
A Dynamical System Using the
Voronoı̈ Tessellation

Natalie Priebe Frank and Sean M. Hart

1. INTRODUCTION. Suppose you know the locations of post offices or cell phone
satellites, and you want to know what regions they serve. Or maybe you know the
locations of atoms in a crystal, and you want to know what a fundamental region looks
like. There are lots of reasons you might want to make a tiling around a given discrete
set of points. A natural way to do it is with “Voronoı̈ tessellations”—so natural, in fact,
that it has been rediscovered numerous times over the years.

On the other hand, if you have a tiling, you might want to decorate each tile with a
few points to create or destroy symmetry. Or you might look at all the vertices of the
tiling—points where three or more tiles meet—to extract combinatorial information.
If you have a tiling, there are many ways to obtain a point set from it.

So, you can get tilings from point sets and point sets from tilings: doesn’t this give
you a way to associate point sets to point sets or tilings to tilings? Once you have a
map from a class of objects back to itself, you can take a dynamical systems viewpoint
to analyze the situation. In this paper we are going to do exactly that, with a new
dynamical system based on the vertices of Voronoı̈ tessellations.

For those uninitiated with the Voronoı̈ tessellation, we begin with its definition and
then give the definition of our dynamical system. From there, the remainder of §1 is
spent exploring the evolution of simple point sets, using these simplified examples to
develop both the intuition and vocabulary needed for more interesting cases. In §2 we
give a new proof of a theorem, first proved in [4], quantifying the growth in size of
point sets over repeated iteration. Following that we will point out some interesting
corollaries and give some estimates on the growth rate. We devote §3 to discussing
what questions interest us most from the dynamical systems viewpoint.

For now, let’s turn to the definitions.

1.1. Our Dynamical System. We start with a finite point set P ⊂ R
2, which we call

the generating set, the members of which we refer to as the generators. (We relax
the assumption that P be finite and/or planar in §3.) The Voronoı̈ polygon of a point
p ∈ P , denoted V (p), is given by

V (p) = {
x ∈ R

2 | ||p − x || ≤ ||p′ − x || for all p′ ∈ P
}
.

Simply put, the Voronoı̈ polygon of p contains every point in the plane that is closer to
p than to any other member of P , or is equidistant between p and a nearby generator
point. The Voronoı̈ tessellation of P is given by

ϒ(P) = {V (p) | p ∈ P} .

A point set and its Voronoı̈ tessellation are given in Figure 1.
Given distinct p, p′ ∈ P , the sets V (p) and V (p′) are not necessarily disjoint; in

fact, the boundary of each Voronoı̈ polygon is shared with other Voronoı̈ polygons. If
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(a) (b)

Figure 1. A point set P , its Voronoı̈ tessellation, and ν(P).

V (p) ∩ V (p′) is a line, ray, or line segment, we call it a Voronoı̈ edge and denote it
ep,p′ . If the intersection of three or more Voronoı̈ tiles is a point, we call that point a
Voronoı̈ vertex. The sets of all Voronoı̈ edges and vertices are denoted by E(ϒ(P))

and V(ϒ(P)), respectively.
It is useful to notice that ep,p′ always lies on the perpendicular bisector of the line

between p and p′. This gives a method for constructing Voronoı̈ diagrams: for p ∈ P ,
sketch each perpendicular bisector between p and another member of P . Then the
Voronoı̈ polygon V (p) is the intersection of all half-planes created by the perpendic-
ular bisectors. It is also useful to notice that a Voronoı̈ vertex is equidistant from the
generator points of the tiles it is in. For proofs of these properties and a wealth of other
information about Voronoı̈ tessellations, [7] is an excellent source.

Now, the set V(ϒ(P)) constitutes a point set in its own right, and so one might
naturally wonder what its Voronoı̈ tessellation looks like. And we need not stop there—
the Voronoı̈ tessellation of V(ϒ(P)) will have a vertex set, too, so how does its Voronoı̈
tessellation behave? We have the makings of a dynamical system on the set P(R2) of
all finite point sets in the plane.

Definition 1.1. Let P ∈ P(R2). We define the Voronoı̈ iteration1 of P to be

ν(P) = V(ϒ(P)).

For n = 2, 3, . . . we define the nth Voronoı̈ iteration of P recursively:

νn(P) = V
(
ϒ

(
νn−1(P)

)) = ν
(
νn−1(P)

)
.

Figure 1(b) depicts the Voronoı̈ tessellation of the six points depicted in 1(a), and so the
lighter seven points—the vertices of the tessellation—constitute the Voronoı̈ iteration
of the original set. Let’s begin looking at the simplest cases this dynamical system has
to offer.

1.2. The Really Trivial Cases. We follow the convention of using |P| to denote the
cardinality of P . If |P| = 1, then the single Voronoı̈ polygon is all of R

2. Since R
2 is

just one big tile, it has no vertices, and so νn(P) = ∅ for all n ≥ 1. Next, we up the

1This is not to be confused with Lloyd’s algorithm from computer graphics (see [3] and references therein),
which is sometimes also called “Voronoı̈ iteration.”
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ante: suppose P = {p1, p2}. The Voronoı̈ tessellation then fractures the plane into two
half-planes, split along the perpendicular bisector of p1 p2, the line segment joining p1

to p2. The vertex set, however, is still empty, and so νn(P) = ∅ for all n ≥ 1.
There are two possibilities when P has three points: either all three are collinear,

or they lie on a circle. The former yields νn(P) = ∅ for all n ≥ 1 and in the latter,
ν(P) is a single point. No matter how large P is, the special cases of collinearity and
cocircularity always work out like this:

Proposition 1.2. All the points in P are collinear if and only if νn(P) = ∅ for all
n ≥ 1. All the points in P are cocircular if and only if |ν(P)| = 1 and νn(P) = ∅ for
n > 1.

The first fact follows naturally from the observation that if p, q ∈ P are such that
ep,q ∈ E (ϒ(P)), then ep,q lies on the perpendicular bisector of the line segment pq.
When all the points are collinear, the perpendicular bisectors are all parallel and thus
do not intersect to produce new vertices. Conversely, if ν(P) = ∅ then no Voronoı̈
edges intersect, which implies all Voronoı̈ edges are parallel, and hence P must be
collinear.

To prove the cocircularity result, we introduce the concept of an empty circle. This
is a circle whose interior does not contain any generator points and whose boundary
passes through three or more generator points. Such a circle gets its name since it
is “empty” of generator points. Proposition 1.2 follows immediately from the next
Proposition.

Proposition 1.3. A point q ∈ R
2 is a Voronoı̈ vertex in V (ϒ(P)) if and only if it is

the center of an empty circle.2

In addition to proving Proposition 1.2, this proposition also lets us quickly find the
vertex set of ϒ(P). To do so, pick a noncollinear triple p, q, r ∈ P , and look at the
unique circle passing through them. If this circle is empty, then place a vertex at its
center. Once you have checked every triple, every vertex will be accounted for—and
you never had to sketch an edge!

So, we know what happens when the point set is really small, or collinear, or cocir-
cular. Let’s move on to . . .

1.3. A Slightly Less Trivial Case. Suppose |P| = 4. To discriminate between config-
urations that aren’t collinear or cocircular, we require a more sophisticated vocabulary.
We say that a subset A ⊂ R

2 is convex if, given any distinct x , y ∈ A, the line segment
xy is contained in A. (For practice, try proving that Voronoı̈ polygons are convex!) The
convex hull of a set P is defined to be the smallest convex set containing P . We write
C H(P) to mean the convex hull of P , and write ∂C H(P) for its boundary.

Definition 1.4. For p ∈ P, we say p is on the boundary of P and write p ∈ Bd(P) if
p ∈ P ∩ ∂C H(P). Otherwise, we say p is in the interior of P and write p ∈ Int(P).

In general it is clear that

|Int(P)| + |Bd(P)| = |P|. (1.5)

2See [7, p. 61].
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We say that two distinct points p, p′ ∈ Bd(P) are neighbors on the boundary of
P if pp′ ⊂ ∂C H(P) and no p′′ ∈ P − {p, p′} lies on pp′. For noncollinear finite point
sets, any point on the boundary has two distinct neighbors.

It is not surprising that the Voronoı̈ tiles of boundary points would have infinite
edges. We denote by EF(ϒ(P)) and EI (ϒ(P)) the sets of finite and infinite edges of
ϒ(P), respectively.

Proposition 1.6. Assume not all p ∈ P are collinear, and let ep,p′ ∈ E (ϒ(P)). Then
ep,p′ ∈ EI (ϒ(P)) if and only if p and p′ are neighbors on the boundary of P. More-
over, ep,p′ ∈ EF (ϒ(P)) if and only if p and p′ are not neighbors on the boundary of
P.3

This then implies

|EI (ϒ(P))| = |Bd(P)|. (1.7)

Returning to the case of |P| = 4, let us assume that the points in P are neither
collinear nor cocircular. We may have |Bd(P)| = 3 or 4, and we are going to prove
that Figure 2 represents the only possible types of Voronoı̈ iterations.

(a) (b)

Figure 2. Configurations satisfying (a) |Bd(P)| = 3 and (b) |Bd(P)| = 4.

First let’s assume |Bd(P)| = 3. Since |Int(P)| + |Bd(P)| = |P| = 4, say Int(P) =
{p}. Proposition 1.6 tells us that each of the edges of its Voronoı̈ polygon V (p) must
be finite. As |P − {p}| = 3, there can be at most three edges; since V (p) must be
bounded, there must be exactly three edges. So V (p) is a triangle, and the three infinite
edges promised by Proposition 1.6 extend from its vertices. Since |ν(P)| = 3, we
conclude that |ν2(P)| = 1 and νn(P) = ∅ for all n ≥ 3.

Now let’s assume that |Bd(P)| = 4 and that P is neither collinear nor cocircular.
We will prove that |ν(P)| = 2. By Proposition 1.3 we know that |ν(P)| > 1. To prove
that |ν(P)| ≤ 2, we use a trick that will come in handy again, during the proof of our
main theorem.

For q ∈ ν(P), let ρ(q) be the degree of the vertex q: the number of edges touching
q. Then we have ρ(q) ≥ 3 for each q ∈ ν(P). The sum of the degrees of all the
vertices therefore is greater than or equal to 3 · |ν(P)|. Counting edges instead we see

3Follows from [7, p. 59].
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that each infinite edge touches exactly one vertex but each finite edge touches exactly
two vertices. Thus

3 · |ν(P)| ≤
∑

q∈ν(P)

ρ(q) = |EI (ϒ(P))| + 2 · |EF (ϒ(P))| .

Since there are only two pairs of points in P that are not neighbors, Proposition 1.6
implies |EF (ϒ(P))| ≤ 2. Thus

3 · |ν(P)| ≤ 4 + 2 · 2 = 8,

and so |ν(P)| ≤ 2, proving that in this case, |ν(P)| = 2. Moreover we can conclude
that νn(P) = ∅ for all n > 1.

1.4. The Rest of the Cases Are All Hard. The case |P| = 4 turns out to be the last
case for which νn(P) is guaranteed to equal the null set for large enough n. Indeed, the
case |P| = 5 has resisted our attempts to understand it! Figure 3 depicts configurations
of larger cardinality where the point set does not iterate to a simpler configuration,
which in turn enriches (and complicates) matters. We must suspend our case-by-case
analysis at this point.

(a) (b)

Figure 3. Configurations for which |ν(P)| is (a) equal to or (b) greater than |P|.

2. HOW BIG IS ν(P)? Having played with the dynamical system for a while, we,
along with our colleagues Allison Edgren and Olivia Gillham, decided to explore the
question of what happens to the size of νn(P) as n goes to infinity. We had some
success: a formula [4] (unpublished) that tells us exactly how many points will be in
ν(P)! We are going to share this result with you as soon as we describe one more
essential piece of geometric information.

2.1. Relating Degeneracy and Cocircularity. Compare the configuration given in
Figure 3(a) with those sketched in Figure 4. Each is a configuration of five points, yet
each has a distinctly different iteration. We already have the vocabulary necessary to
distinguish the configuration sketched in Figure 4(a) from the others: they differ with
respect to the number of points on the boundary. The difference between the other two,
however, is more subtle.

A meticulous reader might notice that all of the vertices in Figure 3(a) are of degree
three while there is a vertex in 4(b) with degree four. A Voronoı̈ diagram with a vertex
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(a) (b)

Figure 4. Two configurations of 5 points.

of degree greater than three is called degenerate; if all the vertices of the Voronoı̈
diagram are degree three we call it nondegenerate. We can quantify this concept of
degeneracy with the number Ic(P):

Definition 2.1. Let {C1, . . . , Ck} be the set of all empty circles of a point set P. The
number of instances of cocircularity of P is given by

Ic(P) =
k∑

i=1

(|Ci ∩ P| − 3
)
.

In a nondegenerate point set, every vertex will be of degree three, and so every empty
circle will intersect exactly three points in P . In such a case, we compute Ic(P) = 0.
When a vertex q is of degree k > 3, this implies that |Cq ∩ P| = k. In this case, we
say that q contributes (k − 3) instances of cocircularity. This argument proves the
following:

Proposition 2.2. Let ρ(q) denote the degree of a vertex q ∈ ν(P). Then

Ic(P) =
∑

q∈ν(P)

(ρ(q) − 3) .

As an aside, we note that another way to think about instances of cocircularity in-
volves Delaunay (pre)-triangulations. These tilings arise by connecting the genera-
tors whose Voronoı̈ polygons share an edge. If the generator set is nondegenerate, then
the resulting graph is a triangulation called the Delaunay triangulation; when the gen-
erator set is degenerate, however, there exist Delaunay tiles that are not triangles. The
graph is then called the Delaunay pre-triangulation, and the number of edges we need
to add to obtain a triangulation is precisely the number of instances of cocircularity.

When given a degenerate configuration, one can obtain a nondegenerate point set
by simply shifting any cocircular points by an arbitrarily small amount; further, when
given a nondegenerate configuration, it remains nondegenerate under sufficiently small
perturbations. Hence, when studying or applying Voronoı̈ tessellations it is customary
to ignore degenerate configurations: the modified nondegenerate configuration is usu-
ally “close enough” to the original, and if the points are collected from real-world
instruments we can never assume that our measurements are exact anyway.
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If only we could make such an assumption! In our system, computing Ic(P) is
usually only possible if you already know where the vertices are, and, as we shall
see, incorporating degeneracy makes determining the long-term behavior much more
difficult. But we cannot simply throw out these configurations; there exist situations,
like that which is depicted in Figure 5, that ruin things for us. A nondegenerate point
set may iterate to a degenerate one, and so assuming P is nondegenerate does not
guarantee ν(P) is as well.

(a) (b)

Figure 5. Ic(P) = 0 while Ic(ν(P)) = 1.

2.2. The Theorem on Counting Vertices. We are ready to state and prove the theo-
rem discovered by the second author and his colleagues in [4] (unpublished). The proof
we present here, due only to the second author, is much simpler than the original.

Theorem 2.3. If not all p ∈ P are collinear, then

|ν(P)| = 2 · |P| − |Bd(P)| − Ic(P) − 2.

Proof. We can use the trick from §1.3, summing the degrees of the vertices in ν(P).
Since P is noncollinear, every infinite edge intersects exactly one vertex and ev-
ery finite edge intersects exactly two. Hence, recalling from §1.3 that |EI (ϒ(P))| =
|Bd(P)|, we get

∑

q∈ν(P)

ρ(q) = |EI (ϒ(P))| + 2 · |EF (ϒ(P))| = |Bd(P)| + 2 · |EF(ϒ(P))|.

Euler’s formula for finite planar graphs4 tells us that V − E + F = 1. We can ap-
ply Euler’s formula to ϒ(P) by ignoring the infinite edges and infinite Voronoı̈ poly-
gons. Doing this yields |ν(P)| − |EF (ϒ(P))| + |Int(P)| = 1, and so |EF (ϒ(P))| =
|ν(P)| + |Int(P)| − 1. Thus

∑

q∈ν(P)

ρ(q) = |Bd(P)| + 2 · (|ν(P)| + |Int(P)| − 1) .

Recalling from §1.3 that |P| = |Bd(P)| + |Int(P)|, we have
∑

q∈ν(P)

ρ(q) = 2 · |ν(P)| + 2 · |P| − |Bd(P)| − 2.

4See [5, p. 5].
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On the other hand, by Proposition 2.2,
∑

q∈ν(P)

ρ(q) = 3 · |ν(P)| + Ic(P).

Thus

2 · |ν(P)| + 2 · |P| − |Bd(P)| − 2 = 3 · |ν(P)| + Ic(P),

and so, solving for |ν(P)|, we find

|ν(P)| = 2 · |P| − |Bd(P)| − Ic(P) − 2,

as desired.

From this and our preliminary analysis in §1, several interesting observations may be
made:

Corollary 2.4.

(i) If |P| < 5 then νn(P) = ∅ for some n ∈ N.
(ii) If |P| = 5 then either νn(P) = ∅ for some n ∈ N or |νn(P)| = 5 for all n ∈ N.

(iii) If |ν(P)| > |P| then |P| > 5.
(iv) If |Int(P)| = 2 and Ic(P) = 0, then |ν(P)| = |P|.
Part (ii) of this corollary suggests that the case when |P| = 5 may be of special

interest, not only because it marks a transition in the behavior of the system, but be-
cause it forms a natural subset of phase space that is closed under Voronoı̈ iteration.
We discuss this further in §3.

Theorem 2.3 alone is not enough to predict the long-term behavior of our sys-
tem, since computing |νn(P)| requires that we can also compute |Bd(νn−1(P))| and
Ic(ν

n−1(P)). We have been able to find bounds on the size of νn(P), and we present
one of interest next.

2.3. Bounds on the Size of νn(P). With no assumptions on the geometry of νn(P)

we can give an upper bound on the size of νn(P), which we conjecture to be sharp.

Proposition 2.5. For all n > 0, we have |νn(P)| ≤ 2n (|P| − 5) + 5.

Proof. By induction on n. For n = 1, plugging the inequalities |Bd(P)| ≥ 3 and
Ic(P) ≥ 0 into Theorem 2.3 immediately gives us what we want. Proceeding induc-
tively, we get

|νn(P)| = 2 · |νn−1(P)| − |Bd(νn−1(P))| − Ic(ν
n−1(P)) − 2 ≤ 2 · |νn−1(P)| − 5

≤ 2 · (2n−1 · (|P| − 5) + 5
) − 5 = 2n · (|P| − 5) + 5,

which completes the proof.

We have also been able to find an upper bound on the size of the boundary of ν(P).

Theorem 2.6. The number of points on the boundary of ν(P) does not exceed
|Bd(P)|.
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We shall need the following lemma:

Lemma 2.7. The interior angle for any vertex in a Voronoı̈ polygon is strictly less
than π .

Proof. Let p ∈ P generate the Voronoı̈ polygon V (p) ∈ ϒ(P). Any vertex of V (p)

lies at the intersection of two Voronoı̈ edges ep,p′ and ep,p′′ , generated by distinct p′,
p′′ ∈ P . From the argument given in §1.3, we deduce that V (p) is convex, and hence
immediately have that the interior angle made by these edges must be less than or equal
to π . Seeking a contradiction, assume that this angle is equal to π . By the perpendicular
bisector property from §1.2, we may obtain p′ by reflecting p across ep,p′ and p′′ by
reflecting p across ep,p′′ . But then p′ = p′′, contradicting the assumption that p′ and
p′′ are distinct.

Proof of Theorem 2.6. We have two cases: when all q ∈ ν(P) are collinear and when
they are not. For the former, since any Voronoı̈ tessellation is connected we must have
each vertex joined to its neighbor(s). Since each vertex must at least be of degree three,
there must be at least |ν(P)| + 2 infinite edges, implying that |Bd(ν(P))| = |ν(P)| <

|ν(P)| + 2 ≤ |EI (ϒ(P))| = |Bd(P)|, as needed.
To prove the result for noncollinear vertex sets, we seek to show |Bd (ν(P))| ≤

|EI (ϒ(P))| by proving that every q ∈ Bd (ν(P)) intersects at least one infinite
Voronoı̈ edge. This, with the equality |EI (ϒ(P)) | = |Bd(P)| from Proposition
1.6, gives us what we want. Since q ∈ Bd (ν(P)), we may find neighbors q ′, q ′′ ∈
Bd(ν(P)) of q on the boundary of the convex hull of ν(P). Define H(q, q ′) to be the
closed half-plane containing ν(P) that is bounded by the line through q and q ′, and
similarly define H(q, q ′′); these half-planes exist by the properties of the convex hull.
Thus ν(P) is contained in the intersection H(q, q ′) ∩ H(q, q ′′), which we denote H .

Find a point p ∈ P such that q ∈ V (p) and V (p) has a nontrivial intersection with
the complement of H , and let e ∈ E (ϒ(P)) be an edge of V (p) that touches q. If e
is infinite, then we are done. If e terminates in a vertex, then by the convexity of H
we have that e is contained in H . Let e′ ∈ E (ϒ(P)) be the other edge of V (p) that
touches q. By Lemma 2.7, the interior angle made at q must be strictly less than π .
Since V (p) must have a nontrivial intersection with the complement of H , we find that
e′ cannot be contained in H since the convexity of H would force the interior angle
made at q to be greater than or equal to π . Thus it cannot terminate in a vertex, and
instead is infinite, as desired.

Note that the size of the boundary does not steadily decrease to three in all cases.
There seem to be configurations with boundaries whose sizes stay stable over many
iterations.

Theorems 2.3 and 2.6 combine to give a lower bound on the size of νn(P) in the
generic situation where there are no instances of cocircularity.

Theorem 2.8. Let P ∈ P(R2) and N ∈ N. Suppose that for all n = 0, 1, 2, . . . ,

N − 1, Ic(ν
n(P)) = 0. Then |νN (P)| ≥ 2N |P| − (2N − 1) (|Bd(P)| + 2).

A point set P with |Int(P)| > 2 and with Voronoı̈ iterations that never contain in-
stances of cocircularity will have exponential growth on the order of 2n . (If |Int(P)| ≤
2 then the size does not increase). Since having instances of cocircularity is a rare
occurrence, we conjecture that such a point set exists. We show a typical situation in
Figure 6: a few iterates of a randomly-selected point set of size 9. As Theorem 2.3
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predicts, we see the size going to 13, then 21 points; if there continues not to be any
cocircularity then the growth will escalate rapidly: the next four iterations contain 37,
69, 133, and then 261 points, respectively.
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Figure 6. A few iterations of a point set with no instances of cocircularity.

3. SO WHAT’S NEXT? QUESTIONS FROM THE DYNAMICAL SYSTEMS
VIEWPOINT. In dynamical systems terminology, P(R2) is called the phase space
of the system, and elements of P(R2) are states of the system that evolve over time
according to the map ν. The orbit or trajectory of a state P is defined to be the
sequence {P, ν(P), ν2(P), . . . } ([1] and [6] are good references). So far we have only
talked about one property of an orbit: the growth rate of |νn(P)| over time. But there
are many other interesting questions we can ask about this dynamical system.

3.1. What Is the Right Topology? In order to use the machinery of modern dy-
namics, we ought to have a topology on P(R2) making Voronoı̈ iteration continuous,
at least some of the time. We need this to study major dynamical features such as
recurrence—how orbits return to open sets over time—or topological entropy—a mea-
sure of the tendency of the system to become disordered. Finding the right topology is
of great importance, but it has proved to be an interesting problem in its own right. We
will mention some of the subtlety here.

To begin, notice that the scale of the diagrams in Figure 6 increases with each
iteration. We want our topology to care about the shape of the Voronoı̈ polygons rather
than their size. Similar triangles produce similar Voronoı̈ diagrams, so the topology
ought to respect that. Let us be more precise.

Definition 3.1. A similarity transformation t ∈ Sim(2) is a map of the form

t (x) = kUx + x0,
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where x, x0 ∈ R
2, U is a 2 × 2 orthogonal matrix, and k ∈ R

+. For P, Q ⊆ P(R2), we
say P is similar to Q, written P 
 Q, if there exists t ∈ Sim(2) such that t (P) = Q.

A similarity transformation is a composition of translations, rotations, reflections, or
dilatations of Euclidean space. One can show that Sim(2) forms a group under the
composition of functions and that the relation 
 is an equivalence relation. Similarity
transformations play nice with our dynamical system:

Theorem 3.2. For t ∈ Sim(2), we have t (ν(P)) = ν(t (P)).

Proof. Let q ∈ ν(P). By Proposition 1.3, there is a unique empty circle Cq centered
at q. Since similarity transformations preserve circles, t maps Cq to an empty circle
centered at t (q). Thus t (q) ∈ ν (t (P)), and so t (ν(P)) ⊂ ν (t (P)). By similar logic,
since t (P) is a point set and t−1 is a similarity transformation, we have

t−1 (ν (t (P))) ⊂ ν
(
t−1 (t (P))

) = ν(P).

Thus ν (t (P)) ⊂ t (ν(P)), and so we have equality.

The right topology should identify similar point sets, so we aren’t really looking at
P(R2) but rather the quotient of P(R2) under similarity.

On the other hand, forgetting the question of similarity, we do have an intuitive idea
of what it means for point sets P and Q in P(R2) to be “close.” In fact there are already
metrics, for instance the Hausdorff metric, for this. The problem is that we need our
metric to respect Voronoı̈ iteration.

Suppose we draw little ε-balls around all the points of P , and discover that each ball
contains exactly one point of Q. If so, it is very likely that ν(P) and ν(Q) are close
as well. (The obvious exception is with point sets that have nontrivial cocircularity—
jiggling the points a little bit destroys the cocircularity and thus produces extra vertices
in the Voronoı̈ iteration.) This idea for a metric is promising but has a serious flaw: it
can’t compare sets that aren’t the same cardinality. Since there are sets of the same
cardinality that iterate to sets of different cardinalities, it would be nice to have the
ability to consider whether those iterates are close.

Unfortunately, trying to measure distances between sets of different cardinalities
opens Pandora’s box. If several points of Q are inside the ε-ball around a point of P ,
we can create all sorts of bizarre patterns in ν(Q) that may be quite dissimilar to ν(P).
We find ourselves unsure how to resolve these issues.

3.2. Are There Periodic Points? For k ∈ N, we say P is a period-k point if P 

νk(P). As a special case, if k = 1 then P 
 ν(P) and we call P a fixed point. The
orbit of a periodic point repeats itself over and over again, and can be thought of
as finite (modulo similarity). Periodic orbits are of substantial interest in dynamical
systems theory: if periodic orbits are dense in phase space it is an indication of chaos.

Despite our attempts so far, we have not been able to find any finite periodic point
set P . Curiously, it’s not difficult to find an infinite set P of period 1 or 2! In Figure
7(a), the square lattice iterates to a shifted copy of itself and so has period 1; in Figure
7(b), points evenly spaced on the diagonals y = ±x iterate to points on the x- and
y-axes, which then iterate back for a period of 2. In both examples one sees a high
degree of cocircularity and we assume that this may be a key component in finding
examples with other periods as well.

Once a fixed (or periodic) point has been located, we may ask whether it is at-
tracting, repelling, or hyperbolic. We look at “nearby” points (again the need for a
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(a) (b)

Figure 7. Infinite configurations which are (a) period-1 and (b) period-2.

well-defined notion of distance!) and look at what their orbits do. If all nearby points
come closer and closer to P , it is attracting; if they all get pushed away we call it
repelling. If there is a mixture it may be hyperbolic. There’s some indication that the
grid in Figure 7(a) may be hyperbolic: we know it repels grids with “defects” like the
one in Figure 8. However, if we shift an entire row of points up by a fixed amount, the
orbit will be pulled back towards the orbit in 7(a).

Figure 8. Introducing a defect into the square lattice of 7(a).

3.3. Sensitive Dependence on Initial Conditions. This is the so-called “butterfly
effect,” where a small change in an initial state can produce a large change in its orbit.
Even though we lack a metric on our phase space P(R2), there is evidence of sensitive
dependence on initial conditions. For instance, if we shift a point on the grid in Figure
7(a), it introduces a defect in the Voronoı̈ iteration, which we see in Figure 8. As the
system evolves, that defect will grow to include ever larger regions of the plane until
the original grid is no longer recognizable.

One can see this effect in finite configurations as well. Consider the set depicted
in Figure 4(b). Since |ν(P)| = 4 we know it is doomed to iterate to the empty set.
However, if we were to move any one of the four cocircular points even the slightest
amount, we would see the single vertex of degree four become two vertices of degree
three. This five-point configuration has a chance of iterating to five-point sets indefi-
nitely.
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3.4. Can We Go Backwards? A sensible question to ask is, what happens when we
try to invert the system? Most discrete point sets in the plane are not the vertex set of
a Voronoı̈ diagram. So we must ask first when a preimage of a point set exists, i.e.,
given a set Q, does there exist a set P such that ν(P) = Q? If there is a preimage,
when is it unique? When it is not unique, how many preimages are possible, and is
there a “best” one?

Some literature exists about inverting Voronoı̈ tessellations (see, e.g., [2, 8]), and
we know relatively straightforward conditions that must be satisfied for a preimage
to exist. What is more subtle in our situation is that we don’t have the whole Voronoı̈
diagram—we just have its vertices. Without the edge adjacencies the problem becomes
richer. For example, in Figure 9 we depict two preimages of the lighter colored set of
six points, with distinctly different Voronoı̈ diagrams.

(a) (b)

Figure 9. A configuration of six points with two nontrivially different preimages.

It would be nice if there was a subset of P(R2) that was invariant under Voronoı̈
iteration both forward and backwards in time. We conjecture that there is a subset
S ⊂ P(R2) of five-point configurations with 2 in the interior and 3 on the boundary
for which (1) the set is invariant under forward Voronoı̈ iteration, and (2) there exist
preimages of all orders within the set. If we could identify criteria for membership in
S , then we could begin to examine the orbits of S for evidence of chaos.

3.5. Generalizations. In §3.2 we mentioned generalizing the Voronoı̈ iteration to in-
finite point sets. However, this allows for a host of strange phenomena and so we must
restrict our point sets somewhat. For example, we might require that the derived set—
the set of all accumulation points—of P be empty. Or we might assume that P is a
Delone set; i.e., both relatively dense and uniformly discrete. Of course for a property
to have any use to us, it must be preserved under iteration. One can prove that the de-
rived set of ν(P) is empty whenever the derived set of P is empty, while the property
of being Delone is actually not preserved under iteration. We conclude that a natural
phase space consists of all generator sets with empty derived sets.

And what if we were to no longer work on the plane? The sphere with the great
circle metric immediately comes to mind. All Voronoı̈ polygons are bounded, and
so infinite edges are no longer an issue; this gives rise to a more elegant version of
Theorem 2.3. Finite periodic point sets are suddenly easy to find: each Platonic solid
iterates to its dual. Further, one can prove that a set of noncoplanar points will never
iterate to the empty set. And this is all besides the fact that we humans live on a sphere,
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so maybe the system has relevance to real-world problems such as the distribution of
cell-phone satellites or the spread of diseases.

The fact that one can define the Voronoı̈ tessellation for a set of points in any metric
space means that vast generalizations are possible, whether it be to infinite sets, a
higher dimension, a new metric, or a less geometric setting. Part of the appeal of this
dynamical system is its intuitive definition—a definition that depends little on the size
of the point sets or the space they are in. We urge interested readers to think about how
the ideas in this paper play out in their favorite metric spaces!

3.6. Conclusion. We admit that we don’t know much about the behavior of this dy-
namical system yet. We know exactly what happens for small point sets, but as soon as
there are five or more points we encounter difficulties. We have a theorem [4] that mea-
sures how the point sets grow or shrink in size, but it requires geometric information
that isn’t always readily available. We have evidence that many point sets grow with-
out bound, but have been unable to determine which conditions guarantee this. We’ve
noticed evidence of sensitive dependence on initial conditions, but we don’t have the
machinery to measure the phenomenon. In the course of our study we’ve developed
tools to help us with our insight on this finicky dynamical system, and we’ve shared
some of that here. There is one thing we know for certain: plenty of problems remain.
Some are simple enough to be studied by budding mathematicians, and some may be
subtle enough to interest their advisors as well.
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