LE = {q ∈ Rd : there exists E′ ⊂
T with E′ − q = E}. Consider the set of T -patches given by {[Bρλl+1 (q)]T : q ∈
LE}. By local finiteness, this set has a finite number of equivalence classes up to
translation. Let F1, ..., FN be representatives of these equivalence classes, and let
g1, ..., gN be the elements of LE such that Fi = [Bρλl+1(gi)]T for i = 1, ..., N . We
have defined LFi = {q ∈ Rd : there exists F ⊂ T with F − q = Fi}.

We claim that

LE = (LF1 + g1) ∪ ... ∪ (LFN + gN ).(20)

To show LE ⊂ (LF1 + g1) ∪ ... ∪ (LFN + gN), let q ∈ LE. Then [Bρλl+1(q)]T =
Fi +q−gi for some i ∈ 1, ..., N , since q−gi is the translation taking the appropriate
Fi onto [Bρλl+1(q)]T . This implies that q − gi ∈ LFi , so q ∈ LFi + gi.

Now let q ∈ LFi + gi for some i ∈ {1, ..., N}, that is, q − gi ∈ LFi . By definition
of LFi , there exists F ′ ⊂ T with F ′ − (q − gi) = Fi. We know that E ⊂ Fi − gi by
the definition of gi (since gi ∈ LE), so E ⊂ F ′ − q. This implies that E + q ⊂ T
and hence that q ∈ LE , finishing the proof of Equation 20. We have established
that E appears at a certain spot in T if and only if one of its extensions appears
there.

We now show that any initial patch Pr has locator set which depends only on
the locator sets of certain of the extensions. Fix r and let k be the integer with
ρλk+l < r ≤ ρλk+l+1. If r ≤ ρλl, then Pr ⊂ Fi for some i, and the following proof
is valid for these r when k = 0.

By Lemma 5.3 on the recognizability of φkT (given sufficiently large T -patches),
since r > ρλk+l, for any q ∈ Lr, since Pr = [Br(0)]T = [Br(q)]T − q, we have that
[0]φ

kT = [q]φ
kT − q. (If k is fixed as 0, we have a priori that [0]T = [q]T − q.)

But [0]φ
kT = φkE, which shows that q ∈ φk(LE). So q ∈ φk(LFi + gi) for some

i ∈ {1, ..., N}. Choose i1, ..., im to be the set of all integers in 1, ..., N so that
Lr ∩ φk(LFij

+ gij ) (= ∅.
Thus, Lr ⊂ φk((LFi1

+ gi1) ∪ (LFi2
+ gi2) ∪ ... ∪ (LFim

+ gim)). To obtain the
final result, we will show that for all j = {1, ..., m},φk(LFij

+ gij) ⊂ Lr.
Let q′ be any element of φk(LFij

+ gij), and let q ∈ Lr ∩ φk(LFij
+ gij ). Since

Fij was the outer patch of a ball of radius ρλl+1 , we have that any copy of φk(Fij)
contains the outer T -patch of a ball of radius ρλk+l+1 . There is a copy of Pr at q,
and because of the size of Fij , this copy of Pr is inside the copy of φk(Fij). There is
a copy of φkFij at q′, and by the φ-subdividing property of T this means that the
T -patch appearing there is the same as the T - patch appearing at q, implying that
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there is a copy of Pr at q′. This implies that there is a translate of Pr centered at
q′ contained in [φk(F ′)]T − q′, making q′ ∈ Lr.

It should be noted that the proof of the previous proposition holds for any
self-affine tiling, given an appropriate version of Lemma 5.3. However, the next
corollary is not true unless φ is a similarity—Voronöı constructions are sensitive
to this. A Delaunay set and its image under a similarity produce Voronöı tilings
which are the same modulo this similarity.

Corollary 5.5. Let T be a self-similar tiling of Rd with expansion map φ and
expansion factor λ = | detφ|1/d. Let F1, ..., FN and g1, ..., gN be as in Proposition
5.4. For any r ≥ 0 there exist i1, ..., im ∈ {1, ..., N} so that the Voronöı tiling
given by the locator set Lr is similar to the Voronöı tiling of the Delaunay set
(LFi1

+ gi1) ∪ (LFi2
+ gi2) ∪ ... ∪ (LFim

+ gim).

Proof. Fix an r and set Lr = φk((LFi1
+gi1)∪ (LFi2

+gi2)∪ ...∪ (LFim
+gim)), the

result of Proposition 5.4. Since φk is a similarity, the relative distances between
elements of (LFi1

+gi1)∪(LFi2
+gi2)∪ ...∪(LFim

+gim) are simply multiplied by λk,
so the Voronöı tiling of Lr is its image under φk. That is, the Voronöı cell supp(tq)
of a locator point q ∈ Lr is given by φk(supp(tφ−k(q))), where supp(tφ−k(q)) is the
Voronöı cell of φ−k(q) in the Voronöı tiling of LE .

We have shown that there are only a finite number of similarity equivalence
classes for the DV tilings of a self-similar tiling. It is not difficult to establish that
there are only a finite number of ways that these tilings could have been labelled
by Hr-patches; we do this next.

Claim 5.1. For any positive numbers r ≤ s such that for the set of integers i1, ..., im,

Lr = φk((LFi1
+ gi1) ∪ (LFi2

+ gi2) ∪ ... ∪ (LFim
+ gim))

and

Ls = φj((LFi1
+ gi1) ∪ (LFi2

+ gi2) ∪ ... ∪ (LFim
+ gim)),

the labelling of Tr factors onto that of Ts.

Proof. The previous Corollary established that the similarity φj−k takes the sup-
ports of tiles of Tr onto those of Ts; we must establish that the labels of Tr-tiles
factor onto those of Ts. That is, we will show that for q, q′ in Lr with l(q) = l(q′)
in Tr, l(φj−k(q)) = l(φj−k(q′)) in Ts. (Note that since r ≤ s, we have k ≤ j.)

Let Rr be the almost periodicity radius of Pr. Since Ls = φj−k(Lr), we have
that the almost periodicity radius of Ps must be given by λj−kRr. Recall that the
almost periodicity radius is used to determine the size of the Hr-patches and hence
the labelling of Tr. That is, for any q ∈ Lr, l(q) = i if and only if [B2Rr (q)]T ∼ Hi,
where Hi is a representative of a translation equivalence class in Hr. Recall the
notation Hr(q) = [B2Rr (q)]T for the Hr-patch of q.

Similarly, the labelling for Ts is given by (translation) equivalence classes of
patches in Hs = {[B2λj−kRr

(q)]T : q ∈ Ls}. We have that for q, q′ ∈ Ls, l(q) = l(q′)
if and only if [B2λj−kRr

(q)]T ∼ [B2λj−kRr
(q)]T (that is, Hs(q) ∼ Hs(q′)). We are

ready to show that the labels of points in Lr factor onto the labels of points in Ls.
Let q, q′ ∈ Lr such that l(q) = l(q′). Then Hr(q) ∼ Hr(q′), and by the φ-

subdividing property of T , ]φj−k(supp(Hr(q)))[T ∼]φj−k(supp(Hr(q′)))[T . These
are T -patches which contain balls of radius 2λj−kRr, so they contain Hs(φj−k(q))
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and Hs(φj−k(q′)), respectively. It follows that Hs(φj−k(q)) ∼ Hs(φj−k(q′)), and
so l(φj−k(q)) = l(φj−k(q′)), as desired.

For any set {i1, ..., im} ⊂ {1, ..., N} for which there is an r with Lr = φk((LFi1
+

gi1) ∪ (LFi2
+ gi2) ∪ ... ∪ (LFim

+ gim)), we can fix a minimal r. The labelling of
the tiling Tr, which is on a finite alphabet depending on both r and T , factors onto
the labelling of any other Ts for which Ls is made from the same combination of
Fij ’s. Thus, there is a finite list of tilings which Tr can factor onto in this way.
Since there are only a finite number of combinations {i1, ..., im} of distinct integers
in {1, ..., N}, there are only a finite number of DV tilings Tr with minimal r. This
establishes that F(T ) is φ-finite, as desired.

5.2. The proof of Theorem 5.2. Next we will prove that if a nonperiodic, almost
periodic tiling of Rd has a finite number of similarity classes of DV tilings, then
it is pseudo-self-similar. The proof is in two main steps. First, we will show that
there exists an r ≥ 0 and an integer I for which φI(Tr) is mutually locally derived
from Tr, showing that Tr is pseudo-self-similar with expansion map φI . Then we
will show that since Tr is pseudo-self-similar with expansion map φI, T is also
pseudo-self-similar with the same expansion map.

Suppose that the family F is φ-finite. Since there are an infinite number of DV
tilings in F , it must be that there are infinitely many r for which Tr = φk(Si) for
some fixed i. Choose real numbers r and u so that Tr = φk(Si) and Tu = φj(Si)
and u much larger than r. Then Tu = φj−k(Tr). Lemma 4.4 implies that u can be
chosen so that j − k is arbitrarily large, since T is not a periodic tiling.

Set I = j − k and let λ = | detφ|1/d (so λ is the expansion factor of φ). We can
assume λI ≥ 2, since we can take a larger u to make it so if it is not already true.
We will use Tu to establish a local code between Tr and φI(Tr).

For any q ∈ Lr and corresponding tile tq ∈ Tr, we have that φI(tq) = tg, a
tile in Tu. (In many cases it must be that g = φI(q), but it is not possible to
assume that.) Let Rr be the almost periodicity radius of Pr. Then we see that
Ru = λIRr, since we can determine the almost-periodicity radius of a patch by
looking at the maximum diameter of a return tile (cf. Lemma 4.3). So the Hu-
patch Hu(g) = [B2Ru(g)]T is given by [B2λIRr

(g)]T . Define a local code from Tu

to Tr by:

C(tg) = C(φI(tq)) =
⋃

q′∈Lr∩φI (BλI Rr
(g))

tq′ .(21)

Since the tile φI(tq) is very large relative to Tr-tiles, the bIRr-patch code is given
by a single tile in Tu factoring onto a patch of Tr-tiles.

To show that C forms a local code from Tu = φI(Tr) to Tr, we must show that
for any g, g′ ∈ Lu with l(g) = l(g′), the patches C(tg) and C(tg′) are equivalent.
This is from the choice of I: since λI ≥ 2 we have that λIRr +2Rr ≤ 2λIRr, so the
Hr-patch of any q′ ∈ Lr ∩ φI(BλIRr

(g)) will be completely contained in Hu(g). If
l(g) = l(g′), then the Tr-patches given by C(tg) and C(tg′) are equivalent since the
Hu-patches they are defined by are equivalent. It is clear that C can be extended
to form a local code on Tu = φI(Tr).

Conversely, there is a local code from Tr onto Tu. Let {P1, ...Pm} be a represen-
tative set of Tr-patches so that any [B2λIRr

(g)]Tr for g ∈ Lu is equivalent to a patch
in {P1, ...Pm}. Patches of this form cover Tr; for each i we have a gi ∈ Lu such
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that Pi = [B2λIRr
(gi)]Tr . Define a 2λIRr-patch code D from Tr to Tu by letting

D(Pi) = tgi .(22)

The simplest way to extend D to a map on all Tr-patches of size 2λIRr is to map
any patch of size 2λIRr which is not equivalent to any Pi onto the empty patch.
We do not need contributions from these patches since Rd is already covered by the
tiles in Tu, and D maps onto all of those. Once again we see that if two Tr-patches
are equivalent they map onto equivalent Tu-tiles by passing via Hr-patches to Hu-
patches. Any Pi is sufficiently large so that the T -patch generated by the union of
the Hr-patches contained in it contains the Hu-patch of gi, determining the tile tgi

uniquely. Any translate of Pi does the same for its corresponding locator point.
This establishes a local code from Tr onto Tu, and so we have shown that Tr and

Tu are mutually locally derivable. Since Tu = φI(Tr), we have proved that Tr is
pseudo-self-similar with expansion map φI .

It remains to prove that T is pseudo-self-similar with expansion map φI . Since
T and Tr are mutually locally derivable, it is clear that φI(T ) and φI(Tr) also are
mutually locally derivable. But φI(Tr) is mutually derived from Tr, which makes
Tr and φI(T ) mutually locally derivable. Since Tr and T are mutually locally
derivable, it follows that T and φI(T ) are mutually locally derivable. This finishes
the proof of Theorem 5.2.

5.3. For further study. The following paragraphs outline some questions and
conjectures brought about by the method of analysis used in this work. Much
information is yet to be acquired about the interaction between the various forms
of hierarchy for tilings and the various possibilities for generalizations of derived
Voronöı tilings.

We could use DV tilings to try to solve the question from Section 3.2: is every
pseudo-self-similar tiling T mutually locally derivable from a self-similar tiling?
Several authors (see e.g. [1, 5]) have proved results involving the refinement of
pseudo-self-similar tilings into tilings made from “fractiles”, using self-similar sets
and fractal theory to prove the conjecture for classes of examples. Although they do
not use DV tilings in their proofs, the use of DV tilings might simplify the problem
in general because of the geometric properties of such tilings.

We conjecture that an extension of our results to tilings such as the pinwheel
tiling—tilings which have an infinite number of tile orientations but otherwise sat-
isfy the self-similarity condition—can be seen to have a finite number of DV tilings
up to similarity. (The DV tiles would also come in an infinite number of orien-
tations.) Instead of locating only translates of Pr to form Lr, we could locate all
images of Pr under allowable isometry. Since every large ball in such a tiling is
contained in a rotation of one of finitely many large substituted tiles, there would
be a finite number of DV tiles up to allowable isometry. The missing elements
needed to mimic the proof of Theorem 5.1 are the technical estimates on the sizes
of DV tiles. Converse theorems could be developed using DV tilings made from a
finite number of tile shapes in an infinite number of orientations.

How can the results be extended to include self-affine tilings—tilings which are
expanded like self-similar tilings but with an arbitrary expanding linear map φ
instead of a similarity? Could alterations in the shapes of initial patches, such
as considering [φI(B1(0))]T , letting I vary, instead of [Br(0)]T , letting r vary, be
useful? It is possible to prove reasonably accurate estimates on the size and shape
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of return tiles for such an initial patch in a self-affine tiling. Might it also be useful
to assign weights to the locator points and then construct the Laguerre tiling—a
variant of the Voronöı tiling which takes the weights into account? These tilings
are known to be edge-to-edge and made of convex polygonal tiles, so they would
lend themselves to computation. Perhaps these techniques would help circumvent
the important question which prevented the generalization of our results to the
self-affine case: in general, what sort of interaction is there between Voronöı tilings
and arbitrary expanding linear maps?
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