DETECTING COMBINATORIAL HIERARCHY IN TILINGS
USING DERIVED VORONOI TESSELLATIONS

NATALIE PRIEBE FRANK

ABSTRACT. Tilings of R? can display hierarchy similar to that seen in the
limit sequences of substitutions. Self-similarity for tilings has been used as the
standard generalization, but this viewpoint is limited because such tilings are
analogous to limit points of constant-length substitutions. To generalize limit
points of non-constant-length substitutions, we define hierarchy for infinite,
labelled graphs, then extend this definition to tilings via their dual graphs.
Examples of combinatorially substitutive tilings that are not self-similar are
given. We then find a sufficient condition for detecting combinatorial hier-
archy that is motivated by the characterization by F. Durand of substitutive
sequences. That characterization relies upon the construction of the “derived
sequence”—a recoding in terms of reappearances of an initial block. Following
this, we define the “derived Voronoi tiling”—a retiling in terms of reappear-
ances of an initial patch of tiles. Using derived Voronoi tilings, we obtain a
sufficient condition for a tiling to be combinatorially substitutive.

1. INTRODUCTION

In one dimension, it can be a simple matter to make a substitution on some finite
alphabet and obtain an infinite sequence by repeated iterations of the substitution.
A famous example is the Fibonacci substitution 0 — 01,1 — 0, which after a few
iterations yields

0— 01— 010 — 01001 — 01001010 — 0100101001001 - - - .

Once a substitutive sequence is created, it can be analyzed using ergodic-theoretic
and spectral methods [10].

In higher dimensions, it is unclear how to proceed in the creation of such a hier-
archical structure. We are motivated by the premise that tilings of R? using a finite
“prototile set”are a viable generalization of sequences on a finite alphabet. Unlike
the situation for sequences, arbitrary concatenation of prototiles may not result in
a tiling at all, so whether or not a given prototile set can actually form a tiling is
an important question [16, 23]. Self-similarity for tilings, discussed from differing
viewpoints in e.g. [13, 14, 20], has been seen as a generalization of substitutive se-
quences. But we know that this notion really only corresponds to constant-length
substitution, where the replacements of the letters all have the same length.

In the first part of this paper, we create a less geometrically rigid generalization
of substitution for sequences. To begin this task, we define what it means to be a
substitution on a labelled, plane graph, and what it means for that graph to be a
fixed point of the substitution. (The reader is referred to [6] for a different viewpoint
on graph substitution). Since every normal tiling of R? has an associated labelled,
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plane “dual graph”, we can define a combinatorially substitutive tiling (CST) as
being one with a substitutive dual graph. Every self-similar tiling is a CST, but not
every CST is self-similar; we present three examples of the latter. Unfortunately,
few such examples are known.

The work of F. Durand [1] characterizing primitive substitutive sequences moti-
vates the second part of this paper. Given a minimal sequence X and a finite block
u from X, the “derived sequence” D, (X) is defined to be a recoding of X in terms
of the occurrences of u in X. The alphabet of D, (X) corresponds to the “return
words” for u in X: the words beginning and ending in « and containing no other
copy of u. Thus the derived sequence contains all information about the layout of
copies of u inside X, and what goes between these copies. He proves the following
characterization.

Theorem (Durand). X is a primitive substitutive sequence if and only if the num-
ber of derived sequences D, (X) is finite, as u ranges throughout all possible finite
initial words of X.

In order to generalize this result to the tilings case we define “derived Voronoi
(DV) tilings”. Given a tiling 7 and a patch P C T, we form a new tiling 7p using
a Voronol construction on the set of occurrences of P in 7. The resulting DV
tiling contains information about the layout of translates of P in 7 and provides a
notion of which translates of P are “neighbors” of one another. (Derived Voronoi
tilings are developed in [7] and used to characterize pseudo-self-similar tilings in
[8, 9]; a variant of the construction was independently discovered and used to study
aperiodic Z%actions on Cantor systems in [3].) We define F(T) = {7, : » > 0},
where P, is the patch of tiles in 7 determined by the ball of radius r around the
origin. We prove the following sufficient condition for a tiling to be a CST.

Theorem. Let T be a nonperiodic, almost periodic tiling of R? for which F(T) is
finite up to combinatorial isomorphism. Then T is combinatorially substitutive.

A close inspection of the proof indicates that the DV tiling is a useful tool
for detecting hierarchy on a more practical level. Given a tiling 7, we need not
necessarily construct the entire DV family F (7). Instead, we need only establish
that there exist real numbers r and u, with r sufficiently smaller than u, such that
the graphs of 7, and 7, are isomorphic. Following the second part of the proof, we
can establish that 7 is combinatorially substitutive.

The results presented here are based on the author’s Ph.D. dissertation [7] written at
the University of North Carolina at Chapel Hill under the direction of Karl E. Petersen.
Thanks go to him and also Michael U. Kart for many helpful discussions.

2. DEFINITIONS

2.1. Tilings. We begin with the definitions of prototiles, tiles, and tilings that will
be in use throughout this work. Given a set A C R2 homeomorphic to the closed
unit disk {z € R? : ||z]| < 1} and an integer | € {1,2,..., L}, define a prototile t
as the pair (A,l). The support of t is supp(t) = A and the label (or tile type) of
t is I(t) = I. We label the prototiles so that we may distinguish prototiles having
congruent supports, if that is desirable. Given a prototile t and an 2 € R?, a tile T
is a pair (supp(¢t) — z,[(t)), having the obvious support and label. A prototile set is
a finite set 7 of distinctly labelled prototiles. Given a prototile set 7, a collection
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of tiles
(1) T = {T; = (supp(t;; — z;),1(t;;)) for j € N;t;,; € 7, and z; € R*},
is a 7-tiling if R = |Jsupp(T;) and int(T;)N int(T;) = 0 for i # j. Note that

this definition of tilinchould be generalized in a variety of ways, including allowing
rotations of prototiles or using a higher-dimensional setting. Tilings found in [4]
encompass a wide variety of possibilities.

A T-patch P is a finite configuration of tiles in 7. The outer patch of a subset
U of R? is given by

(2) [U]T = {T € T such that supp(T)NU # 0}.

A notable type of outer patch is the one associated to a point y € R2: the elementary
patch [y]7. An elementary patch can be a single tile, two tiles meeting along an
edge, or several tiles that share a common vertex. Another notable type of outer
patch is [Br(z)]7, the set of all tiles intersecting the closed ball of radius R centered
at x.

Tiles (and therefore patches and tilings) can be acted upon by translation: given
a tile T and an x € R?, define the tile T — x = (supp(T) — z,1(T)). This induces
an equivalence relation T' ~ T' — z, which extends naturally to patches and tilings.

Remark 2.1. A tiling space X can be defined as a translation-invariant set of tilings
made from a given prototile set 7. Tiling spaces are metrizable and are studied
as dynamical systems under the action of translation. For a description of this
viewpoint and many dynamical and ergodic-theoretic results, see [8], [11, 12, 15],
[17],[20, 21].

In this work, we require three conditions of our tilings: normality, local finiteness,
and almost periodicity. Normality is defined in [4] as the requirement that all tiles
in a tiling be uniformly bounded topological disks that intersect in connected sets.
A tiling T is locally finite if for any R > 0 there is an integer n and 7T -patches
Py, ..., P, such that for any € R?, [Bgr(x)]” is translation equivalent to P; for
some i € {1,...,n}. A tiling 7 of R? is periodic if there exists a basis z1, x> of R? so
that T —x; = T for i = 1,2. It will be considered nonperiodic if there is no nonzero
x € R? with T —x = 7. A tiling T is called almost periodic if for any patch P € T
there is a real number R such that for any = € R? there is a 7-patch P’ such that
supp(P') C Br(x) and P' ~ P. The minimum such R, denoted R(P), is called the
almost-periodicity radius of P.

2.2. Graphs. A graph T is given by a pair (V ('), E(T')), where the vertez set V (I")
is any nonempty, at most countable set, and E(T') C {{vi,va2} : v1,v2 € V(I')} is
the edge set of I'. Note that at most a single undirected edge connecting any two
vertices is allowed by this definition. We will refer to a vertex v € V(T') or an edge
e € E(T') as an element of T'; the set of elements is £(T') = E(T') UV (T'). The order
[|IT|] of a graph is the cardinality of the vertex set. A graph I will be assumed to
be labelled by a map [ : £(T') — {1,2,...L}, where [(V(T)) NI(E(T)) = 0.

A path P of length n is an ordered sequence of vertices vy, vy, ...,v, in V(T') such
that {v;,v;41} € E for all i € {0,1,...,n — 1}; we denote the length of the path
by ||P|| = n. We will always assume that I' is connected: for any v,w € V with
v # w, there is a path P = vy, vy, ..., v, in T’ with vg = v and v, = w. The distance
between any distinct vertices v and w in I' is given by d(v,w) = min{||P|| : P =
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V,...,w is a path in T'}. If v = w we define d(v, w) = 0, so that d forms a metric on
T.

A subgraph G C T is a graph (V(G), E(G)) such that V(G) c V(I'), E(G) C
E(T), and whenever e = {v1,v2} € E(G), then vi,vs € V(G). Let S C V(I)
be any subset of the vertex set of T, and let Es be the subset of E(T') given
by Es = {{v,w} : v,w € S and {v,w} € E(I")}. The induced subgraph of S is
I's = (S,Es). The ball of radius N centered at the vertex v is the subgraph of T’
induced by the set of vertices w for which d(v,w) < N.

Definition 2.1. Let T be a graph and let P(IR?) the set of all homeomorphic images
of [0,1] in R2. A drawing of T is a function D : £(T') — R? U P(R?) such that

i.) D(v) € R? for any vertex v € V(T') and D(v) # D(w) for v # w € V(T),
ii.) for {v1,v2} € E(T), D({v1,v2}) € P(R?) is a simple curve in R? that has
as endpoints D(vy) and D(vs).

The graph T is planar if and only if there is a drawing D : £(T) — R? such
that for all edges e and f in E(T"), D(e) N D(f) = D(eN f). Once a planar graph
has been drawn in this fashion, it is called a plane graph and posseses additional
elements called facets. A facet f is a finite subset of V(I") such that the drawing of
the subgraph induced by f encloses a simply connected region, the interior of which
contains the drawing of no other elements of I. The facet set of I' is denoted F(I),
and the element set of I' is expanded to contain it so that £(I') = V(I') U E(T") U
F(T'). All plane graphs are assumed to posess labellings I : £(I') — {1,2,...L} with
(V(T)),l(E(T)), and I(F(T)) pairwise disjoint. Note the inclusion relationship
among the elements of a graph: a vertex can be contained in an edge, and both
can certainly be contained in a facet.

Let T" and I be plane graphs and suppose ® : £(I') — £(I') is a map such
that ®(V(T')) = V(I') and ®(E(T)) = E(I'). We call ® inclusion-preserving if
whenever a,b € £(T') and a C b, then ®(a) C ®(b). We call ® label-preserving if it
is inclusion-preserving and if, for all elements g, h € £(T") with I(g) = I(h), it is true
that I'(®(g)) = I'(®(h)), and in this case we call I a label factor of T. If ® is a
label-preserving bijection, then it is a graph isomorphism and we may write I' = T".

Conversely, given two plane graphs I' and IV, a map ¥ : £(T") — £(I) is called
inclusion-reversing if for all a,b € E(T"), ¥(a) C ¥(b) if and only if @ D b. The
plane graph T is considered dual to the plane graph I'' if and only if there exists an
inclusion-reversing bijection ¥ : £(T') — £(I') such that for a,b € £(T), I(a) = I(b)
if and only if I'(¥(a)) = I'(¥(b)). A plane graph T and its dual graph G’ are dually
situated if for every vertex v € V(I'), the drawing of v in R? is inside the region
defined by the drawing of the facet that is its image in G’. It is a theorem [4, 22]
that connected plane graphs always have duals. Moreover, a plane graph and its
dual graph can always be drawn dually situated [4] p. 171-172.

2.3. Tilings as plane graphs. We base our definitions on those in [4]. A wvertez
in a tiling 7 is a point in R? contained in three or more tiles in 7, and we denote
the vertex set V(7). The edge set E(T) is given by the set of all subsets {z,y} C
V(T) for which there exist 7,8 € T with {z,y} = supp(T) N supp(S) N V(7).
The facet set of T is the set given by F(T) = {supp(T)NV(T) : T € T}. Let
E(T) = V(T)U E(T) U F(T) denote the set of elements of T. We will consider
G(T) to be the plane graph with this element set, and the drawing provided by
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the tiling 7. Facets in F(7) contain at least three vertices, since we have assumed
that 7 is a normal tiling.

We choose a labelling for G(T) using elementary patches [z]7. Let Ey, ..., Ex(T)
be a set of representatives of all of the translation equivalence classes of elementary
patches in 7. Let e be any element in £(7). We define the label of e to be

(3) l(e) =i if and only if [[z]” ~ Ei.

TEe
For a facet f € F(T) corresponding to the tile T € T, we see that (. f[a:]T equals
T, and so we arrange to have I(f) = I(T), reordering the set {E;} as necessary.
For an edge e = {v,w} € E(T), N,c.lz]” = [v]” N[w]”, a patch consisting of two
adjacent tiles. Thus the label of e reveals exactly how the tiles connected by e are
sitting next to each other.

Two tilings 71, T2 are said to be combinatorially equivalent if the graphs G(T1)
and G(73) are isomorphic as unlabelled graphs, and they are said to be combinato-
rially isomorphic if G(T1) and G(72) are isomorphic as labelled graphs. Combina-
torially equivalent tilings have the same adjacency structure but are not necessarily
made out of prototile sets of the same size. The following fundamental theorem is
adapted from [4], p. 169.

Theorem 2.1. If 71 and T3 are normal tilings, then Ty is combinatorially equivalent
to Tz if and only if there exists a homeomorphism of R? taking T1 onto T (Ti and
Tz are topologically equivalent).

We see from the next theorem that it is possible to use dual graphs to define
combinatorial equivalence [4] p. 171.

Theorem 2.2. If each of two tilings Ty and T2 is dual to the same tiling T, then
T1 and T2 are combinatorially equivalent.

Combinatorially isomorphic tilings are combinatorially equivalent and hence
topologically equivalent, but the converse does not always hold. Wildly differ-
ent tilings with the same combinatorial structure but different element labellings
are given as examples in Chapter 4 of [4].

It is clear from our original assumptions on tilings that connected, isomorphic,
labelled subgraphs of G(T) have translationally congruent drawings. It is not dif-
ficult to construct a drawing for the dual graph G(7) with this property, and that
is dually situated with G(7). We will always assume this drawing for G(T).

3. GRAPH SUBSTITUTION

We are ready to define graph substitutions, beginning by outlining the sort of
graph that admits a substitution. A labelled, plane graph I' is said to be locally
finite if for any positive integer NV there are only a finite number of balls of radius NV
appearing in I' (up to isomorphism). Given an element a € £(T"), denote by T, the
subgraph of T induced by the vertices contained in a. We say that I is consistently
labelled if there exists a family of isomorphisms I = {I,; : Iy — I’y with a,b €
E(T) and I(a) =1(b)} such that:

i.) for all e € £(T,), we have l(e) = I(I,,5(€)),
ii.) I,,q is the identity map on I'y, and
ili.) If a,b,c € E(T") with l(a) = 1(b) = l(c), then Iy .0 I, = Iy c.
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We say T is substitutable if it is consistently labelled and locally finite. Note that
the dual graph of a locally finite tiling, when drawn and labelled as described in
Section 2.3, is automatically substitutable.

Let £(T) be the element set of a substitutable graph I" with label set {1, ..., L} and
define G* to be the set of all finite, connected, plane graphs with label set {1, ..., L}.
Let ¢ : £(T) — G* represent an element substitution map such that whenever
elements a and b of I' have the same label, then there exists an isomorphism ¥, :
E(p(a)) = E(p(b)), satisfying

i.) ¥, , is the identity on ¢(a), and

ii.) if a,b,c € E(T) with I(a) =1(b) =(c), then ¥y .0 ¥, = T, ..
That is, elements with the same label are substituted by isomorphic graphs, with
the precise isomorphism recorded in ¥ = {¥,; : a,b € E(I") with I(a) =1(b)}.

With ¢ and ¥ as defined above, we require that whenever a C b € £(T'), there is
a one-to-one inclusion-preserving map @, ; in a family of maps ® taking ¢(a) onto
a subgraph of (b) and satisfying

i) Ifa CbCcin &), then &, = Pp . 0 Py,
ii.) For any facet or edge a, ¢(a) may not have any vertices that are not already
in ®,,4(p(v)) for some vertex v C a, and

iii.) if a; C b; € E(T),i = 1,2 with I(b1) = I(b2) and Iy, p,(a1) = a2, then

(4) Dz, © Yayas (50(0'1)) = Wp,,b, © Py, (50(0'1))'

We now use the families & and ¥ to define an equivalence relation on the dis-
crete union of vertices V = Lyev(r) V(e(v)). This will establish how the indi-
vidual substitutions (e) are put together to form a single graph S(T'). Let v
and w be in V such that v € ¢(a) and w € o(b) for a and b in V(I'). Then
v ~' wif and only if there exists ¢ € £(T") with a,b C c and @, .(v) = P (w).
Symmetry and reflexivity of the relation are clear; extend ~' by transitivity to
form an equivalence relation. Write the equivalence class of v € V as [v]. Be-
cause all elements of p(e) for any e € &(T) have vertex set contained in V,
the relation on the vertex set V can be extended to an equivalence relation on
E= Llaes(r) E(p(a)). For e; = {v1, w1} and ex = {va, w2} € E’, we define e; ~ ey
if {[v1],[w1]} = {[v], [w2]}. This forms an equivalence relation on E; we write the
equivalence class of an edge as [e] = {[v], [w]}. Note that it is not possible to extend
to facets—the resulting graph may not be planar.

Definition 3.1. The pair (p,~) forms a graph substitution S on T. The graph
S(T) has vertex set V(S(I')) = {[w] : w € V} and edge set E(S(T')) = {[¢] : e € E}.
For any element a € £(T'), we can define the subgraph S(a) of S(T') to be the
subgraph induced by the vertex set of ¢(a) under the equivalence relation ~. We
say that I is a fized point of the substitution S if I' = S(I).

If T is a fixed point of the graph substitution S, then it is possible to consider
powers 8™ of the substitution. For a subgraph G of T, we define S(G) to be the
subgraph of T' that is given by the substitution on each of the elements of I". The
graph S™(QG) is defined as being the application of S to S™~1(Q).

Definition 3.2. Let I' be a fixed point of the substitution S. We call v € V(T')
an expanding vertex if for every N € Z™, there exists an m € Z and a vertex
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FIGURE 1. A two-dimensional Chacon-type substitution.

w in 8™(v) so that By(w) C S™(v). We call T the fized point of an expanding
substitution if it has an infinite number of expanding vertices.

We define combinatorial substitution for tilings in terms of their dual graphs.

Definition 3.3. The tiling 7 is called a combinatorially substitutive tiling if and
only if there exists a fixed point T" of an expanding substitution for which G(T') is
a label factor of T'.

Proposition 3.1. If T is connected, then the graph S(T) is connected.

Proof. Let [v], [w] be vertices in V(S(I")). Choose a,b € V(I') so that v € ¢(a) and
w € @(b). Since T is connected, there is a path a,cy, ...,c,, b taking a to b in T.
Since S(a) is connected, there is a path taking [v] to an element [21] of S(a) NS(c1).
Since S(c1) is connected, there is a path from [z1] to some [22] € S(c1) N S(ca).
This argument can be repeated to connect each S(¢;) to S(¢;j+1), producing a path
from [v] to [w]. a

4. EXAMPLES

We present three examples of combinatorially substitutive tilings that are not
self-similar. In Example 1, we present the construction and show that the tiling is
combinatorially substitutive. In Examples 2 and 3, we simply present the tilings
and leave the details to the reader. Each example illustrates the necessity of certain
parts of the definition of graph substitution.

Example 1. We begin with an example that is similar in spirit to the “Chacon Z2-
actions” examined in [5] from an ergodic-theoretic perspective. In Figure 1 we show
a substitution rule defined on a set of four tile types, along with the corresponding
definition of ¢ on the vertex set of G(7). We use the convention that the drawing
of a vertex is indicated by its label, and we suppress edge and facet labels.

In Figure 2 we show the result when the substitution is applied to the tile type
a two times. One can obtain a tiling of R? that is invariant under the substitution
by centering a two-by-two array of a tiles at the origin. Holding this patch fixed
and applying the substitution ad infinitum will result in an invariant tiling 7. In
order to show that G(7) is a fixed point of some graph substitution S, we must
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FIGURE 2. Two iterations of the tile a.

establish the map ¢ on the rest of the element set of G(7). Once this is done, the
families ¥ and ® are defined by our specified drawing of G(7).

There are 26 edge types in 7T, and it is possible to list the substitution of each
edge type to obtain the definition of ¢ on E(G(T)). We show in Figure 3 a small
sampling of the edges along with their substitutions, drawing the elements of G(7)
embedded in their associated tiles. One can check that no new edges are introduced
in @(f) for any facet type f that were not already in ¢(e) for some edge e C f.
Therefore it is somewhat unnecessary to write out the list of facet substitutions in
this example.

a [ ]

‘ e /\/ ¢t

o/ / \/7 /& -

@j = A T E@ - %d’ e IIE f‘ﬂ<\dgc/f‘i

FI1GURE 3. The definition of ¢ for a few edge types.

The isomorphisms ¥, ; for any a and b with I(a) = I(b) are given by translation
of the drawing of ¢(a) onto that of ¢(b). The inclusions &, for any a C b are
given by the inclusion of the drawing of ¢(a) into that of ¢(b). By construction,
these maps satisfy their required properties and so (¢, ~) forms a substitution S
on G(T) under which it is invariant.

Note that in this example, only vertices labelled a are expanding vertices.

Example 2. Consider a prototile set composed of four unit square tiles, labelled
a,b,c, and d, and define a replacement rule R as in Figure 4. Let F,, denote the nth
Fibonacci number (so that F; = 1, F, = 1, F3 = 2, and so on). Using induction,
one can show that R™(a) is a Fj,1 o by F,42 array of tiles, R"™(b) is a F,12 by Fp11
array of tiles, R"(c) is a Fj,41 by F,42 array of tiles, and R™(d) is a Fy, 11 by Fp11
array of tiles. In Figure 5 we show R°(a).
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b — S [e)— [alb] [d] —[3]

FIGURE 4. A replacement rule for the prototile set.

c|blalalblblajc|al|bl|c|bla
ald|lc|bla|d|c|a|blaja|d|cC
ajalbld|c|c|blald|clalalb
alblc|blajajd|ic|bla|bla|c
blalajd|c|ala|bl/d|c|d|c|a
diclala|blc|blalc|blajalb
b|a|blalc|a|d|c|a|d|c|bla
d|c|d|clalala|blalalb|d|cC
al/blc|blalalb|c|blalblalc
blalajd|c|blajald|c|d|c|a
diclala|bld|c|ala|blc|bla
blalblalc|bla|blalc|ald|c
dic|d|jc|ald|c|d|c|alalalb

FIGURE 5. Iterating the replacement rule five times on the tile a.

It is tedious but not difficult to verify that there is a tiling 7 of R? that is
invariant under six iterations of R (it has the array Z i centered at the origin).

We may therefore use RS to define o, ¥, and ® on the elements of G(T).

Note that knowing the adjacency type of two tiles is not enough to specify
precisely how their substitutions fit together (consider two horizontally adjacent a
tiles). Thus it is necessary to relabel the edges of G(T) to form a graph G’ on which
a substitution S can be defined.

Example 3. This example is, to the best of our knowledge, an original tiling. The
prototile set has twelve tiles, six labelled a — f and their reflections about the line
y = —x. We show the first six prototiles and their substitutions in Figure 6; the
substitutions for the reflected prototiles are just the corresponding reflections of
these. There is a tiling 7 that is invariant under two iterations of this substitution,

b
S N I
o~ &Y By [ — X

FIGURE 6. Six of the prototiles with their replacements.

with a fixed patch at the origin shown in Figure 7.
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FIGURE 7. Part of 7 near the origin.

In this example it is not necessary to consider a relabelling of the dual graph
G(T); the standard labelling is enough to specify the graph substitution. The
importance of defining ¢ on the facet set of G(7) as well as the edge and vertex
set is illustrated by looking carefully at one of the facets that occurs in ¢?(e). The
facet, shown with dotted lines in Figure 8, has an extra edge in its substitution
(also shown with a dotted line) that is not present in any of the substituted edges
or vertices that comprise the facet.

e
q f
-e au\ a
‘Qﬁi X o\q
ab Zd f)
ENRNE

FIGURE 8. A facet of G(T) that generates an extra edge when substituted.

5. DERIVED VORONOI TILINGS

In the introduction, a result of F. Durand [1] characterizing limit sequences of
symbolic substitutions was discussed. In the characterization, sequences are recoded
in terms of return words of a fixed prefix u—words beginning and ending in v and
containing no other copy of u. We define a similar process for tilings.

Fixing a nonempty patch P in 7, we define the locator set Lp to be

(5) Lp={q€R®: there exists P’ C T with P = P’ — ¢}.

The elements of this set pinpoint the locations of all equivalent copies of P in the
tiling 7. Since the tilings under consideration here are assumed to be locally finite
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and almost periodic, Lp forms a Delaunay set [18]: a relatively dense set whose
elements are uniformly bounded away from each other. This is exactly the type of
set for which it is possible to form a normal Voronoi tessellation [18]. The Voronoi
cellfor g € Lp is given by V, = {z € R?| d(z,q) < d(z,q') for all ¢' € Lp}. We call
two locator points neighbors if their Voronoi cells share edges.

Lemma 5.1. Let T be a tiling of R?, let P be a T -patch, and let R be the almost-
periodicity radius of P. Then for any g € Lp and Voronoi cell V, € Tp, we have
that V; C Br(q). All points that are neighbors of q are contained in Bag(q).

Proof. Let w € V; so that d(w,q) < d(w,q') for all ¢' € Lp. If d(w,q) > R, then
d(w,q") > R, so there are no copies of P in Bg(w). This contradiction shows that
for all w € supp(V}),d(w,q) < R. O

For any ¢ € Lp there will be a return tile t, with support V; and label to be
described below. Fix an R > 2R(P). The set of Hp(T, R)-patches is given by
{[Br(q)]” : ¢ € Lp}. Considering both T and R fixed, we refer only to the set
‘Hp. This set has a finite number of patches up to translation. Let Hy, Ha,...Hy(p)
denote representatives of the equivalence classes of patches in Hp.

Definition 5.1. For ¢ € Lp, the return tile t, is defined to be the tile with support
supp(t,) = V, and label I(t,) = i, where [Br(q)]” ~ H;. A derived Voronoi tiling
for the patch P is given by

(6) Tr(R) = | t,.

g€LP
If R(P) is the almost periodicity radius, denote the DV tiling Tp(2R(P)) as Tp.

The DV tiling 7p has the smallest possible label set that allows it to be mutually
locally derivable from 7, and that implies that the dynamical systems associated
to T and Tp are topologically conjugate [7, 8]. Of importance to this work is the
fact that the dual graph of G(7p) is a label factor of G(7p(R)) whenever R >
2R(P). Note that Tp(R) inherits almost periodicity and local finiteness from 7.
Additionally, the tile geometry has these simple known properties (see [18]):

Proposition 5.2. Let £ be a Delaunay set in R?, and let T(L) be the Voronoi
tiling of L. Then
i.) The tiles of a T(L) are conver polytopes that intersect along whole faces;
no two tiles have a common interior point;
ii.) the points of L whose Voronoi tiles share a vertex v lie on a sphere, centered
at v, that has no points of L in its interior.

The field of computational geometry has provided a variety of algorithms for
constructing the Voronoi tessellations of point sets in several dimensions. A conve-
nient algorithm for local construction is to construct the perpendicular bisectors of
the line segments qq', for ¢,¢' € Lp. The smallest open convex region containing ¢
and bounded by the bisectors is the interior of the tile ¢,.

For a tiling 7 of the plane and a fixed 7-patch P, the graph G(7p) = Gp has
vertices and edges that correspond to the vertices and edges of the tiles. Since the
tiles intersect along whole edges, we call Tp an edge-to-edge tiling. Translationally
equivalent tiles have the same number of adjacent tiles in the tiling, so vertices in
the dual graph of 7p with the same label have the same degree.
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We assume the following drawing of the dual graph G(7p) = Gp. The vertex set
of Gp is drawn as Lp, so that ¢ € V(Gp) corresponds to the facet given by ¢, in
Gp. If supp(t,) Nsupp(ty) = e is an edge in Gp, the edge e is perpendicular to
the line segment ¢q', which we take as the drawing of the dual edge in Gp. With
this drawing the two graphs are dually orthogonally situated. As noted earlier, the
dual graph Gp is also substitutable.

Remark 5.1. A Delaunay (or Dirichlet) triangulation of a point set £ is a triangu-
lation of the plane using the point set £ as vertices; it has the property that the
triangles are as close to being equiangular as possible. It follows from the discus-
sion in [2], p.301-302, that the dual graph Gp is a Delaunay triangulation of Lp
if and only if the degree of every vertex in Gp is 3. Otherwise, Gp is a Delaunay
pretriangulation [19]: it can be “completed” to form a Delaunay triangulation by
adding some extra edges.

6. HIERARCHY AND DERIVED VORONOI TILINGS

Given a fixed tiling 7, we consider the family of DV tilings of central patches
of the form P, = [B,(0)]7,r > 0. We truncate the notation so that the derived
Voronoi tiling 7p, is simply 7., Hp, is simply H,, and so on. Let

(7 F(T) = {7, such that r € [0,00)}.

Define R(7,) = max{m € R such that B,,(q) C V, for all ¢ € £,}. This measure
of the minimum tile size in F(7") has the following property.

Lemma 6.1. Asr — oo, R(T;) = oo.

Proof. In search of a contradiction, suppose that there is an R € R such that for
all r € R there is a ¢ € £, with Bgr(q) ¢ supp(¢,). For any such r and g, there
must exist a ¢’ € £, with ||g — ¢'|| € 2R. By local finiteness of the tiling 7y, there
are only a finite number of vectors ¢ — ¢’ with ||¢ — ¢'|| < 2R and ¢, ¢’ € L. Since
L, C Lo for all s > 0, there are only a finite number of vectors ¢—¢' of modulus not
exceeding 2R with ¢,q¢' in £,. This implies that there is a z € R? with ||z|| < 2R
such that there are q,q' € £, with z = q — ¢' for infinitely many r.

We will show that for all T € T, T — 2z € T, establishing that T —2 = T
and contradicting the nonperiodicity of 7. Choose r € R such that supp(7T’) and
supp(T — z) are contained in B,.(0). We have that T' € P, and must show that
T — z € P,. Choose q and ¢' € L, such that ¢ —¢' = 2. Then P, +¢q C T and
P.+q¢ CT;inparticular T+qe€T andT+q € T. Bt T+¢q =T + (q — 2),
so (T — 2) + q € P, + q by choice of r. Therefore T — z € P,, and hence in T, as
desired. O

So we see that F(7) is an infinite family and therefore is likely to have an
infinite number of combinatorial isomorphism classes. If it does not, this implies
combinatorial hierarchy in the original tiling 7.

Theorem 6.2. Let T be a nonperiodic, almost periodic tiling of R? for which F(T)
is finite up to combinatorial isomorphism. Then T is combinatorially substitutive.

Proof. The proof is in three steps. The first step is to show that there exist certain
numbers r and u associated to a piecewise linear homeomorphism h that takes 7,
onto T,. The second step is to relabel the tiles of 7 in terms of 7, producing a
tiling 7" that factors onto 7. The third step is to use the map h to help establish



COMBINATORIAL SUBSTITUTION FOR TILINGS 13

an expanding substitution S on the graph G(7"). Since G(T) is a label factor of
G(T"), showing G(T") is a fixed point of S will finish the proof.

Since there are a finite number of DV tilings up to combinatorial isomorphism,
there is an r > 0 for which infinitely many P, have DV tilings that are combina-
torially isomorphic to 7,. Fix such an r. By Lemma 6.1 we know that the size
of the tiles of T, goes to infinity as u does. Letting R(s) denote the almost pe-
riodicity radius of P, for any s € [0,00), choose u such that R(u) > 3R(r) and
R(T.) > 2R(r). Since T, and T, are combinatorially isomorphic, by Theorem 2.1
there is a homeomorphism A : R? — R? taking 7, onto 7.

The high degree of geometric structure in a Voronoi tessellation allows us to
choose the homeomorphism h that takes 7. to T, to be a piecewise linear map.
The nature of the map is described below and is pictured in Figure 9. To each

e e

FIGURE 9. The map h is linear on the triangular pieces.

labelled edge e contained in the tile t,,q € L, associate the triangle with corners
at ¢ and at the ends of e. When ¢, is mapped onto its image ¢, in 7, this triangle
can be mapped via a linear map onto the one defined similarly for ¢’ and the
associated edge e'. Together these linear maps on the triangles define piecewise a
homeomorphism h of R? taking 7, to T, such that £, is mapped onto L,.

To form T, we relabel the tiles of T by their relationship to the tiling 7. For
a prototile ¢ € 7, there are a finite number of ways (up to translation equivalence)
that a copy of t in 7 can be in the H,-patch of any 7,-tile it intersects. Make a
new label list for ¢ given by {(I(t),4),7 = 1..n(t)}, so that each copy of ¢ appearing
in T is given an integer 4 which uniquely identifies its position with respect to 7.
Let 7' = {t; = (supp(¢), (I(t),4)) : t € T and i € 1,...,n(t)}. The relabelling of T by
this label set defines the tiling 7", with prototile set 7/, and it is clear that G(T) is
a label factor of G(T).

We use h to define a substitution on the graph G(7'). For any vertex vr €
E(G(T")) corresponding to the tile T in T, let the vertex set of p(vr) be given by

V(p(vr)) = {vr, : T € [h(supp(T))]”}.
Define the graph ¢(vr) to be the induced subgraph of G(T') given by this vertex
set. Figure 10 depicts a T'-patch creating V (¢(vr)).

To show that this vertex substitution is well-defined, we must show that if [(Tp) =
I(Ty) for any Ty, Ty in T', then ¢(vr,) = ¢(vr,). We will do this by choosing a
T.-tile which intersects the support of T and establishing that the substitution on
vy, is entirely determined by the H,-patch of the corresponding tile in 7,,. Due to
the labeling scheme for tiles in 7", this will prove that the substitution on vy, is
defined by a translationally equivalent patch of tiles, proving the desired result.

Choose ¢ € L, so that supp(To) Nsupp(ty) # 0. Let p be the maximum diameter
of any prototile in 7/, and let A be the maximum modulus of any eigenvalue of any of
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5 &

FIGURE 10. How h(supp(7T')) determines ¢(vr).

the pieces of the map h. It is clear that since the map h, in the most extreme case,
would take the interior radius R(7,) onto the exterior radius R(u), we will have A <
R(u)/R(T;). As shown in Figure 11, we have that h(supp(7')) C Br(u)+r,(R(q)),

so [h(supp(T))]T c Bruy+xp+p(h(q)). We may assume, by Lemma 6.1, that r is

h(supp(T))

T
‘4 )\p
VR
h

FIGURE 11. The intersection of h(supp(7')) with the T,-tile t.

sufficiently large to ensure that p(1/R(T;) + 1/R(u)) < 1, so that p(R(u)/R(T;) +
1) < R(u), making Ap+ p < R(u). Thus ¢(vy,) is determined by a 7'-patch which
is entirely contained within the H,-patch of h(q). Since [(To) = I(T1), we now have
that p(vr, ) is created by a translationally equivalent patch of tiles, proving that
the substitution is well-defined.

Similarly, the substitution on any element e € £(G(T")) is given by the induced
subgraph of the following vertex set in G(T):

(8) V(g(e) = {or, : T € {J [h(supp(t)]”'}

v Ce
This substitution can be shown to be well-defined using analogous estimates as were
used for the vertex substitution.

Next we exhibit the families of maps ¥ and & that coordinate the substitutions
on elements. Let a,b € £(G(T")) with I(a) = I(b); by definition the subgraphs
p(a) and (b) are labelled-graph isomorphic (and each graph is connected). Since
we have assumed the drawing for G(7') as specified in subsection 2.3, we have
that ¢(a) is translationally congruent to ¢(b). Let the map ¥, ; be given by the
translation mapping between the two subgraphs. For any a C b € £(G(T")), we
can define the map @, : £(p(a)) = E(¢(b)) by inclusion, since the vertex set of
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p(a) is contained in that of p(b) by definition. It is clear that the families & and
¥ commute as required.

This establishes that there is a substitution S on G(7') given by the map ¢
along with the family of isomorphisms ¥ and the family of inclusion maps &. All
subgraphs were induced from G(7") on its vertex set, so S(G(T')) C G(T"'). Since
the mapping h covers R?, every element of G(7") is contained in S(G(7")), proving
that G(T") = S(G(T")). So G(T") is a fixed point of the substitution S.

Let T be any tile in 7' which intersects £, at a point q. Then the support
of [h(supp(T)]T' contains an open set U around the point h(q) € L,; i.e. the
patch creating S(vr) contains U. So the T'-patch creating S?(vr) contains h(U),
and in general the 7T'-patch creating S"(vr) contains h" 1(U). The map h is a
piecewise linear map which expands outwards from elements of £,., by the assump-
tion that R(T,) > 2R(r). Thus given any N € Z™*, there is an m € Z* with
h™(U) sufficiently large so that [A™(U)]7" induces a subgraph of G(7”) that con-
tains By(h™(q)). Hence 8™ (vr) contains By(h™(q)), and since this can be done
for any N € Z™, we have shown that v is an expanding vertex. This argument can
be applied to any tile in 7 that intersects £,, so there are infinitely many expand-
ing vertices in G(7'). This proves that G(7') is the fixed point of an expanding
substitution, and hence 7 is a combinatorially substitutive tiling. |

Suppose T is a nonperiodic, almost periodic tiling of R? for which F(7) is finite
up to combinatorial isomorphism. In the beginning of the proof of Theorem 6.2 we
showed that there exist numbers r, u such that 7, is combinatorially isomorphic to
T. with the isomorphism specified by a piecewise linear map h. Moreover, r and u
were chosen so that R(u) > 3R(r) and R(T,) > 2R(r). We consider T ,r,u, T, T
and h fixed in the following proposition.

Proposition 6.3. The tiling T, is a combinatorially substitutive tiling. Moreover,
G, is a fized point of an expanding substitution.

Proof. We define the substitution ¢ for the element g € V(G,) to be the subgraph
of G, induced by

(9) V(e(q)) = L, N [A(supp(ty))]™ = Ly N [supp(tn(g))] -

Similarly, the substitution on any element e € £(G,) can be given by the induced
subgraph of

(10) Vipe) =£.n J [hsupp(t,)]™-

qCeNL,

Suppose I(a) = I(b), for a,b € V(G,). Then there is a translation z € R? with
h(supp(ts)) = h(supp(ts)) — x, since h(supp(t,)) and h(supp(ts)) are the supports
of the T,-tiles t,(q) and tp(). It follows that Hy,(h(a)) = H,(h(b)) — z. For
any q € V(p(a)), since Byp(,)(q) C Bag(y)(a), the T;-tile t, is uniquely determined
inside H, (h(a)). Thus q € V(¢(a)) if and only if g+ € V (p(b)) and I(q) = I(q+z).
That is, [supp(th(a))]fr’“ = [supp(th(b))]TT —z, and we again let ¥, ;, be given by the
translation by z taking the drawing of ¢(a) onto the drawing of ¢(b). A similar
process can be used to establish the the family ¥ for the other elements of G,..

For any a C b € £(G,), we can define the map @, : E(p(a)) = E(p((b)) by
inclusion, since the vertex set of yp(a) is contained in that of ¢(b) by definition.
It is clear that ®,, 5, © ¥o,,0, = ¥p, 6, © Py, 5, This establishes that there is a
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substitution S on G, given by the map ¢ along with the family of isomorphisms
¥ and the family of inclusion maps ®. All subgraphs were induced from G, on
this vertex set, and since 7, covers R?, every element of G, is contained in S(G,),
proving that G, = §(G,). Every vertex ¢ € £, is expanding, since h™(supp(t,))
goes to infinity as n does. Hence G, is the fixed point of an expanding graph
substitution, so 7, is combinatorially substitutive. |

6.1. Related questions. There are many questions to investigate on the subject
of tilings and their graphs. What property of an infinite graph allows it to be
drawn in the plane as a tiling with a finite number of tile types? How much of
the geometric structure of a tiling is carried in its labelled graph? How much is
preserved when the drawing of the labelled graph is ignored, eliminating the notion
of facets? Can there be an embedding of G(T) producing a plane graph with
facets that do not correspond to tiles in 77 What properties, dynamical or other,
can be deduced from knowing the combinatorial structure of G(7) without facets?
Selected folklore theorems are discussed in [7].

There are also questions to be answered on the subject of graph substitution.
The graphs generated by substitutions considered in Section 6 are all plane graphs,
but what conditions on & and I" will ensure that S(I") is planar? For substitutions
on sequences and also for self-affine tilings, matrices can be defined which tell how
many, and which kinds, of labels are present in the substitution of each element
type. Results have been obtained which tie algebraic properties of these matrices to
dynamical properties of the associated symbolic or tiling dynamical systems. Can
a similar type of analysis be carried out for graph substitutions?

It may be the case that we can use the combinatorial substitutive property of DV
tilings for more than establishing the piecewise linearity of the homeomorphism h.
Perhaps simple conditions can be discovered which force h to be a single linear map.
In those cases, a proof like that found in [8] could be used to show that one of the
DV tilings of T is a pseudo-self-similar tiling, implying that 7 is pseudo-self-similar.

We conjecture that an extension of our results is possible to tilings such as the
pinwheel tiling [12]—tilings that have an infinite number of orientations of the same
tile type. In this case the DV tilings would still be made from a finite number of
congruent tiles, but they would come in an infinite number of orientations.

It is well-known that there are tilings of higher-dimensional space, and there is
a way to see tilings of R? as embedded graphs with higher-dimensional “elements”
using a definition like that given in [18], p. 139. There is a notion of duality,
and orthogonally situated dual graphs can be defined. It seems clear that our
construction would extend naturally to this case. In an arbitrary topological or
metric space, perhaps a notion of “embeddable graphs” can also be defined. That
could allow us to consider combinatorial substitution for graphs and tilings in a
very general setting.
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