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Abstract

This paper is intended to provide an introduction to the theory of substitution tilings. For our
purposes, tiling substitution rules are divided into two broad classes: geometric and combinatorial.
Geometric substitution tilings include self-similar tilings such as the well-known Penrose tilings; for
this class there is a substantial body of research in the literature. Combinatorial substitutions are just
beginning to be examined, and some of what we present here is new. We give numerous examples,
mention selected major results, discuss connections between the two classes of substitutions, include
current research perspectives and questions, and provide an extensive bibliography. Although the
author attempts to represent the field as a whole, the paper is not an exhaustive survey, and she apol-
ogizes for any important omissions.
� 2008 Elsevier GmbH. All rights reserved.

MSC 2000: primary 52C23; secondary 52C20, 37B50

Keywords: Self-similar tilings; Substitution sequences; Iterated morphisms

1. Introduction

A tiling substitution rule is a rule that can be used to construct infinite tilings of Rd

using a finite number of tile types. The rule tells us how to “substitute” each tile type by
a finite configuration of tiles in a way that can be repeated, growing ever larger pieces of
tiling at each stage. In the limit, an infinite tiling of Rd is obtained.

In this paper we take the perspective that there are two major classes of tiling substitution
rules: those based on a linear expansion map and those relying instead upon a sort of
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“concatenation” of tiles. The first class, which we call geometric tiling substitutions, includes
self-similar tilings, of which there are several well-known examples including the Penrose
tilings. In this class a tile is substituted by a configuration of tiles that is a linear expansion
of itself, and this geometric rigidity has permitted quite a bit of research to be done. We will
note some of the fundamental results, directing the reader to appropriate references for more
detail. The second class, which we call combinatorial tiling substitutions, is sufficiently new
that it lacks even an agreed-upon definition. In this class the substitution rule replaces a tile
by some configuration of tiles that may not bear any geometric resemblance to the original.
The difficulty with such a rule comes when one wishes to iterate it: we need to be sure that
the substitution can be applied repeatedly so that all the tiles fit together without gaps or
overlaps. The examples we provide are much less well-known (in some cases new) and are
ripe for further study. The two classes are related in a subtle and interesting way that is not
yet well understood.

1.1. Some history

The study of aperiodic tilings in general, and substitution tilings specifically, comes from
the confluence of several discoveries and lines of research. Interest in the subject from a
philosophical viewpoint came to the forefront when Wang [59] asked about the decidability
of the “tiling problem”: whether a given set of prototiles can form an infinite tiling of the
plane. He tied this answer to the existence of “aperiodic prototile sets”: finite sets of tiles
that can tile the plane, but only non-periodically. He saw that the problem is decidable if no
aperiodic prototile set exists. Berger [4] showed that the tiling problem is undecidable and
was the first to find an aperiodic prototile set. Since then many other aperiodic prototile sets
have been found, including the Penrose tiles. It turned out that one way prove a prototile set
is aperiodic involves showing that every tiling formed by the prototile set is self-similar.

Independently, work was proceeding on one-dimensional symbolic substitution systems,
a combination of dynamical systems and theoretical computer science. Symbolic dynami-
cal systems had become of interest due to their utility in coding more complex dynamical
systems, and great progress was being made in our understanding of these systems. Sub-
stitution dynamical systems, a special type of symbolic dynamical system, proved to be
particularly receptive to analysis. Queffelec [43] summarized what was known about the
ergodic and spectral theory of substitution systems, while a more recent survey of the state
of the art appears in [42]. Substitution tilings can be seen as a natural extension of this
branch of dynamical systems; insight and proof techniques can often be borrowed for use
in the tiling situation. We will use symbolic substitutions to motivate our study in the next
section.

From the world of physics, a major breakthrough was made in 1984 by Schechtman et.
al. [53] with the discovery of a metal alloy that, by rights, should have crystalline structure
since its X-ray spectrum was diffractive. However, the diffraction pattern had five-fold
rotational symmetry, which is not allowed for ideal crystals! This type of matter has been
termed “quasicrystalline”, and self-similar tilings like the Penrose tiling, having the right
combination of aperiodicity and long-range order, were immediately recognized as valid
mathematical models. Dynamical systems entered the picture, and it was realized that the
spectrum of a tiling dynamical system is closely related to the diffraction spectrum of the



Author's personal copy

N.P. Frank / Expo. Math. 26 (2008) 295–326 297

solid it models [10,25]. Thus we find several points of departure for the study of substitution
tilings and their dynamical systems.

1.2. One-dimensional symbolic substitutions

Let A be a finite set called an alphabet, whose elements are called letters. Then A∗,
the set of all finite words with elements from A, forms a semigroup under concatenation.
A symbolic substitution is any map � : A → A∗. A symbolic substitution can be applied
to words in A∗ by concatenating the substitutions of the individual letters. A block of the
form �n(a) will be called a level-n block of type a.

Example 1. Let A= {a, b} and let �(a) = abb and �(b) = bab. Beginning with the letter
a we get

a → abb → abb bab bab → abb bab bab bab abb bab bab abb bab → · · · ,

where we have added spaces to emphasize the breaks between substituted blocks. Notice
that the block lengths triple when substituted.

Example 2. Again let A = {a, b}; this time let �(a) = ab and �(b) = a. If we begin with
a we get:

a → ab → ab a → ab a ab → ab a ab ab a → ab a ab ab a ab a ab → · · ·
Note that in this example block lengths are 1, 2, 3, 5, 8, 13, . . . , and the reader can verify
that they will continue growing as Fibonacci numbers.

These examples illustrate the major distinction we make between substitutions. In the
first example, the length of a substituted letter is always 3 and thus the size of any level-n
block must be 3n; this is a substitution of constant length. In the second example the size of
a substituted letter depends on the letter itself, and the size of a level-n block is computed
recursively; this is a substitution of non-constant length. This is the essence of the distinction
between geometric and combinatorial tiling substitutions.

It is interesting to consider infinite sequences of the form {xk} = . . . x−2x−1.x0x1x2 . . .

in AZ. Such a sequence is said to be admitted by the substitution if every finite block of
letters is contained in some level-n block. In the theory of dynamical systems, the space of
all sequences admitted by the substitution is studied using the shift action s({xk}) = {xk+1}
(basically, moving the decimal point one unit to the right). An interested reader should see
[43,42] to find out more.

1.3. Two-dimensional symbolic substitutions

The most straightforward generalization to tilings of R2 (or Rd ) is to use unit square tiles
labeled (colored) by the alphabet A. These tilings can be considered as sequences in Z2,
and substitutions can take letters to square or rectangular blocks of letters. We only need to
ensure that all of the blocks “fit” to form a sequence without gaps or overlaps.
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Fig. 1. A substitution on two colored square tiles.

Fig. 2. Level-0, level-1, level-2, and level-3 tiles.
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Fig. 3. The Fibonacci direct product substitution.

To construct a constant length case substitution we can expand each colored tile by
some integer n > 1 and then subdivide into n2 (or nd ) colored unit squares. A simple
method for constructing non-constant length substitutions is to take the direct product of
one-dimensional substitutions of non-constant length.

Example 3. Let A = {1, 2}, where we represent 1 as a white unit square tile and 2 as a
blue unit square tile. Suppose the length expansion is 3 and that the tiles are substituted
by a three-by-three array of tiles, colored as in Fig. 1. Starting with the blue level-0 tile,
level-0, level-1, level-2 and level-3 tiles are shown in Fig. 2. One sees in this example the
tiling version of the rule creating the Sierpinski carpet.

Example 4. This time, let the alphabet be {a, b}× {a, b}; for simplicity of notation we put
(a, a)=1, (a, b)=2, (b, a)=3, (b, b)=4. The direct product of the Fibonacci substitution
of Example 2 with itself is shown in Fig. 3. Using only colors without the numbers we show
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Fig. 4. A few iterations of the Fibonacci direct product substitution.

the level-0 through level-4 blocks of type 1 in Fig. 4. The characteristic “plaid” appearance
of the direct product is evident.

Some literature on d-dimensional symbolic substitutions exists. In the non-constant
length case, direct product substitutions, with a generalization allowing randomness in
the choice of substitution from level to level, are studied in [33]. An extension of this
idea, allowing substitutions with restrictions forcing the substitutions to “fit”, are studied
in [23]. In the constant-length case, a partial survey and spectral analysis of this class
from the dynamical systems viewpoint appears in [13]. For those wishing to experiment
with various substitutions of both constant and non-constant length, the author maintains a
MATLAB freeware computer program that allows the user to generate these tilings of Z2 and
manipulate them in several ways [15].

1.4. Tilings of Rd

Let us introduce some terminology that will be useful throughout the paper. A tile is a
set t ⊂ Rd that is the closure of its interior. We will always assume that tiles are bounded;
in the literature it is frequently assumed that tiles are connected or even homeomorphic to
topological balls. In fact it is often required that the tiles be polygonal, but in substitution
tiling theory tiles with fractal boundary occur naturally. When it is desirable to distinguish
between congruent tiles they can be labeled (also called marked or colored). Two tiles are
considered equivalent if they differ by a rigid motion and carry the same label. A prototile
set is a finite set P of inequivalent tiles. Given a prototile set P, a tilingof Rd is a set T of
tiles, each equivalent to a tile from P, such that

(1) T covers Rd : Rd = ⋃{t : t ∈ T} , and
(2) T packs Rd : distinct tiles have non-intersecting interiors.

A T-patch is a finite union of tiles with non-intersecting interiors covering a connected
set; two patches are equivalent if there is a rigid motion between them that matches up
equivalent tiles. A tiling is said to be of finite local complexity (FLC) (also known as
having a finite number of local patterns) if there are only finitely many two-tile T-patches
up to equivalence. A tiling is called repetitive (also called almost periodic or the local
isomorphism property) if for any T-patch P there is an R > 0 such that in every ball of
radius R there is a patch equivalent to P . In dynamical systems theory the most work has
been done on repetitive tilings with finite local complexity.
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1.5. Infinite tilings from substitutions; tiling spaces and dynamical systems

Given a tiling substitution, it is possible to construct infinite tilings and tiling spaces
from that substitution in a few different ways. (This is also true for symbolic substitutions.)
Our description will be necessarily imprecise as different substitutions can require different
definitions of some of the terms; we give the main ideas here and refer the reader to sources
such as [45,48,56] to get more details.

One way to get an infinite tiling is to begin with some initial block or tile and substitute ad
infinitum. In many cases a limiting sequence or tiling T0 will exist. Sometimes it will cover
only a half-line, quarter-plane, or some other unbounded region of space, and sometimes
it will cover the entire line or plane. A less constructive method is to define a tiling T as
admitted by the substitution if every finite configuration of tiles in T is equivalent to a
configuration found inside a level-n tile, for some n. This generalizes the notion of admitted
sequences from the one-dimensional case.

The tiling space associated to a substitution is the set of all tilings admitted by that
substitution. Another way to obtain this space is to take the closure (in a suitable metric) of
all rigid motions of a limiting tiling T0. In either case, a point in the tiling space X is an
infinite tiling, and any non-trivial rigid motion of that tiling is considered a different point
in the tiling space.

1.6. Outline of the paper

Substitutions of constant length have a natural generalization to tilings in higher dimen-
sions, which we introduce in Section 2. These generalizations, which include the well-
studied self-similar tilings, rely upon the use of linear expansion maps and are therefore
rigidly geometric. We present examples in varying degrees of generality and include a
selection of the major results in the field.

Extending substitutions of non-constant length to higher dimensions seems to be more
difficult, and is the topic of Section 3. To even define what this class contains has been
problematic and there is not yet a consensus on the subject. For lack of existing terminology
we have decided to call this type of substitution combinatorial as tiles are combined to create
the substitutions without any geometric restriction save that they can be iterated without
gaps or overlaps, and because in certain cases it is possible to define them in terms of their
graph-theoretic structure.

In many cases one can transform combinatorial tiling substitutions into geometric ones
through a limit process. In Section 4, we will discuss how to do this and what the effects
are to the extent that they are known. We conclude the paper by discussing several of the
different ways substitution tilings can be studied, and what sorts of questions are of interest.

2. Geometric tiling substitutions

Although the idea had been around for several years, self-similar tilings of the plane
were given a formal definition and introduced to the wider public by Thurston in a series of
four AMS Colloquium lectures, with lecture notes appearing thereafter [58]. Throughout
the literature one finds varying degrees of generality and some commonly used restrictions.
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Fig. 5. The “chair” or “L-triomino” substitution.

We make an effort to give precise definitions here, adding remarks which point out some
of the differences in usage and in terminology.

2.1. Self-similar tilings: proper inflate-and-subdivide rules

For the moment we assume that the only rigid motions allowed for equivalence of tiles
are translations; this follows [58,56]. We give the definitions as they appear in [56], which
includes that of [58] as a special case.

Let �: Rd → Rd be a linear transformation that is expanding in the sense that all of its
eigenvalues are greater than one in modulus. A tiling T is called �-subdividing if

(1) for each tile t ∈ T, �(t) is a union of T-tiles, and
(2) t and t ′ are equivalent tiles if and only if �(t) and �(t ′) form equivalent patches of tiles

in T.

A tilingTwill be called self-affine with expansion map � if it is �-subdividing, repetitive,
and has finite local complexity. If � is a similarity the tiling will be called self-similar. For
self-similar tilings of R or R2�C there is an expansion constant � for which �(z) = �z.

The rule taking t ∈ T to the union of tiles in �(t) is called an inflate-and-subdivide
rule because it inflates using the expanding map � and then decomposes the image into the
union of tiles on the original scale. If T is �-subdividing, then it will be invariant under
this rule, therefore we show the inflate-and-subdivide rule rather than the tiling itself. The
rule given in Fig. 1 is an inflate-and-subdivide rule with �(z)= 3z. However, the rule given
in Fig. 3 is not an inflate-and-subdivide rule.

Example 5. The “L-triomino” or “chair” substitution uses four prototiles, each being an
L formed by three unit squares. We have chosen to color the prototiles since they are
inequivalent up to translation. The expansion map is �(z) = 2z and in Fig. 5 we show the
substitution of the four prototiles.

This geometric substitution can be iterated simply by repeated application of � followed
by the appropriate subdivision. Parallel to the symbolic case, we call a tile that has been
inflated and subdivided n times a level-n tile. In Fig. 6 we show level-n tiles for n = 2, 3,

and 4.

2.2. A few important results

One of the earliest results was a characterization of the expansion constant � ∈ C of a
self-similar tiling of C.
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Fig. 6. Level-2, level-3, and level-4 tiles.

Theorem 2.1 (Thurston [58]). If complex number � is the expansion constant for some
self-similar tiling, then it is an algebraic integer which is strictly larger than all its Galois
conjugates other than its complex conjugate.

In the study of substitutions, from one-dimensional symbolic substitutions to very general
tiling substitutions, the substitution matrix is an indispensable tool. (This matrix has also
been called the “transition”, “composition”, “subdivision”, or even “abelianization” ma-
trix.) Suppose that the prototile set (or alphabet) has m elements labeled by {1, 2, . . . , m}.
The substitution matrix M is the m × m matrix with entries given by

Mij = the number of tiles of type i in the substitution of the tile of type j . (1)

For example, the substitution in Example 3 has substitution matrix M =
(

9 1
0 8

)
when

we label a =1 and b=2. If an initial configuration of tiles has n white tiles and m blue tiles,
then M[n m]T is the number of white and blue tiles after one application of the substitution.

Since the substitution matrix is always an integer matrix with non-negative entries,
Perron–Frobenius theory is relevant (see for example [28,56]). The results we need require
M to be irreducible: for every i, j ∈ {1, 2, . . . , m} there exists an n such that (Mn)ij > 0.
Among other things, the Perron–Frobenius theorem states that if M is irreducible, then the
largest eigenvalue will be a positive real number that is larger in modulus than any of the
other eigenvalues of the matrix. This eigenvalue is unique, has multiplicity one, and is called
the Perron eigenvalue of the matrix.

Primitivity, a special case of irreducibility, is particularly important. A matrix M is prim-
itive if there is an n > 0 such that Mn has strictly positive entries. Primitivity of M means
if one substitutes any tile (or letter) a fixed number of times, one will see all of the other
tiles (or letters). This is a relatively strong property, and one that is almost always as-
sumed in the literature. All of the substitutions in the paper are primitive except Examples 3
and 19. There are substitutions that are irreducible but not primitive: for example the sym-
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bolic substitution a → bb, b → aa. The author is not aware of any systematic analysis of
such examples.

A proof of the following theorem can be found in [39].

Theorem 2.2. An FLC �-subdividing tiling is repetitive if and only if its substitution matrix
is primitive.

Solomyak’s papers [56,57] give several other key results for the dynamical systems of self-
similar or self-affine tilings. The following is stated as a corollary to the Perron–Frobenius
theorem.

Theorem 2.3 (Solomyak [56]). If M is primitive, the Perron eigenvalue of M is the volume
expansion | det �|. The Perron left eigenvector gives the relative volumes of the prototiles.

An algebraic integer is a complex Pisot number if all of its algebraic conjugates (except its
complex conjugate) are smaller than one in modulus. Whether or not the expansion constant
� is a Pisot number is especially important from a dynamical point of view. In dimensions
one and two, Solomyak [56] has shown that a self-similar tiling dynamical system is not
weakly mixing if and only if its expansion constant is a complex Pisot number. We will see
this number-theoretic property having other effects in Sections 3 and 4.

So far, the results in this section have depended only on the substitution matrix and
expansion constant, and not the geometry of the substitution. The final theorem in this
section uses the notion of “matching rules”, which are fundamentally geometric. Roughly
speaking, a set of matching rules determine which patches are allowed in a tiling. A simple
yet classic example is the Penrose tiling with marked rhombs, which we will encounter in
Example 8. The markings give matching rules that “enforce” the substitution in the sense
that any tiling of the plane constructed following the matching rules must be admitted by the
Penrose substitution. Goodman–Strauss was able to generalize this result to most geometric
tiling substitutions:

Theorem 2.4 (Goodman-Strauss [21]). Every (geometric) substitution tiling of Rd , d > 1
can be enforced with finite matching rules, subject to a mild condition: We require that tiles
admit a set of “hereditary edges” such that the substitution tiling is “sibling edge-to-edge”.

We leave a discussion of the particulars to [21] and note only that the “sibling edge-to-
edge” condition is mild enough to encompass most of the known examples.

2.3. Geometric generalization: infinite rotations and sizes

In the previous sections the only rigid motions allowed for tile equivalence were trans-
lations. However, there are natural tiling substitutions that require relaxing this to allow
rotations.

Example 6. The “pinwheel” substitution rule acts on right triangles of side lengths 1, 2,
and

√
5, inflating them by a factor of

√
5 and subdividing into five triangles as shown in

Fig. 7.
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Fig. 7. The pinwheel substitution.

Fig. 8. A level-3 tile for the pinwheel inflation.

α

a

b

c

Fig. 9. The first decomposition in Sadun’s pinwheel generalization.

Radin introduces pinwheel tilings in [44], attributing them to unpublished work of John
H. Conway. Radin proves that the tiles appear in an infinite number of orientations that are
uniformly distributed mod 2�, and calls the tiling space “statistically round” because it is
invariant under rotations of infinite order (Fig. 8). He also establishes matching rules for
the pinwheel substitution, giving us the first amazing example where local matching rules
produce infinite rotations!

Example 7. Sadun [52] comes up with an interesting twist on the previous example: the
“generalized pinwheel” tilings. Instead of requiring that the tiles be isometric to members
of some finite prototile set, he requires only that they be equivalent up to similarity. The
subdivision rules are quite straightforward but some choices arise for the inflation portion
and we do not attempt to explain those here. At the first level, one takes a right triangle
with side lengths a, b and c and subdivides it into 5 similar triangles as in Fig. 9. The
subdivision at the next stage takes place only on the largest of the triangles. One can continue
subdividing indefinitely; for the appropriate inflation at any stage and for precision of the
results mentioned below we refer the reader to [52].

All salient properties of a tiling admitted by the substitution depend on the angle �. For
the original pinwheel tiling � = sin−1(1/

√
5), and that is one of the angles for which the
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Fig. 10. A special case of the generalized pinwheel tilings: � = �/4.

Fig. 11. The “Penrose inflation”: an imperfect substitution rule.

tiling has finite local complexity, but the tiles appear in an infinite number of orientations.
For other values of � the tiles will only appear in a finite number of sizes. There is only
one value, � = �/4, for which the tiles appear in both a finite number of sizes and a finite
number of orientations. Fig. 10 shows a few subdivisions of this case.

2.4. Geometric generalization: pseudo-self-similar tilings

A close cousin of the self-similar tiling is the pseudo-self-similar tiling, which is generated
by a variant of the inflate-and-subdivide rule. Tiles are still inflated and then replaced by
tiles from the original scale, but these may stick out of or not completely cover the inflated
tile, so the substitution rule is “imperfect”. We will show two well-known substitutions
in this section, both of which can be converted into proper inflate-and-subdivide rules in
different ways.

Example 8. The Penrose inflation using marked rhombs is shown in Fig. 11. When the
reader attempts to inflate and subdivide a second time, she will notice that the subdivisions
of adjacent tiles overlap. This is not a contradiction, however, because the overlapping tiles
are equal and will therefore be considered the same tile (Fig. 12).

Penrose tilings appear in many equivalent forms, with alternative tile shapes such as
triangles or the famous “kites and darts”. The Scientific American article by Gardner [19]
introduced the Penrose tilings and many of their interesting properties to the general public.
In Chapter 10 of [22], the Penrose tiles are studied as kites and darts and in other forms.
It is possible to slice the Penrose rhombs in half, creating triangles (known as Robinson
triangles) on which a proper inflate-and-subdivide rule can be defined; we show this in
Fig. 13. Chapter 6 of [54] gives a detailed analysis of Penrose tilings and includes the
Robinson triangles.
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Fig. 12. A few iterations of the Penrose inflation.

Fig. 13. The triangles version of the inflate-and-subdivide rule.

Penrose tilings have a number of interesting properties, most of which can be found
in other tilings but were first observed in the Penrose tilings. We mention a few of the
highlights and leave the details to the references. There are (at least!) three ways, other
than substitution, to generate Penrose tilings. One, which we have already discussed, is via
matching rules: if an infinite tiling is constructed from Penrose tiles with the requirement
that adjacent tiles have matching arrows (both in number and direction), this tiling will be
a Penrose tiling. Amazingly, this local activity of matching the arrows forces the global
property of being generated by a substitution!

Two other methods for generating Penrose tilings are the multigrid method and the pro-
jection method. Since both methods rely on lattices, they can be used to prove that the
non-periodicity of the Penrose tilings is a tightly controlled form of disorder. The multigrid
method was discovered by DeBruijn [9]. In this method one superimposes five grids of lines
to create a “pentagrid”; every pentagrid is dual to a Penrose tiling. This method is used by
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Fig. 14. Another imperfect substitution uses the unmarked Penrose rhombs.

Out[55]=

Fig. 15. How to iterate the binary substitution.

Robinson [47] to understand the Penrose tilings as a dynamical system. A nice description
of the projection method appears in [54, pp. 195–196]. In this method a copy of Rd is
embedded in Rd+n, and some lattice L ⊂ Rd+n is chosen. Points from L are projected
onto the copy of Rd to form a tiling of Rd . Projection tilings have been studied extensively
and are only sometimes obtainable by methods of substitution. A characterization of the
intersection is given in a certain case in [24]. Point sets generated by generalized projection
methods are called “model sets” and are of great interest in mathematics and physics, and
their spectrum is the subject of intense study (see e.g. [29,31]).

If the reader were to experiment with a large set of Penrose rhombs, he would quickly
discover that it is difficult to tile a large region without disobeying the matching rules.
Indeed, almost all finite configurations of Penrose rhombs, no matter how large, cannot be
extended to infinite tilings [35]! Thus the fact that an infinite Penrose tiling exists at all is a
major result, and it can be proved using the presence of the inflation rule.

Example 9. The “binary tilings” (see [54]) are generated by the substitution rule shown in
Fig. 14 using the unmarked Penrose tiles; a few iterates are shown in Fig. 15. The volumes
expand linearly by a factor of (5+√

5)/2. This substitution is interesting from the dynamical
viewpoint as it produces a weakly mixing tiling dynamical system. The fact that it is weakly
mixing means that it has a level of disorder not present in the Penrose tilings, despite the
fact that the relative frequencies of thick to thin rhombs is the same in both tilings! Weak
mixing is evident in the diffraction spectrum, which is pictured in [54] and is analyzed in a
few papers including [20].



Author's personal copy

308 N.P. Frank / Expo. Math. 26 (2008) 295– 326

........

Fig. 16. Obtaining fractal binary tiles.

One can “redraw” the tiles of the binary tiling in such a way that the substitution rule
becomes a perfect inflate-and-subdivide rule that gives rise to a self-similar tiling of the
plane. The method is to take the limit as n goes to infinity of the support of the level-n
tiles divided by the nth power of the expansion constant (see Fig. 16, courtesy of E. Arthur
Robinson, Jr.). A general version of this process has been shown to work for all pseudo-self-
similar tilings of the plane [41]. This result is extended to tilings of Rd in [55], provided the
tiles appear in a finite number of orientations. In Section 4 we will use a similar process to
transform combinatorial substitutions into geometric ones, with some unexpected results.

3. Combinatorial tiling substitutions

The self-similar tilings and their close relatives in the previous section come from substi-
tution rules that have one thing in common: a single similarity (or expanding linear map, in
the self-affine case) governs the inflation of all of the tiles. Now we consider substitutions
for which a tile and its replacement may be geometrically unrelated, or for which there
are several linear maps governing the tile inflations. There is no unified definition for this
class of substitutions. Attempts to define a tiling substitution based on the dual graph of the
tiling have been made [38,12,1,11], and we call this method “constructive”. However, there
are perfectly reasonable tiling substitutions for which combinatorial information is insuffi-
cient to define the substitution rules. Substitutions of this type we call “non-constructive”.
Leaving a formal presentation of the definitions to the references, we simply present ideas
and some examples.

3.1. Constructive combinatorial tiling substitutions

In this type of substitution, level-n tiles can be constructed using only the information
about adjacencies between tiles, making it possible to iterate the substitution using only
local information.



Author's personal copy

N.P. Frank / Expo. Math. 26 (2008) 295–326 309

3

41

1

1 1

1

1

3

2

2

23

3

4

Fig. 17. Dually situated tiling and graph.
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Fig. 18. The vertices of the dual graph inherit the substitution.

For this discussion, we must require that the tiles in a tiling are topological balls. Such
a tiling of R2 makes a drawing of a planar graph: there is a vertex wherever three or more
tiles meet, an edge wherever exactly two tiles meet, and the tiles themselves are the facets.
The elements of this graph can be labeled according to the tile and adjacency types they
represent; we may choose a labeling scheme that provides as much or as little information
about the surrounding tiles as we wish. Any planar tiling has a dual graph: vertices of the
dual graph are tiles of the tiling, there is an edge between two vertices if the corresponding
tiles are adjacent, and facets corresponding to vertices in the tiling. The elements of a dual
graph inherit the labels of their dual counterparts. Part of a tiling and its dual graph are
shown in Fig. 17, using the conventions that numbers represent both the label and the vertex
of the graph, and that the edge and facet labels are suppressed.

The dual graph is a natural object on which to define a substitution, by analogy with
one-dimensional symbolic substitutions. The labeled vertices are the letters of an alphabet
that corresponds to our prototile set. Any rule that replaces a vertex with a finite graph
might correspond to a substitution rule for a prototile, provided the geometry of the tiles
allows it. A difficulty is that two vertices (tiles) may be adjacent in many different ways,
so to make the dual graph “see” this, we keep track of the adjacency types in our edge and
facet labels. Constructive combinatorial substitutions specify exactly how the substituted
graphs of two adjacent elements should be attached. The next example, taken from [12],
will provide some intuition.

Example 10. We obtain a direct product variation (DPV) substitution by rearranging some
of the tiles in the Fibonacci substitution of Fig. 3 to break up the direct product structure.
Here we have carefully rearranged the tiles in the substitution of the type 1 tile so that the
substitution can be iterated without inconsistency. We show the result in Fig. 18, along with
the induced graph substitution.

To obtain the level-n block, one simply concatenates the level-(n − 1) blocks in the
“obvious” manner as shown in Fig. 19, matching sides that have the same length in the
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Fig. 19. Iterating of the Fibonacci DPV on the tile of type 1.

1

3
4 24

3

1
12

1

3 2

1

2

11 3

41

1
2

2

4
21

12
1

3
3

1

1
2 2

4

1

1
3

2

1
3

1

1
1 3

2
4

4

1

3
2

3

3
4 2

1

1

3 1
24 1
2

3

3

31

4

1

2

2

13
31

3 1
24

1

1

2
31

3
4 2

4

1

Fig. 20. The substitution of an adjacent pair of tiles depends on its context.

order prescribed by Fig. 18. Since the side lengths of the level-(n− 1) blocks are Fibonacci
numbers, the fit is guaranteed at each stage. Note that the “plaid” appearance of the direct
product (Fig. 4) has disappeared.

But what if you want to substitute a pair of adjacent tiles within a level-n block? You
cannot do it consistently without knowing the larger context of the adjacency, that is, the
tiles that surround them in the tiling. For example, consider two horizontally adjacent tiles
of type 1. That adjacency appears twice in the level-3 tile of type 1 and we have circled
them on the left side of Fig. 20; what happens under substitution is shown on the right of
the same figure. For this graph substitution, the problem can be handled by relabeling the
edges and facets of the graph in terms of the immediate configuration of tiles the edge or
facet is contained in.

The basic idea of a constructive combinatorial substitution for tilings as it appears in
[12] and in a similar form in [1] is this. Given a labeled vertex set V representing the
prototile types, a map from V to the set of non-empty labeled graphs on V is the basis for
the substitution rule. The edges and facets of these graphs are labeled to give information
about the types of adjacencies they represent in a tiling. The substitution rule also specifies
how to substitute the labeled edges and facets so that we know how to connect the vertex
substitutions contained in certain labeled graphs. (The need to specify graph substitutions
on facets and not just edges is illustrated in an example in [12].) Defining a tiling substitution
rule this way is quite tricky since most labeled graphs do not represent the dual graph of a
tiling. This interplay between combinatorics and geometry is where the technicalities come
in to the formal definitions in the literature.

Example 11. The tiling substitution of Fig. 21, introduced in [1], is based on a variation
of the one-dimensional “Rauzy substitution” �(1) = 1 2, �(2) = 3, �(3) = 1. Fig. 21 is
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Fig. 21. A two-dimensional substitution based on the Rauzy one-dimensional substitution.
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Fig. 22. How to substitute important adjacencies for the Rauzy substitution.
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Fig. 23. A few iterates of the Rauzy two-dimensional substitution.

obviously not enough information to iterate the substitution, so we specify how to substitute
the “important adjacencies” in Fig. 22. This is enough [1]: there are no ambiguities when
substituting other adjacencies, and facet substitutions do not include any new information.
We show a few iterates of the tile of type 1 in Fig. 23, starting with the level-2 tile of
type 1. The fact that this substitution rule can be extended to an infinite tiling of the plane is
proved using non-combinatorial methods in [1]; a combinatorial proof of existence would
be welcomed. The Rauzy substitution falls into a class of substitutions that encode “stepped
surfaces”; see [11] for more results and references about this class.

3.2. Non-constructive tiling substitutions

When trying to make up new examples of combinatorial tiling substitutions it is easy
to create examples that fail to be constructive. The problem arises in the substitution of
adjacencies: it may happen that no finite label set can be chosen to describe all adjacencies
sufficiently to know how to substitute them. There is evidence to suggest that this sort of
example can arise when the constant which best approximates the linear growth of blocks
is not a Pisot number. The author is not aware of any formal definition containing these
examples and so proposes the following definition, which works directly with the tiling and
does not involve dual graphs.
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Fig. 24. A non-Pisot direct product variation substitution.

Definition 3.1. A (non-constructive) tiling substitution on a finite prototile set P is a set
of non-empty, connected patches S = {Sn(p): p ∈ P and n ∈ 1, 2, . . .} satisfying the
following:

(1) For each prototile p ∈ P and tile t ∈ S1(p), and for each integer n ∈ 2, 3, . . . , there
are rigid motions g(p, n, t): Rd → Rd such that Sn(p)=⋃

t∈S1(p)g(p, n, t)(Sn−1(t)),
where

(2) for any t �= t ′ in S1(p), the patches g(p, n, t)(Sn−1(t)) and g(p, n, t ′)(Sn−1(t ′))
intersect at most along their boundaries.

We say a tiling T is admitted by the substitution S if every patch in T appears as a
subpatch of some element ofS. This very general definition is satisfied by every substitution
appearing in this paper except the rhombus version of the Penrose substitution and those
generalized pinwheel tilings that do not allow a finite number of tile sizes. Examination of
Figs. 11 and 12 will convince the reader that condition (2) fails: the level-(n-1) tiles can
overlap by entire tiles.

The Rauzy substitution of Example 11 has a particularly efficient representation by this
definition. The patches S1(p) are given to the right of the arrows in Fig. 21, with all lower
right corners at the origin. Now, Sn(2) = Sn−1(3) and Sn(3) = Sn−1(1), so g(2, n, 3)

and g(3, n, 1) are the identity map. We find Sn(1) = Sn−1(1) ∪ g(1, n, 2)(Sn−1(2)), so
g(1, n, 1) is the identity map and all we have left to figure out is the formula for g(1, n, 2).
It turns out that g(1, n, 2) is translation by a vector 
vn that can be computed recursively.
Let 
v0 = (0, 0), 
v1 = (0, 1) and 
v2 = (−1, 0); for n�3 we have that 
vn = 
vn−3 − 
vn−2.

The Fibonacci DPV of Example 10 also has a relatively simple formulation in terms of
Definition 3.1. The side lengths of level-n tiles are given recursively, and the placement of
the level-(n − 1) tiles to create level-n tiles depends only on these side lengths. Thus the
translations g(p, n, t) are computable recursively as well. The next example is also a DPV,
but it cannot be defined in terms of dual graphs and is non-constructive. We encourage the
reader to think about how to write up Definition 3.1 in this case.

Example 12. Consider a DPV arising from a one-dimensional substitutiona → abbb, b →
a. From the direct product of this substitution with itself, we choose only to rearrange the
substitution of the type-1 tile as in Fig. 24.

The substitution matrix of this one-dimensional substitution has Perron eigenvalue � =
(1 + √

13/2), which is not a Pisot number: its algebraic conjugate �2 = (1 − √
13/2) is

larger than one in modulus. Using analysis similar to what we will see in Section 4.1, we
find that constants times �n are the best approximation to the lengths of level-n blocks.
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Fig. 25. A substitution similar to one in [12].

The reader can jump ahead to the left side of Fig. 31 to see the effect of � being non-Pisot
on the substitution. There we find an adjacent pair of tiles (circled in red) which, under
substitution, go to disjoint level-1 tiles (circled in green). It is possible to show that for any
large R > 0 there is a level-n tile containing adjacent tiles t1 and t2 such that the distance
between the substitutions of t1 and t2 in the level-(n + 1) tile is greater than R. The method
of proof relies on the fact that � is non-Pisot and the result in [14].

To illustrate that non-constructive tiling substitutions can have non-square tiles, to show
an interesting connection to “fault lines” (see Section 4.3), and for its entertainment value,
we include an unpublished substitution discovered by the author in 2002.

Example 13. This substitution uses eight prototiles, shown to the left of the arrows in
Fig. 25. The Perron eigenvalue of the substitution matrix is the same non-Pisot number as
in the previous example. Again an argument can be made to show that there are always
adjacencies that pull apart under the substitution, no matter how well we try to label them.
The left side of Fig. 32 shows four iterations of the square formed by two red triangles.

4. Connections between geometric and combinatorial substitutions

In Example 9, we saw an improper substitution that could be “fixed” by redrawing the
tile boundaries with the replace-and-rescale method. In this method, the new tile boundary
is the limit of the boundaries of the level-n tiles, rescaled by the nth power of the inflation
factor. In Example 9, the result was a set of fractal prototiles satisfying a proper inflate-
and-subdivide rule. It turns out that this process can be used to create prototile sets for
self-similar tilings in the case of some combinatorial substitutions as well. We begin with
the one-dimensional case, which is well-understood.

4.1. One-dimensional case

Given a symbolic substitution of non-constant length, it is easy to create an inflate-and-
subdivide rule on labeled intervals (tiles) that has the same combinatorics as the symbolic
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Fig. 26. Fibonacci substitution with unit length tiles.

Fig. 27. Fibonacci inflate-and-subdivide rule.

substitution. The expansion constant is the Perron eigenvalue of the substitution matrix
and the tile lengths are given by the Perron eigenvector. We illustrate with the Fibonacci
substitution in a way that looks ahead to the higher-dimensional case.

Example 14. We introduce some geometry by thinking of two unit length prototiles rep-
resented by different colors in Fig. 26. The reader can check that the level-n tiles will have

lengths given by the entries of (1, 1)Mn, where M is the substitution matrix

[
1 1
1 0

]
. This

matrix has eigenvalues given by 1±√
5

2 : the golden mean � and its conjugate 1 − � = −1/�.
Let 
v1 = (�, 1) and 
v2 = (1, −�) denote the associated left eigenvectors. There are constants
k1 and k2 so that (1, 1) = k1
v1 + k2
v2, which gives us the vector of level-n tile lengths:

(1, 1)Mn = �nk1
v1 + (−1/�)nk2
v2 (2)

The lengths of the intervals for our self-similar tiling are the entries of limn→∞�−n(1, 1)Mn

= k1
v1. The length of the type-a tile is k1� and the length of the type-b tile is k1. These
lengths form an eigenvector for M , so there exists an inflate-and-subdivide rule, which we
have shown in Fig. 27.

Notes: (1) This process works on any substitution on m letters provided that the vector
(1, 1, . . . , 1) lies in the span of the left eigenvectors of the substitution matrix of the substi-
tution. It works trivially on constant length substitutions since (1, 1, . . . , 1), the vector of
unit tile lengths, already forms a Perron eigenvector for the substitution matrix.

(2) In the Fibonacci example, since � is a Pisot number (its conjugate −1/� is smaller than
one in modulus), the higher the inflation the less important the second term of
Eq. (2) becomes. Thus the lengths of the level-n tiles of the inflate-and-subdivide rule
are asymptotically close to the lengths of the non-constant length substitution, and there-
fore approximately integers! The situation is dramatically different, of course, if any of the
secondary eigenvalues are strictly greater than one in modulus.

4.2. Two-dimensional case

The reader should not be too surprised to discover that this process will work for direct
product substitutions, such as Example 4, and their variations, such as Examples 10
and 12. The level-n blocks are rectangular and have side lengths given by the lengths
of the one-dimensional substitution. Rescaling by the expansion factor gives us rectan-
gular tiles whose side lengths are determined by the Perron eigenvector as before. Thus,



Author's personal copy

N.P. Frank / Expo. Math. 26 (2008) 295–326 315

Fig. 28. Comparing the DPV with the SST of Example 15.

if the original one-dimensional substitutions have a proper inflate-and-subdivide rule, so
will any DPVs associated with them. Still, it is instructive to consider the two-dimensional
replace-and-rescale method as it applies in this simple case.

Example 15. Consider the Fibonacci DPV substitution of Example 10. There are four tile

types and the substitution matrix is M =
⎡
⎢⎣

1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

⎤
⎥⎦. If there is a proper inflate-and-

subdivide rule corresponding to our substitution, it must have the same substitution matrix.
This tells us that the volume expansion of the rule must be the Perron eigenvalue, which in
this case is �2, the square of the golden mean. (The other eigenvalues are 1, 1, and 1/�2.)
The level-n tiles of the DPV substitution are supported on rectangles with side lengths given
by either the nth or the (n − 1)st Fibonacci numbers. We rescale the volumes by 1/�2n to
obtain prototiles for our self-similar tiling.

In some cases there is a “right” way to see this process. We must find a linear map
�: R2 → R2 that expands with the Perron eigenvalue of the substitution matrix M and
approximates the growth of the level-n tiles with increasing precision as n grows. Whether
such a map exists, and how to find it, is unclear in general, but in this example � is given

by the matrix

[
� 0
0 �

]
. Denoting the support of the level-n tile of type t as supp(Sn(t)), we

can find the support of the prototile t ′ for the inflate-and-subdivide rule that corresponds to
t by setting

t ′ = lim
n→∞ �−n(supp(Sn(t)).

In Fig. 28 we compare level-5 tiles from the DPV (left) and the self-similar tiling (right).

Example 16. The self-similar tiling associated with the Rauzy two-dimensional substitu-
tion of Example 11 has as its volume expansion the largest root of the polynomial x3−x2−1.
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Fig. 29. A comparison of an iterate with the limiting self-similar tiles.

Fig. 30. The inflate-and-subdivide rule associated with Example 12.

One can show that the expanding map is � =
[

1 1
1 0

]
. The three tile types obtained by the

replace-and-rescale method are shown in Fig. 29, compared with a large iteration of the
substitution.

4.3. Curious examples

The replace-and-rescale method can produce intriguing results, especially if the substitu-
tion is not constructive or not primitive. We look at the non-constructive case in Examples
17 and 18 and discover that the associated geometric substitution tilings may lose local
finiteness. In Example 19 we consider the non-primitive case to see how a lack of primi-
tivity can impact the geometric substitution; in this case an attempt to “fix” the situation
yields new tiling substitutions that fail to have the expected relationship to one another.

Example 17. Applying the replace-and-rescale method to the substitution in Example 12
produces the inflate-and-subdivide rule of Fig. 30. It is proved in [14] that any tiling admitted
by this inflate-and-subdivide rule does not have finite local complexity since there are two
tiles that meet in infinitely many different ways. (Examination of the tiling on the right of
Fig. 31 may convince the reader that this is plausible.) This lack of local finiteness means
that the dynamical results found in [56], most notably that the system should be weakly
mixing, cannot be directly applied.
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Fig. 31. Three iterates of the tile of type 1, with a loss of FLC on the right.

For self-similar tilings the loss of finite local complexity can only happen along arbitrarily
long line segments composed of tile edges [27,14]. As you travel along such a segment, a
discrepancy in the number of short tile edges from one side of the line to the other appears;
on longer segments this discrepancy increases as more and more short edges pile up on one
side than the other. Because the tile edge lengths are not rationally related, this means that
we must keep seeing new adjacencies as the discrepancy grows. In the limit one will see
infinite fault lines along which tiles may slide across one another with arbitrary offsets.

The growth of these discrepancies is made possible by the fact that the expansion con-
stant’s algebraic conjugate is greater than one in modulus. This is also responsible for the
fact that original DPV has adjacencies that are ripped apart when substituted, as shown in
the left of Fig. 31.

Example 18. As in the previous example, the substitution of Example 13 gives rise to a
self-similar tiling that does not have finite local complexity. In the previous example, fault
lines could occur both horizontally and vertically. In this example, fault lines can occur
horizontally, vertically, and diagonally, as one can see from the right side of Fig. 32. The
author believes there may be examples that allow fault lines in more than three distinct
directions.

Example 19. A famous one-dimensional dynamical system is given by the Chacon cut-
and-stack construction, which provided the first example of a weakly but not strongly mixing
system (see [42, p. 133], for a synopsis of the results in the one-dimensional case). The cut-
and-stack ergodic measure-preserving system can be recoded by the symbolic substitution
a → aaba, b → b, and Fig. 33 shows a DPV substitution based on this.

Another tiling version of the construction, shown in Fig. 34, is analyzed from a dynamical
systems viewpoint in [34] and put in the context of combinatorially substitutive tilings in
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Fig. 32. Four iterations of a square formed by two red triangles. Fault lines occur in three directions
in the tiling on the right.
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Fig. 33. A Chacon DPV substitution.

Fig. 34. The Chacon cut-and-stack construction found in [34].

[12]. The four prototiles used in those works are not square, but are a rescaling of the
supports of the level-1 tiles in Fig. 33.

This substitution is not primitive since no matter how many times we substitute the three
small tiles, they will never contain the large square. Because of this we cannot obtain a
meaningful self-similar tiling directly using the replace-and-rescale method: the replace-
ments of all but the large square will have volumes that go to zero under rescaling, leaving
us with only the first tile and a trivial substitution.

There is a way to recode the system into a primitive one, producing the prototiles shown
to the right of the arrows in Fig. 35. By referring to Fig. 36, the reader may be convinced that
knowing the surroundings of a particular tile is enough to decide unambiguously with which
new prototile to replace it. The non-primitive Chacon substitution turns into the primitive
one of Fig. 37.
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Fig. 35. A new tile set that makes a primitive Chacon substitution.

Fig. 36. Chacon level-two tiles, non-primitive and primitive versions.

Fig. 37. The Chacon primitive substitution.

Because there is a locally defined map taking tilings admitted by the non-primitive sub-
stitution to tilings admitted by the primitive substitution, and vice versa, the tiling spaces are
considered mutually locally derivable. This means that the dynamical systems are equiv-
alent in the sense of “topological conjugacy” [40]. Thus important dynamical features are
preserved. One such dynamical feature, proved in [34], is that the dynamical system under
the action of Z2 is weakly mixing.

The larger eigenvalue of the substitution matrix of the Chacon primitive substitution
is 9, and it is not difficult to see that the length expansion is governed by powers of
3. The replace-and-rescale method produces a prototile set of five congruent squares;
the inflate-and-subdivide rule is shown in Fig. 38.

What makes this example curious is that the dynamical systems of the combinatorially
substitutive tiling and its associated self-similar tiling are distinctly different. Since the
self-similar tiling’s expansion constant is the Pisot number 3, the results of [56] show that
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Fig. 38. The inflate-and-subdivide rule associated to the Chacon primitive substitution.

Fig. 39. Comparing three iterations of the white square.

under the R2 action, its dynamical system is not weakly mixing. An embedded Z2 action
would therefore also fail to be weakly mixing. This stands in contrast to the weakly mixing
Z2 action proved in [34] when the substitution is only combinatorial. One can see that
the systems are “misaligned” by considering Fig. 39 and comparing the location of the red
circle in each substitution, which for n=0, 1, and 2 represents the central level-n tile within
its level-(n + 1) tile. One can check that as n grows without bound so does the distance
between the red dots. That is, if any corners of the level-n tiles are lined up, the red dots
will move further and further away from one another!

5. Some areas of research

Substitution tilings are being studied from topological, dynamical, physical, combi-
natorial, and other perspectives, often in conjunction with one another. In this section
we will briefly outline areas of current interest and possible questions for future
study.
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5.1. Geometric tiling substitutions

Tilings make good models for the atomic structure of crystals and quasicrystals, and
perhaps the most exciting work on them is being done at the intersection of physics and
topology. Methods for investigating certain tiling spaces via C∗-algebras have been devel-
oped and are nicely summarized in [26]. The types of tilings that are most easily evaluated
this way are self-similar tilings and tilings generated by the projection method. (Some tilings,
such as the Penrose and the “octagonal” tilings, fall into both categories). The K-theory of
these C∗-algebras are of interest to both mathematicians and physicists. The possible energy
levels of electrons in a material modeled by a tiling determine gaps in the spectrum of the
associated Schrödinger operator. The K-theory gives a natural labeling of the spectral gaps,
thus providing theoretically relevant physical information (see [3] for a detailed discussion
of this branch of study). It is believed that there may be additional physical interpretations
for K-theory and other topological invariants of tiling spaces.

There is more promising topological work being done as well. For instance, it has been
shown in varying degrees of generality (see [51] and references therein) that FLC tiling
spaces are inverse limits. Successful efforts to compute the homology and cohomology of
tiling spaces, and to connect these results to K-theory, have been plentiful. A nice summary
of this work, along with the discovery of torsion and its ramifications, appears in [18]
with a primary emphasis on “canonical” projection tilings. An informal discussion of the
connections between some physical and mathematical problems appears in [50], with a
focus on recent progress in the cohomology of tiling spaces. Included is a summary of
the work in [7] involving cohomological analysis of the deformations of tiling spaces. An
important question is the extent to which the homology and cohomology of tiling spaces
has physical interpretations.

Almost all of the existing literature on the topology of tiling spaces makes the assumption
of local finiteness. This is, after all, an appropriate restriction, given that the model of atomic
structure requires tiles (atoms) to fit together in only a finite number of ways. However,
examples exist of geometric tiling substitutions that result in non-FLC tilings, for example
Danzer’s triangular tilings [8] and the tiling from [14], which is easily generalized using
the methods of Section 4. In [27], Kenyon was the first to consider the conditions under
which a tiling of R2 with finitely many tile types can lose local finiteness: the tile boundaries
must contain circles or arbitrarily long line segments, thus substitution tilings without finite
local complexity have fault lines along which tiles can slide past one another. In [16], the
cohomology of a highly restricted class of non-FLC substitution tilings was successfully
computed, and it was shown that each fault line leaves a sort of signature in the cohomology
in dimension 3, even though the tilings are two-dimensional. It is a topic of current interest
to understand the topology of tiling spaces without finite local complexity.

At the intersection of mathematical physics and dynamical systems is the connection
between the diffraction spectra of quasicrystalline solids and the dynamical spectra of the
tilings that model them. The fact that these spectra are related at all is first established
in [10], while the mathematical description of the diffraction spectral measure is given
sound theoretical footing in [25]. Much of the work to date has centered around discrete
point sets called Delone sets, which can be thought of as locations of molecules and which
can be converted into tilings in a few different ways. Ever since Schectman et al. [53]
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discovered quasicrystals in a laboratory experiment, people have been trying to figure out
which Delone sets are “diffractive” in that their spectra exhibit sharp bright spots. Math-
ematically it is interesting to ask when the spectra consists only of sharp bright spots, i.e.
when it has “pure point spectrum”. More precisely, one defines a spectral measure which
can be broken into pure point, singular continuous, and absolutely continuous pieces with
respect to Lebesgue measure. Great progress has been made for “model sets” (obtained by
a generalized projection method), and for Delone sets generated by substitutions; a current
synopsis of the state of the art appears in [31]. It is now known that for certain locally finite
Delone sets the notions of pure point dynamical and pure point diffraction spectra coincide
[29]. This was generalized in [2] in a measure-theoretic setting which allows for a lack of
local finiteness. The question of whether certain substitution systems consist of model sets
can be investigated by looking for “modular coincidences”; [17] has an algorithm and many
examples, which build upon the work in [29]. Questions remain regarding the connections
when there is any continuous portion of the spectral measures. The dynamical spectra of
specific geometric tiling substitutions have been studied ([56,13] and others) but are not
completely understood.

Related to the study of tilings and model sets is a question in dynamical systems theory.
For one-dimensional symbolic substitutions, it is sometimes possible to find a “geometric
realization” of the substitution. A formal definition appears in [43, p. 140], but the idea is
that a geometric realization is a geometric dynamical system, (such as an irrational rotation
of the circle), which encodes the system via partition elements. For example, the Fibonacci
substitution sequences can be seen to code, in an almost one-to-one fashion, addition by 1/�
on a one-dimensional torus, where � is the golden mean (see [42, p. 199], for details). Orbits
in this geometric realization “look like” one-dimensional tilings. Several more examples
are given in [42, p. 231]. If a tiling dynamical system arises from a model set, then it
can be seen as a geometric realization. For example, it is shown in [47] that the Penrose
rhombic tiling dynamical system is an almost one-to-one extension of an irrational rotation
on a four-dimensional torus. In general, we do not know when substitution tilings have
geometric realizations.

5.2. Combinatorial tiling substitutions

This paper provides the full extent, to the author’s knowledge, of known classes of combi-
natorial tiling substitutions. All of the examples in Section 3 are obtained by various means
from one-dimensional symbolic substitutions. What other mechanisms exist for generating
combinatorial substitutions? Is there a method for obtaining non-geometric substitutions
from geometric ones? It seems clear that there should be a multitude of other examples
waiting to be discovered, and finding them is of paramount importance.

Combinatorial tiling substitutions have hardly begun to be studied from the dynamical
systems viewpoint. In analogy with the self-similar case and many of its generalizations,
we would like to investigate basic ergodic-theoretic properties such as repetitivity, unique
ergodicity, and recognizability. This program was carried out in [23] on a restricted class
of two-dimensional symbolic substitutions of non-constant length for which “standard”
techniques could be applied. Unfortunately, these techniques do not necessarily work in the
non-geometric case. The crucial missing piece is that the substitution rule cannot always
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be seen as an action from the tiling space to itself: the substitution can be applied only to
level-n tiles, not to entire tilings. Many combinatorial tiling substitutions do not extend to
maps of the tiling space in a canonical way, and it is unclear whether (or when) any of them
do. New methods will need to be devised to tackle even the most basic questions in the
dynamical systems and ergodic theory of combinatorial substitution tilings.

A closely related concept, essential to many standard arguments, is whether the substi-
tution map can be locally “undone” so that one can detect the level-1 tile in a given region
without requiring infinite information about the tiling. This is called recognizablility in the
sequence case and the unique composition property in the self-similar tilings case. When
the substitution acts as a continuous map on the tiling space, unique composition is equiva-
lent to the substitution map being invertible. In the event of non-periodicity, recognizability
and unique composition were proved in [32,57], respectively. Although the substitution
map may not make sense on tiling spaces in the non-geometric case, the notion of unique
composition still does, and a natural conjecture is that combinatorial substitutions possess
it whenever they are non-periodic.

In one dimension, there is great interest in the theory of “combinatorics on words”
(see Part I of [42] for an extensive exposition). In this theory, one considers finite blocks of
letters and investigates how often they appear, and in what combinations, within sequences.
Substitution sequences are particularly fertile for this type of study. The complexity of a
sequence is a function p(n) telling how many words of length n exist in the sequence; this
can be used to compute the topological entropy [42, p. 4]. Any non-periodic sequence with
minimal complexity is called Sturmian, the classic example being the sequence given by the
Fibonacci substitution. One can read about the numerous consequences of being Sturmian in
[42, Chapter 6]. The notion of complexity can be generalized to higher dimensions and some
results exist in this direction (see [5] and references therein). Combinatorial substitutions
such as the Rauzy substitution of Example 11 are a natural place to look for examples of
low-complexity sequences.

Some problems that have been at least partially resolved for geometric substitutions
are still open for combinatorial ones. For instance it is completely unclear whether there
should exist matching rules which force tiles to fit together as prescribed by combinatorial
substitutions. Would it be possible to use the matching rules for their associated self-similar
tilings, which we know exist by [21], to find them? Another question is, since the connection
to the atomic structure of solids is an important motivation for the study of tiling spaces, can
we identify the diffraction or dynamical spectrum of combinatorial substitution? It is known
that the dynamical spectrum of the Chacon substitution is trivial since it is weakly mixing
[34], and following [56] it is reasonable to conjecture that DPV substitutions without Pisot
expansions might also be weakly mixing. For combinatorial substitutions, is the spectrum
largely dependent on the Perron eigenvalue of the substitution matrix, as it is in the geometric
case [56]? Or is the situation like the one-dimensional symbolic case, which is also highly
sensitive to the combinatorics of the substitutions?

5.3. Connections between the constant and non-constant length cases

The first open question is, when does a combinatorial tiling substitution give rise to a
reasonable geometric one? We have already seen that the non-primitive Chacon substitution
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of Example 19 does not. There must be substitutions for which the limit in the replace-and-
rescale method does not exist, or produces topologically unpleasant tiles. In fact, it is unclear
exactly how the replace-and-rescale method ought to properly be applied: determining
the appropriate linear expansion map is problematic for at least two reasons. First, the
combinatorial substitution might be encoding an inflate-and-subdivide rule that does not
inflate as a similarity. This means that knowing the volume expansion would not tell us
the appropriate length expansions. Second, if the linear map is a similarity, there may be
some rotation inherent in the combinatorial substitution that would need to be expressed in
the linear map, as in the Rauzy substitution of Example 11. In the best circumstances we
could hope to find conditions under which the expansion can be found, the limiting tiles are
topologically “nice”, and a proper inflate-and-subdivide rule exists.

It is interesting to consider the relationship between the dual graphs of a combinato-
rial substitution and its associated geometric substitution (if it exists). It is clear from
Fig. 28 that the dual graphs must always have the same labeled vertices, but the edge
and facet sets do not seem to bear a consistent relationship to one another. In the case of
Example 15 the edge set of the DPV’s dual graph is contained in that of its self-similar
tiling, but this is not true in general. Since the unlabeled dual graphs are not isomorphic,
there is no homeomorphism of the plane taking one to another (see [22, p. 169]). Can an
understanding of the combinatorial properties of one tiling still give us insight into the
other?

In one-dimensional symbolic dynamics, the Curtis–Lyndon–Hedlund Theorem (see [30])
states that homeomorphisms between symbolic dynamical systems are equivalent to local
maps called “sliding block codes”. A sliding block code transforms one sequence into
another element by element, deciding what to put in the new sequence by looking in a
finite window in the old one. Similarly, one tiling can be transformed locally into another;
if the process is invertible the tilings are mutually locally derivable. It has come to light
that there is no Curtis–Lyndon–Hedlund theorem for tiling dynamical systems [37,46].
Using the basic method of [46], one can show that Example 10 and the associated self-
similar tiling of Example 15 have topologically conjugate dynamical systems without the
possibility of mutual local derivability. We conjecture that in the Pisot case, combina-
torial substitutions have topologically conjugate dynamical systems with their geometric
counterparts. In general one would not expect the conjugacy to be through mutual local
derivability.

Our final question takes note of the fact that the dynamical relationship between substitu-
tion sequences and self-similar tilings of the line is especially subtle. On a sequence space
there is a Z-action; passing to a tiling by choosing tile lengths provides a natural action by R

called a “suspension”. Surprisingly, the continuous action of the tiling space is probably bet-
ter understood than the discrete action! For instance, the presence or absence, and nature of,
eigenvalues of the tiling dynamical system can be understood in terms of the expansion con-
stant along with certain geometric information [56]. This situation is far more complicated in
the symbolic case and the interested reader should see [42, Section 7.3] for a synopsis. Also,
topological conjugacies between different suspensions have been thoroughly considered in
[6], where it is seen that the eigenvalues of the substitution matrix play a critical role. We can
consider tilings such as those in Fig. 31 as being suspensions of the same sequence in Z2,
and ask similar questions about their spectra and topological properties. More generally, we
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can consider tilings such as those in Fig. 32 as being suspensions of the same labeled graph.
This perspective yields an interesting set of problems at the intersection of dynamics and
combinatorics.
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