
SPECTRAL THEORY OF BIJECTIVE SUBSTITUTION
SEQUENCES

NATALIE PRIEBE FRANK
OBERWOLFACH, MARCH 5, 2009

1. Introduction

The dynamical systems of bijective substitution sequences in Zd have a
mixed dynamical spectrum, while many of their factors may only have a
discrete part. Using as examples the well-known Thue-Morse and period-
doubling substitutions, we will show what happens to the continuous part
of the dynamical spectra through the factoring process.

2. Constant-length substitutions in Zd

When defining a constant-length substitution in Zd, the first order of busi-
ness is to decide on the size of the rectangular blocks that the substitution
will use. So we choose positive integers l1, l2, ..., ld and define

B = B(l1, ..., ld) = 0, 1, ..., l1 − 1× ...× 0, 1, ..., ld − 1 ⊂ Zd

The block B defines an empty set of spaces for the substitution to fill
in, sort of a “wire frame” structure waiting to be decorated (or colored in)
by letters from some finite alphabet A. To decide how to color in each
space ~ ∈ B, we next choose a map p~ : A → A. This gives a substitution
S = (p~)~∈B, which assigns to each a ∈ A a block of letters of size B. The
substitution may be iterated; we call a level-n block a letter which has been
substituted n times.

Example 1. Let B = B(2) = {0, 1} and let A = {a, b}. The period-doubling
substitution takes a → a b and b → a a. In our notation, we see that the
map p0 takes both a and b to a, where p1 is the map taking a to b and b to
a.

Example 2. Again let B = B(2) = {0, 1} and let A = {a, b}. The Thue-
Morse substitution takes a→ a b and b→ b a. In our notation, we see that
the map p0 is the identity and p1 is again the map taking a to b and b to a.

For details, examples, and a spectral analysis of multidimensional constant-
length substitution sequences, see [2].
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A substitution is said to be bijective if for each ~ ∈ B, pj is a bijection
on A. Notice that if a substitution is bijective, then there can never be
coincidences in the sense of Dekking [1], and therefore will have a mixed
dynamical spectrum.

2.1. Substitution dynamical systems. Once a substitution is decided
upon, we define the hull X of the substitution as the space of all sequences in
AZd

, all of whose subblocks appear somewhere in a level-n block. Translation
by elements of Zd give a multidimensional action that is known, when the
substitution is primitive, to be uniquely ergodic with probability measure
we will call µ.

The Thue-Morse and period-doubling substitution dynamical systems,
denoted (XTM ,Z, µTM ) and (XPD,Z, µPD) respectively, are our main ex-
amples. It is known that the Thue-Morse system factors onto the period-
doubling system. It is also known that the Thue-Morse system has a mixed
dynamical spectrum while the period-doubling system has pure point spec-
trum. We will show what becomes of the continuous part of the Thue-Morse
spectrum during the factoring process.

3. Spectral theory of substitution sequences in Zd

Consider the unitary Zd-action on a Hilbert space given by U~ : L2(X,µ)→
L2(X,µ) with U~(f(T )) = f(T −~) for all ~ ∈ Zd. We can analyze the action
of Zd on X by consideration of the action of U~ on L2(X,µ). The spectral
coefficients of an L2(X,µ) function are given, for each ~ ∈ Zd, by

f̂(~) = 〈U~f, f〉 =
∫

X
U~f(T )f(T )dµ(T ).(1)

It is known that these coefficients form a positive definite sequence and that
therefore there is a unique measure σf on the d-torus [3] with:

f̂(~) =
∫

Td

z~dσf (z),(2)

where z~ = zj1
1 · ... · z

jd
d .

It is hard to visualize these measures, but we know that they must de-
compose relative to Lebesgue measure into pieces that are atomic (discrete),
singular continuous, and absolutely continuous. It is much easier to consider
functions in L2 and draw conclusions based on their spectral coefficients only,
as we do in the case of eigenfunctions below.

An eigenvalue of U is an ~α ∈ Rd such that there is an f ∈ L2(X,µ) for
which U~(f) = exp(2πi~α · ~)f for all ~ ∈ Zd. (Equivalently, f(T − ~) =
exp(2πi~α · ~)f(T ) for all T ∈ X). It is not hard to check that the spectral
measure of an eigenfunction is an atomic measure. Thus we call the closure
of the linear span of eigenfunctions HD ⊆ L2(X,µ) the discrete spectrum of
U . A substitution is said to have pure point spectrum if HD = L2(X,µ).
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3.1. Odometer structure and eigenfunctions. The underlying box B =
B(l1, ..., ld) provides a wire-frame structure of the level-n blocks of any se-
quence in the hull X as follows (see [2] for details). For each n = 1, 2, ... we
define a map On : X → Zd by On(T ) = the position of the level-(n − 1)-
block of T containing the origin inside its level-n block. Each T ∈ X has
a coding by level-n blocks given by the sequence {On(T )}. The action of
translation by elements of Zd acts as an odometer on the space of level-n
codings.

Odometer actions are know to have pure point spectrum, and the substi-
tution dynamical system factors onto the odometer action, thus inheriting
its eigenfunctions. Under the (relatively mild) condition of “trivial height”
(see [2] for definition), the odometer system forms the maximal equicontinu-
ous factor of the substitution system and so gives all the the eigenfunctions.

In fact the eigenvalues must then take the form ~α =
(
m1

ln1
1

, ...,
md

lnd
d

)
, where

the li’s remain the lengths of the substitution that define the block B.

Example 3. Consider either the PD or the TM substitution, so that l1 = 2,
and let ~α = 1/2. We have the eigenfunction given by

g(T ) =

{
1 if O1(T ) = 0
−1 if O1(T ) = 1

(i.e. it is 1 if the origin is in the left-hand side of its level-1 block and it
is -1 if it is in the right-hand side.) The reader should check that g is an
eigenfunction with eigenvalue 1/2.

An important thing to notice is that the eigenfunctions only “see” the
odometer structure given by B, not the labellings the substitution has de-
cided to include. Thus if a substitution is pure point spectrum, the odome-
ters must “see” everything there is to know about the hull X.

3.2. Continuous spectrum in bijective substitutions. Given a bijec-
tive substitution of trivial height, it is easy to write down functions in the
orthocomplement of HD. Let F : A → {1, 2, ..., |A|}, and define

f(T ) = exp

(
2πi

F (T (~0))
|A|

)
Obviously f only cares about the symbol at the origin in any sequence.

The fact that this is orthogonal to each eigenfunction is proved in [2], but
it is instructive to consider the specific case of the Thue-Morse substitution
and the eigenfunction defined in our previous example.

Example 4. For each T ∈ XTM , define

f(T ) =

{
1 if T (0) = a

−1 if T (0) = b
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We can show that this function is orthogonal to the eigenfunction g con-
structed in Example 3. To do this, we write XTM as the union of four sets,
X0,a, X1,a, X0,b, and X1,b, where T ∈ Xi,e if O1(T ) = i and T (0) = e. It is
not difficult to show these sets have equal measure; moreover the product
g(T )f(T ) is constant on each set. Thus we compute

< g, f > =
∫

XT M

g(T )f(T )dµ

=
∫

X0,a

g(T )f(T )dµ+
∫

X1,a

g(T )f(T )dµ+
∫

X0,b

g(T )f(T )dµ

+
∫

X1,b

g(T )f(T )dµ

=
∫

X0,a

1 · 1dµ+
∫

X1,a

−1 · 1dµ+
∫

X0,b

1 · −1dµ+
∫

X1,b

−1 · −1dµ

= .25− .25− .25 + .25 = 0

Because f is in fact orthogonal to all of the eigenfunctions, this means the
eigenfunctions in L2(XTM ) cannot “see” the color at the origin. Moreover
we get a spectral decomposition L2(XTM ) = HD ⊕ Span(f).

4. Conclusion

We know that the Thue-Morse system factors onto that of the period-
doubling, so why does f have a continuous spectral measure for the Thue-
Morse system and an atomic one for the period-doubling substitution? The
answer is simply that for the period-doubling substitution, the odometer
coding can tell you whether a sequence has a a or a b at the origin. To see
this, notice that if O1(T ) = 0, meaning that the level-0 block containing
the origin is in the left of its level-1 block, then T (0) must equal a and thus
f(T ) = 1. If the coding of T begins by 1 0 then T (0) = b and so f(T ) = −1.
Indeed, the reader can check that if the coding begins with n 1’s and then
a 0, then f(T ) = −1n.

In this way we see that the period-doubling substitution has not really
altered the odometer at all, but the Thue-Morse substitution has.
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