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Abstract. A basic assumption of tiling theory is that adjacent tiles can meet
in only a finite number of ways, up to rigid motions. However, there are many
interesting tiling spaces that do not have this property. They have “fault lines”,
along which tiles can slide past one another. We investigate the topology of a
certain class of tiling spaces of this type. We show that they can be written
as inverse limits of CW complexes, and their Čech cohomology is related to
properties of the fault lines.

1. Introduction. In discussing tilings, a standard assumption is that tiles can
meet in only a finite number of ways, up to rigid motion. Equivalently, for any
radius R, there are only a finite number of patches of radius R in the tiling, up to
rigid motion. This condition is called finite local complexity, or FLC. 1

In this paper we consider tilings that do not meet the FLC condition. We show
that spaces of such tilings can be given a natural topology in which they are compact.
Many of the techniques used for FLC tilings, such as inverse limit constructions and
cohomology calculations, can be modified to handle non-FLC tilings. In particular,
we work out a number of simple examples, and prove theorems about a broader
class of examples.

1.1. Past work. The first substantial work on non-FLC tilings was done by Kenyon
[9], who considered a substitution that was combinatorially equivalent to a →
(

a a a

a a a

a a a

)

, but in which one of the columns was shifted by an irrational distance

relative to the other two. (The tile itself was not a polygon. Rather, it had straight
edges on the left and right, while the top and bottom had fractal pieces that looked
like the devil’s staircase). Upon further substitution, the shift between the columns
would grow to an arbitrarily large multiple of the original irrational distance. In
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1Frequently an even stronger condition is applied, namely that tiles can only meet in a finite
number of ways up to translation, a condition that excludes tilings like the pinwheel [11], in which
tiles appear in an infinite number of orientations.
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the limit, an infinite line of tile edges would appear, along which tiles could face one
another in an infinite variety of ways. Such a line is an example of a “fault line”,
which we now define.

Given a finite set of prototiles (usually assumed to be polygonal, or perhaps closed
topological disks), a tiling is a covering of R

d by rigid motions of copies of these
prototiles that are only allowed to intersect on their boundaries. A tiling space X is
any translation-invariant set of such tilings that is closed under the third topology
of section 1.2. Let T ∈ X be a tiling containing an infinite line (or ray) ℓ of tile
edges, and let ~v be a unit vector parallel to ℓ. We say that ℓ is a fault line if for
every ǫ > 0 there is a tiling T ′ ∈ X such that:

1. On one half- (or quarter-) plane with boundary ℓ, T ′ = T , and
2. there is a t with 0 < |t| ≤ ǫ such that on the other half- (or quarter-) plane

with boundary ℓ we have T = T ′ + t~v.

If for every sufficiently small ǫ > 0 it is possible to choose t = ǫ, we call ℓ a regular

fault line.
Fault lines play a central role in any discussion of non-FLC tilings. This is

because Kenyon also proves [10] that if a tiling that is made from a finite prototile
set has an infinite number of inequivalent two-tile patches, then those patches occur
along straight edges, or they occur along an entire circle of tile boundaries. The
former case leads to fault lines, while the latter can only occur for special prototile
sets (and never, for instance, in primitive substitution tilings [5]).

In 1998, Sadun [13] proposed some generalizations of the pinwheel tiling. One
such example (Til(1/2)) uses polygonal tiles (two similar right triangles) that appear
in infinitely many orientations, and has a fault line. Interestingly, this example
meets the conditions of Goodman-Strauss’ matching rules theorem [7]. To wit:
there exists a finite collection of tiles and a finite set of local matching rules such
that these tiles tile the plane, but only in a manner that is locally equivalent to the
generalized pinwheel. That is, a finite set of local rules forces a global hierarchical
structure that in turn forces infinite local complexity.

Danzer [4] extended the theory of FLC tilings and provided additional examples.
Finally, Frank and Robinson [6, 5] have considered a large family of “direct product
variation” (DPV) tilings. These are obtained from products of 1-dimensional sub-
stitutions by rearranging the positions of the tiles within an order-1 supertile. The
examples of this paper are all DPV tilings in which the rearrangements are purely
horizontal, thereby preserving the decomposition of the tiling into rows.

In all cases, the essential feature that prevents FLC is the presence of a fault line.
Along the fault line, the evolution is described by two 1-dimensional substitutions.
One describes what happens along one side of the fault line, while the other describes
what happens along the other side. The two substitutions cannot be Pisot with the
same stretching factor, because in that case the FLC property is preserved [5] and
there is no possibility of a fault line. However, if the substitutions are not Pisot,
then differences in distributions of lengths on opposite sides of the fault line will
generally grow with successive substitution, and the FLC property can be lost. This
will be discussed further in section 2.

1.2. Three Topologies. There are three metrics, and hence three topologies, that
are frequently applied to tilings and tiling spaces.

In the first metric, two tilings are considered ǫ-close if they agree, up to a transla-
tion of size ǫ or less, on a ball or radius 1/ǫ around the origin. In this topology, the
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Figure 1. Part of the generalized pinwheel T il(1/2).

Figure 2. A patch of a DPV tiling with vertical and horizontal
fault lines.

closure of the (translational) orbit of a tiling is compact if and only if two conditions
are met: (a) there are only a finite number of tile types, up to translation, and (b)
tiles can only meet in a finite number of ways, up to translation. This is the most
frequently used topology for tilings that meet these conditions. Obviously, tiling
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spaces without FLC are not compact in this topology, but neither are pinwheel-type
spaces, which may have FLC even though the tiles may appear in infinitely many
orientations.

In the second metric, one applies a metric to the group of rigid motions of the
plane (e.g., defining an ǫ motion to be a translation of size ≤ ǫ followed by a rotation
by ≤ ǫ about the origin). One then considers two tilings to be ǫ-close if they agree,
up to an ǫ motion, on a ball of size 1/ǫ about the origin. For tilings in which tiles
appear in only finitely many orientations (e.g., the Penrose tiling), this is equivalent
to the first topology. However, it also handles pinwheel-like spaces appropriately.
In this topology, the orbit closure of a tiling is compact if and only if the tiling has
FLC.

Finally, one can use a metric in which two tilings are ǫ-close if they contain the
same tiles out to distance 1/ǫ, and if each tile in the first tiling is within an ǫ-motion
of the corresponding tile in the second tiling. Note that in this topology, an ǫ shear
along a fault line yields a tiling that is ǫ-close to the original, while in the first two
topologies it does not.

For tilings with FLC, the third topology is the same as the second, insofar as it
is impossible to apply a small rigid motion to one tile without applying the same
motion to all of its neighbors. However, in the third topology the orbit closure
of any tiling with finitely many tile types is always compact. (To see sequential
compactness, start with an arbitrary sequence of tilings, pick a subsequence in which
the type, location and orientation of a tile near the origin converges. Then pick a
subsequence in which the type, location and orientation of a second tile converges.
Keep working outwards from the origin, and then apply a Cantor diagonalization
argument to find a subsequence that converges everywhere.)

In the third topology, FLC is not a topologically invariant property. Radin and
Sadun [12] constructed a pair of spaces, one FLC and one not, that are topologically
conjugate.

1.3. Outline of paper. In section 2, we study the evolution of fault lines in 2-
dimensional substitution tilings. This is essentially 1-dimensional dynamics, and
we relate properties of the fault line to the form of the induced 1-dimensional
substitutions.

In section 3, we consider a 2-dimensional substitution tiling with horizontal fault
lines. The rows of this tiling are (almost) all the same, up to a horizontal shift, which
is controlled by a vertical 1-dimensional substitution. We show that the resulting
tiling space can be constructed as the inverse limit of compact CW complexes. We
explicitly compute the cohomology of this tiling space, and discuss the meaning of
each term.

In section 4, we consider a more complicated substitution, as a step towards the
direct product variations considered in section 5. These direct product variations
look like the product of a vertical and a horizontal 1-d substitution tiling, except
that the rows are sheared by an amount governed by the vertical substitution,
and exhibit horizontal fault lines. The cohomology of the resulting tiling space is
computable in terms of the cohomologies of the vertical and horizontal 1-d spaces,
and the combinatorics of the vertical substitution. Specifically, let µ be H1 of the
horizontal 1-d substitution tiling space, and let M be the n×n substitution matrix
of the vertical substitution, as applied to collared tiles. Then

• H0 of the 2-d tiling space is Z, of course.
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• H1 of the 2-d tiling space is isomorphic to H1 of the vertical 1-d substitution
space.

• H2 of the 2-d tiling space is isomorphic to the tensor product of µ with the
direct limit of Z

n under the map MT . This in turn is related to H1 of the
vertical substitution space and the number of possible fault lines.

• H3 contains one copy of µ ⊗ µ for each possible infinite fault line.
• Hk is trivial for k > 3.

Since H3 is nontrivial, the 2-d tiling space is not homeomorphic to any 2-d tiling
space with FLC.

Finally, in section 6 we consider open problems in the theory of tilings without
FLC, and discuss our partial understanding of these problems.

2. Analyzing a fault line — 1 dimensional dynamics. Consider the
1-dimensional substitutions σ1(a) = ba, σ1(b) = aaa, σ2(a) = ab, σ2(b) = aaa.

Both substitutions have substitution matrix

(

1 3
1 0

)

, with Perron-Frobenius eigen-

value λ = (1+
√

13)/2 ≈ 2.3028, the larger root of the equation λ2 −λ− 3 = 0. For
a self-similar tiling, the a tile can be given length λ while the b tile has length 3.
Note that for any word W , σ2(W ) is a cyclic permutation of σ1(W ), obtained by
removing an a from the end and sticking it on the beginning. If W is a bi-infinite
word, then σ1(W ) and σ2(W ) are the same, up to translation by the length of a.
This implies that the tiling spaces defined by σ1 and σ2 are exactly the same.

Suppose we have a tiling with rectangular tiles a and b of widths λ and 3, re-
spectively, and suppose that σ1 acts as a substitution on lower edges and σ2 acts
as a substitution on upper edges. Let us construct a horizontal fault line, where
the evolution above the line is governed by σ1 and the evolution below the line is
governed by σ2. If at some stage there is a pair of exactly aligned a tiles, one above
the line and one below, then on successive substitutions we will see

(

ba
ab

)

,

(

aaaba
abaaa

)

,

(

bababaaaaba
abaaaababab

)

,

(

aaabaaaabaaaababababaaaaba
abaaaababababaaaabaaaabaaa

)

Note that in the first and third substitution, the a tiles are found more on the right
of the top row and on the left of the bottom row, while in the second and fourth
substitutions they are found more on the left of the top row and the right of the
bottom row. The reason is that the difference between the number of a tiles up to
a certain point grows like the second eigenvalue of the substitution matrix, namely
1 − λ ≈ −1.3. As we continue to iterate, this discrepancy grows without bound.
(Strictly speaking, the discrepancy gets multiplied by 1 − λ each time and then
adjusted by O(1) edge effects. Once the discrepancy grows beyond a certain point,
the edge effects are dominated by the multiplicative factor of 1 − λ and we have
exponential growth in the discrepancy as a function of the number of substitutions.)

Pick a point along the fault line. If there are m more a tiles in the top row than
the bottom up to that point, then the left edges of the tiles on the top row will be
offset by λm (mod 3) relative to the left edges of the tiles on the bottom row. By
continuity, the discrepancy takes on all integer values between 0 and m as we move
from the left edge of the pattern to the point in question. Since m is unbounded and
λ is irrational, this means that the possible offsets of tiles in the top and bottom
rows takes on a dense set of values in the limit of infinite substitution. In fact the
left endpoints of upper a tiles are dense in the lower b tiles, because the only way for
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the discrepancy to grow from m to m + 1 is for an additional a tile to appear along
the top with a b tile below it. Thus every possible adjacency between an upper a
an a lower b can occur in the orbit closure; by primitivity of the substitutions this
implies that any adjacency is possible between any upper and lower tiles. this, then
Thus we have not just a fault line, but a regular fault line.

Note how the form of the fault line depends on the second eigenvalue of the
substitution matrix. If the substitution were Pisot, then the discrepancy in the
number of any species of tile would be bounded, and the offsets between tiles would
take on only a finite number of values. As a result, the FLC condition would be
preserved. For a detailed proof that Pisot substitutions do not lead to fault lines,
see [5].

Finally, note that there are only two possibilities involving substitutions on two
letters. If the discrepancy in the number of a tiles grows without bound, then we
have a regular fault line. If the discrepancy is bounded, then we preserve FLC.
It is not known whether irregular fault lines, in which the set of possible offsets is
infinite but not dense, are possible in substitution tilings. In any case, they would
require more than two letters.

3. A simple 2-dimensional example. Consider a 2-dimensional tiling with two
rectangular tiles. Both the A and B tiles have height 1, but the A tile has width
λ = (1+

√
13)/2 and the B tile has width 3. We consider the self-affine substitution

Σ(A) =

(

A B
B A

)

, Σ(B) =

(

A A A
A A A

)

. For any n ∈ N, an n-supertile is a

collection of tiles of the form Σn(A) or Σn(B). A tiling is allowed by the substitution
if each of its finite patches of tiles can be found in some n-supertile. The smallest
closed set (under the third topology) containing all allowed tilings is called the
substitution tiling space XΣ. We will see that measure-theoretically, almost all of
the tilings in XΣ are allowed by the substitution, but that the ones that are not are
the ones that make the topology different than in the FLC case.

Note that whenever two supertiles meet along a horizontal boundary, applying Σ
changes the bottom of the top supertile by σ1 and the top of the bottom supertile
by σ2. By the results of section 2, the substitution tiling space XΣ defined by Σ
exhibits horizontal regular fault lines.

Not every row is subject to arbitrary shears. The rows themselves are labeled by
points in the dyadic integers, describing their hierarchy in the vertical substitution.
The label in the nth spot is 0 if the row is in the lower (n − 1)-supertile of its
n-supertile and 1 if it is in the upper (n− 1)-supertile. If the labels of two adjacent
rows differ only in the first digit, then the dyadic label of the upper row begins with
a 0 and the label of the lower row begins with a 1. One can see that the sequence
of tiles in the two rows are identical, with the upper row offset horizontally by λ.
If they differ only in the first two digits, then the dyadic label of the upper row
begins with 01 and the label of the lower begins with 10, and the upper row is the
same as the lower row, but offset by λ2 − λ. If they differ only in the first three
digits, the upper and lower labels begin with 001 and 110 resp., and then the rows
are offset by λ3 − λ2 − λ. If they differ in the first n digits (and agree thereafter),
then the upper and lower labels begin with 0n−11 and 1n−10 resp., and they are
offset by λn − λn−1 − · · · − λ. (In general, one sees the new offset as λ times the
previous offset, minus λ.) However, in some tilings there exists a row with dyadic
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z

t
x

y

Figure 3. The data encoded in the approximant L. The variables
x, y and z are points in K that describe the rows nearest the origin,
while t is the height of the origin in its row.

label 1111 . . . and an adjacent row above it with label 0000 . . .. These rows do not
have to have the same sequence of tiles, and their offset is arbitrary.

Put another way, all tilings in the tiling space contain horizontal lines separating
identical rows of tiles, offset by arbitrarily large amounts. However, in a small set
of tilings (corresponding to a single orbit in the dyadic solenoid that describes the
vertical hierarchical structure) there exists a fault line in which the tiling above the
fault is unrelated to the tiling below the fault. These special tilings have measure
zero with respect to all translation-invariant measures, and hence have no effect on
measure-theoretic properties of the tiling space.

However, they have a tremendous effect on the topology of the tiling space. In-
deed, this part of the tiling space is 3-dimensional! To describe such a tiling we
must specify the height of the infinite fault line (a point in R

1), the row immedi-
ately above the fault line (a point in a 1- dimensional tiling space) and the row
immediately below the fault line (a point in a 1-dimensional tiling space).

3.1. The approximant L. We will show how XΣ is the inverse limit of an ap-
proximant L under a bonding map induced by Σ (which we will again call Σ). The
CW complex L is actually 4-dimensional , but Σ : L → L is not onto, and Σ(L) is
only a 3-dimensional subset of L. We will see that the inverse limit of L under Σ
exhibits the right combination of 2- and 3-dimensional elements.

Let σ = σ1, and let K be an Anderson-Putnam complex of the 1-dimensional
substitution σ, obtained by using collared tiles with a sufficiently large radius D.
In order to ensure that σ2 is a shift of σ1, we pick D > (λ + 3)/(λ − 1) so that
λD > D + λ + 3. The 1-dimensional tiling space Xσ is the inverse limit of K under
a bonding map induced by σ. We then let

L = K × K × K × [0, 1]/ ∼, (x, y, z, 0) ∼ (w, x, y, 1). (1)

This is understood as follows. Of the coordinates (x, y, z, t) of a point in L, t
describes the height of the origin in the row containing the origin, and runs from 0
to 1. The variable y ∈ K describes a horizontal neighborhood of size D around the
origin. In other words, it describes the row containing the origin. The variables x
and z similarly describe the rows immediately below and above, respectively. If the
origin sits exactly on the boundary of two rows, we may describe the situation either
as (x, y, z, 0), with the origin sitting on the bottom of the “y” row, or as (w, x, y, 1),
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with the origin sitting on the top of the “x” row. Under the identification ∼,
information about w or z is lost, and we know only about the two rows touching
the origin (“x” and “y”).

The bonding map induced from the substitution Σ is

Σ(x, y, z, t) =

{

(σ2(y), σ1(y), σ2(z), 2t− 1); if t ≥ 1/2,

(σ1(x), σ2(y), σ1(y), 2t); if t ≤ 1/2.
(2)

However, σ2(y) is just a translate of σ1(y) = σ(y), and likewise for σ2(z), so we can
rewrite this as

Σ(x, y, z, t) =

{

(σ(y) + λ, σ(y), σ(z) + λ, 2t − 1); if t ≥ 1/2,

(σ(x), σ(y) + λ, σ(y), 2t); if t ≤ 1/2.
(3)

Note that, depending on the value of t, the information from either x or z is lost,
so that the image of Σ is 3-dimensional.

Every translate is homotopic to the identity map, so the map Σ is homotopic to

Σ′(x, y, z, t) =

{

(σ(y), σ(y), σ(z), 2t − 1); if t ≥ 1/2,

(σ(x), σ(y), σ(y), 2t); if t ≤ 1/2.
(4)

3.2. Computing H∗(XΣ). To compute the cohomology of XΣ, we simply compute
the direct limit of H∗(L) under Σ∗ = (Σ′)∗. Unlike Σ, Σ′ factors as a product of a
vertical and horizontal map: Σ′ = Σ1 ◦ Σ2 = Σ2 ◦ Σ1, where

Σ1(x, y, z, t) = (σ(x), σ(y), σ(z), t), (5)

Σ2(x, y, z, t) =

{

(y, y, z, 2t− 1); if t ≥ 1/2,

(x, y, y, 2t); if t ≤ 1/2.
(6)

Since Σ1 and Σ2 commute, the direct limit of H∗(L) under Σ∗ = Σ∗
1 ◦Σ∗

2 can be
computed in two steps. First we take the direct limit under Σ∗

1, and then we take
the direct limit under Σ∗

2. Let µ̃ = H1(K), and let µ = H1(Xσ) be the direct limit
of µ̃ under σ∗. Our strategy is

1. Using Mayer-Vietoris, compute H∗(L) in terms of µ̃.
2. Take the direct limit of H∗(L) under Σ1. Since Σ1 is essentially just the

horizontal substitution σ, this merely replaces each occurence of µ̃ with µ.
Note that we never have to explicitly construct K or compute µ̃.

3. Finally, take the direct limit under Σ∗
2.

Step 1. We take V to be a neighborhood of t = 0 (say, the set t < 0.2 ∪ t > 0.8)
and U to be the region where t is not close to zero (say, 0.1 < t < 0.9). U retracts
to K ×K ×K × {0.5}. Let µ̃x be the pullback of µ̃ from the x factor, and likewise
for µ̃y and µ̃z. We then have

H0(U) = Z,

H1(U) = µ̃x ⊕ µ̃y ⊕ µ̃z ,

H2(U) = (µ̃x ⊗ µ̃y) ⊕ (µ̃x ⊗ µ̃z) ⊕ (µ̃y ⊗ µ̃z), (7)

H3(U) = µ̃x ⊗ µ̃y ⊗ µ̃z .

Likewise, V retracts to K × K × {0} ∼ K × K × {1}. Let µ̃xy and µ̃yz denote the
pullback of µ̃ from the first and second factors, respectively. That is, µ̃xy can be
viewed either as µ̃x from t = 0 or µ̃y from t = 1. We then have

H0(V ) = Z, H1(V ) = µ̃xy⊕µ̃yz, H2(V ) = µ̃xy⊗µ̃yz, H3(V ) = 0. (8)
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The intersection U ∩ V retracts to two copies of K × K × K, say one at t = 0.15
and at t = 0.85, and we have

H0(U ∩ V ) = Z
2,

H1(U ∩ V ) = (µ̃x ⊕ µ̃y ⊕ µ̃z) ⊕ (µ̃x ⊕ µ̃y ⊕ µ̃z),

H2(U ∩ V ) = ((µ̃x ⊗ µ̃y) ⊕ (µ̃x ⊗ µ̃z) ⊕ (µ̃y ⊗ µ̃z)) (9)

⊕((µ̃x ⊗ µ̃y) ⊕ (µ̃x ⊗ µ̃z) ⊕ (µ̃y ⊗ µ̃z))

H3(U ∩ V ) = (µ̃x ⊗ µ̃y ⊗ µ̃z) ⊕ (µ̃x ⊗ µ̃y ⊗ µ̃z).

The Mayer-Vietoris sequence is

· · · −→ Hk(L)
ρ−→ Hk(U) ⊕ Hk(V )

ν−→ Hk(U ∩ V )
∂∗

−→ Hk+1(L) −→ · · · , (10)

where ρ is restriction and ν is signed restriction. Using a basis for µ̃ to make bases
for Hk(U), Hk(V ) and Hk(U ∩ V ), and writing the lower copy of the basis of
Hk(U ∩ V ) first, the matrices of ν are

ν =

(

1 −1

1 −1

)

on H0, (11)

ν =















1 0 0 −1 0

0 1 0 0 −1

0 0 1 0 0

1 0 0 0 0

0 1 0 −1 0

0 0 1 0 −1















on H1, (12)

ν =















1 0 0 −1

0 1 0 0

0 0 1 0

1 0 0 0

0 1 0 0

0 0 1 −1















on H2, (13)

ν =

(

1

1

)

on H3, (14)

where the 1’s are actually identity matrices that depend on the dimension of µ̃.
Note that these are all injective, except in dimension 0. As a result, the maps ρ
must all be zero (except in dimension 0), and for k > 0 we have that Hk(L) is the
cokernel of the previous ν. To summarize,

H0(L) = Z,

H1(L) = Z,

H2(L) = µ̃, (15)

H3(L) = (µ̃ ⊗ µ̃) ⊕ (µ̃ ⊗ µ̃),

H4(L) = µ̃ ⊗ µ̃ ⊗ µ̃.

By computing ∂∗ of the generators of Hk(U ∩ V ), we see that the generators of
H∗(L) are 1 in dimension 0, dt in dimension 1, dx ∪ dt = dy ∪ dt = dz ∪ dt in
dimension 2, dx ∪ dy ∪ dt = dy ∪ dz ∪ dt and dx ∪ dz ∪ dt in dimension 3 and
dx∪ dy ∪ dz ∪ dt in dimension 4. Here we have used dx, dy, dz and dt as shorthand
for 1-dimensional cohomology generators in the µ̃x, µ̃y, µ̃z and circle directions.
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Step 2. Taking the direct limit under Σ∗
1 merely converts µ̃ to µ. Using 1-

dimensional methods [3] µ is easily shown to be the direct limit of Z
2 under the

matrix

(

1 1
3 0

)

, and is isomorphic to Z[1/λ].

Step 3. From equation (6) we compute the effect of Σ∗
2 on our cohomology

generators.

Σ∗
2(1) = 1

Σ∗
2(dt) = 2dt

Σ∗
2(dy ∪ dt) = 2dy ∪ dt (16)

Σ∗
2(dx ∪ dy ∪ dt) = dx ∪ dy ∪ dt

Σ∗
2(dx ∪ dz ∪ dt) = dx ∪ dy ∪ dt + dy ∪ dz ∪ dt = 2dx ∪ dy ∪ dt,

Σ∗
2(dx ∪ dy ∪ dz ∪ dt) = 0,

which gives us

H0(XΣ) = Z,

H1(XΣ) = Z[1/2],

H2(XΣ) = µ ⊗ Z[1/2] = µ[1/2], (17)

H3(XΣ) = µ ⊗ µ,

Hk(XΣ) = 0 for k > 3.

Note that the identifications at the fault line prevent there being any contribution
of µ to H1(XΣ). We do get contributions from µ to H2 and H3. In particular, the
H3 term is easy to understand. One factor of µ comes from the tiling above the
fault line, one factor of µ comes from the tiling below the fault line, and the dt term
comes from the location of the fault line. In this example, H2(XΣ) equals the tensor
product of µ with H1 of the dyadic solenoid; however, this is not a general pattern.
In the next section we shall see an example in which H2 of the 2-dimensional tiling
space is not the tensor product of µ with H1 of the vertical substitution space, and
in section 5 we will compute a general formula for H2(XΣ).

Finally, note that the form of the answer had nothing to do with the details of the
substitution σ, except that its expansion constant is not a Pisot or Salem number.
Let w1 and w2 be any two words in the letters a and b, and consider the substitutions
θ1(a) = w1a, θ2(b) = w2a, θ2(a) = aw1, θ2(b) = aw2. The substitutions θ1 and
θ2 generate the same 1-dimensional tiling space. If the pair (θ1, θ2) generates a
fault line, as in section 2, then consider the 2-dimensional substitution Θ(A) =
(

A W1

W1 A

)

, Θ(B) =

(

A W2

W2 A

)

, where W1 and W2 are the same as w1 and w2,

only written in capital letters. Θ gives rise to a 2-dimensional tiling space with
horizontal fault lines, and the calculation of this section can be repeated, line by
line, to show that the cohomology of XΘ is identical to that of XΣ, only with µ
replaced by H1(Xθ).

4. A more involved example. Our next example is a direct product variation,
in the sense of Frank [6]. The vertical factor is the period-doubling substitution
0 → 01, 1 → 00, while the horizontal factor is our usual 1-dimensional substitution
σ. We let A and B denote a⊗ 1 and b⊗ 1, and abuse notation by referring to a⊗ 0
and b ⊗ 0 as a and b, respectively. The result is a tiling with four rectangular tiles.
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Figure 4. The Anderson-Putnam complex for the period-
doubling substitution

The tiles A and a have height 1 and width λ, while B and b have height 1 and width
3. Our substitution is

Σ(a) =

(

A B

b a

)

, Σ(A) =

(

a b

b a

)

, Σ(b) =

(

A A A

a a a

)

, Σ(B) =

(

a a a

a a a

)

Note that if we ignore the difference between capital and lower case letters, we
revert to the example of section 3. The period-doubling substitution space is an
almost 1-1 extension of the dyadic solenoid, and the example of this section is an
almost 1-1 extension of the example of section 3.

Before proceding with an analysis of XΣ, we review some facts about the period-
doubling substitution. This substitution forces the border [8] on the right, since
every substituted letter begins with a 0. To construct the Anderson-Putnam com-
plex [1], we need only collar on the left. The complex (call it P , for period-doubling)
is shown in figure 4. There are three collared tiles, which we call α, β and γ. The
tile α is 1, preceded by a 0, the tile β is 0, preceded by a 0, and the tile γ is 0,
preceded by a 1. Viewed as a map on collared tiles, the substitution sends α → γβ,
β → γα, γ → βα, and interchanges the two vertices of the complex.

As before, let K be the Anderson-Putnam complex for the horizontal substitution
space Xσ. The approximant L for XΣ contains a piece K ×K ×K × [0, 1] for each
edge α, β, γ of P , with the identifications

(α, x, y, z, 0) ∼ (β, x, y, z, 0) ∼ (β, w, x, y, 1) ∼ (γ, w, x, y, 1) (18)

and

(γ, x, y, z, 0) ∼ (α, w, x, y, 1). (19)

The 5-tuple (α, x, y, z, t) (resp. (β, x, y, z, t) or (γ, x, y, z, t)) means that the origin
is sitting at height t in a row that corresponds to α (resp. β or γ) in the period-
doubling substitution. Within the row containing the origin, the horizontal position
of the origin corresponds to y ∈ K. In the rows below and above that, the horizontal
positions of the points one unit below and above the origin correspond to x ∈ K
and z ∈ K.
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The substitution Σ induces the following map on L, also denoted Σ:

Σ(α, x, y, z, t) =

{

(β, σ2(y), σ1(y), σ2(z), 2t− 1); if t ≥ 1/2,

(γ, σ1(x), σ2(y), σ1(y), 2t); if t ≤ 1/2.

=

{

(β, σ(y) + λ, σ(y), σ(z) + λ, 2t − 1); if t ≥ 1/2,

(γ, σ(x), σ(y) + λ, σ(y), 2t); if t ≤ 1/2.
(20)

Σ(β, x, y, z, t) =

{

(α, σ2(y), σ1(y), σ2(z), 2t− 1); if t ≥ 1/2,

(γ, σ1(x), σ2(y), σ1(y), 2t); if t ≤ 1/2.

=

{

(α, σ(y) + λ, σ(y), σ(z) + λ, 2t − 1); if t ≥ 1/2,

(γ, σ(x), σ(y) + λ, σ(y), 2t); if t ≤ 1/2.
(21)

Σ(γ, x, y, z, t) =

{

(α, σ2(y), σ1(y), σ2(z), 2t− 1); if t ≥ 1/2,

(β, σ1(x), σ2(y), σ1(y), 2t); if t ≤ 1/2.

=

{

(α, σ(y) + λ, σ(y), σ(z) + λ, 2t − 1); if t ≥ 1/2,

(β, σ(x), σ(y) + λ, σ(y), 2t); if t ≤ 1/2.
(22)

As before, Σ is homotopic to a map Σ′ that does not contain a translation by λ,
and Σ′ = Σ1◦Σ2 = Σ2◦Σ1, where Σ1 implements σ horizontally, and Σ2 implements
the period-doubling substitution vertically. Specifically,

Σ1(ζ, x, y, z, t) = (ζ, σ(x), σ(y), σ(z), t), (23)

where ζ = α, β or γ, and

Σ2(α, x, y, z, t) =

{

(β, y, y, z, 2t− 1); if t ≥ 1/2,

(γ, x, y, y, 2t); if t ≤ 1/2.
(24)

Σ2(β, x, y, z, t) =

{

(α, y, y, z, 2t− 1); if t ≥ 1/2,

(γ, x, y, y, 2t); if t ≤ 1/2.
(25)

Σ2(γ, x, y, z, t) =

{

(α, y, y, z, 2t− 1); if t ≥ 1/2,

(β, x, y, y, 2t); if t ≤ 1/2.
(26)

We adopt the same strategy as in section 3. First we compute the cohomology of
L using Mayer-Vietoris, then we take the direct limit under Σ∗

1, and then we take
the direct limit under Σ∗

2.
To compute H∗(L), let V consist of neighborhoods of the two vertices in P , and

let U be a slightly thickened complement to V . Now U retracts to three copies of
K × K × K, one for each edge of P , and V retracts to two copies of K × K, one
for each vertex of P . There are 6 copies of K × K × K in the retraction of U ∩ V ,
one at the beginning of each edge and one at the end of each edge. We then have:

H0(U) = Zα ⊕ Zβ ⊕ Zγ ,

H1(U) =
⊕

e∈{α,β,γ}

(µ̃x ⊕ µ̃y ⊕ µ̃z)e (27)

H2(U) =
⊕

e∈{α,β,γ}

[(µ̃x ⊗ µ̃y) ⊕ (µ̃x ⊗ µ̃z) ⊕ (µ̃y ⊗ µ̃z)]e

H3(U) =
⊕

e∈{α,β,γ}

(µ̃x ⊗ µ̃y ⊗ µ̃z)e.
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H0(V ) = Z
2,

H1(V ) = (µ̃xy ⊕ µ̃yz) ⊕ (µ̃xy ⊕ µ̃yz) (28)

H2(V ) = (µ̃xy ⊗ µ̃yz) ⊕ (µ̃xy ⊗ µ̃yz)

H3(V ) = 0,

where the two copies in Hk(V ) correspond to the two vertices in P . Since there is
a copy of Hk(U) at the beginning and at the end of each edge of Hk(U ∩ V ), we
have that Hk(U ∩ V ) = (Hk(U))2.

Writing down the generators of Hk(U∩V ) in the same order as the corresponding
generators of Hk(U) and Hk(V ) and keeping the copies of Hk(U) corresponding
to the outgoing edges separate from those corresponding to the incoming ones, we
can again compute matrices for ν in each dimension. The matrices will have two
vertically aligned identity matrices in the U columns and then linearly independent
vectors with two −1s in them in the V columns, so the signed restriction maps
Hk(U)⊕Hk(V ) → Hk(U ∩ V ) are injective except in dimension zero. This implies
that the restriction maps Hk(L) → Hk(U)⊕Hk(V ) are all zero (except in dimension
zero), and that Hk+1(L) is the cokernel of the signed restriction map Hk(U) ⊕
Hk(V ) → Hk(U ∩V ). It is simple linear algebra to use the generators of Hk(U ∩V )
and the image of ν to calculate that

H0(L) = Z,

H1(L) = Z
2,

H2(L) = µ̃5, (29)

H3(L) = (µ̃ ⊗ µ̃)7,

H4(L) = (µ̃ ⊗ µ̃ ⊗ µ̃)3,

with the following generators, subject to the following constraints.
Of course H0(L) is generated by 1. The generators of H1(L) are dtα, dtβ and

dtγ , with dtα = dtγ . (In other words, H1(L) = H1(P ).) The products of generators
of µ̃x, µ̃y and µ̃z with dtα, dtβ and dtγ generate H2(L). Using the convention that
generators ranging through µ̃ are referred to as simply µ̃, we see the generators of
H2(L) are subject to the four constraints

µ̃y ∪ dtα = µ̃x ∪ dtγ , µ̃z ∪ dtα = µ̃y ∪ dtγ , (30)

µ̃y ∪ (dtβ + dtγ) = µ̃x ∪ (dtα + dtβ), µ̃z ∪ (dtβ + dtγ) = µ̃y ∪ (dtα + dtβ).

The products of (µ̃x ∪ µ̃y), (µ̃x ∪ µ̃z) and (µ̃y ∪ µ̃z) with dtα, dtβ and dtγ generate
H3(L), subject to the two constraints

µ̃x∪ µ̃y ∪dtγ = µ̃y ∪ µ̃z ∪dtα, µ̃x∪ µ̃y ∪(dtα +dtβ) = µ̃y ∪ µ̃z ∪(dtβ +dtγ). (31)

Finally, H4(L) is generated by µ̃x∪µ̃y∪µ̃z∪ (dtα, dtβ , and dtγ), with no constraints.
Note the form of the constraints on H2 and H3. For H2, we have two constraints

for each vertex of P . The sum of the µ̃y ∪ dt terms from the edges flowing into the
vertex equals the sum of the µ̃x ∪dt terms from the edges flowing out of the vertex,
and the sum of the µ̃z ∪ dt terms from the edges flowing into the vertex equals the
sum of the µ̃y ∪ dt terms from the edges flowing out of the vertex. These may be
treated as constraints among the µ̃x ∪ dt and µ̃z ∪ dt generators, while the µ̃y ∪ dt
generators are unconstrained. For H3 we have one constraint per vertex, namely
that the sum of the µ̃y ∪ µ̃z ∪dt terms from the edges flowing into the vertex equals
the sum of the µ̃x ∪ µ̃y ∪ dt terms from the edges flowing out.
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As in section 3, the direct limit of H∗(L) under Σ∗
1 takes the same form as H∗(L),

only with µ̃ replaced by µ. What remains is to take the direct limit under Σ∗
2, which

we do one dimension at a time.
The computation in dimension 0 is trivial, and we of course have H0(XΣ) = Z.
The computation in dimension 1 does not involve µ at all, and is identical to the

computation of H1 of the period-doubling substitution space. The answer is that
H1(XΣ) = Z[1/2] ⊕ Z.

For dimension 2, we first look at the µy ∪ dt terms. Since Σ∗
2 maps these terms

to themselves,

Σ∗
2(µy ∪ dtα) = µy ∪ dtβ + µy ∪ dtγ ,

Σ∗
2(µy ∪ dtβ) = µy ∪ dtα + µy ∪ dtγ , (32)

Σ∗
2(µy ∪ dtγ) = µy ∪ dtα + µy ∪ dtβ ,

these terms give the direct limit of Z
3 under the matrix

(

0 1 1

1 0 1

1 1 0

)

. This matrix

has eigenvalues 2, -1 and -1, and the direct limit is Z[1/2] ⊕ Z
2.

Next we look at the µx ∪ dt terms. We compute

Σ∗
2(µx ∪ dtα) = µy ∪ dtβ + µy ∪ dtγ ,

Σ∗
2(µx ∪ dtβ) = µy ∪ dtα + µx ∪ dtγ = 2µy ∪ dtβ , (33)

Σ∗
2(µx ∪ dtγ) = µx ∪ dtα + µx ∪ dtβ = µy ∪ dtβ + µy ∪ dtγ .

Since the µx ∪ dt terms map to the µy ∪ dt terms, they do not contribute anything
additional to the direct limit. Likewise, the µz ∪dt terms map to the µy ∪dt terms,
and do not give any additional contributions.

In dimension 3, the image of Σ∗
2 consists entirely of µx ∪µy ∪ dt and µy ∪µz ∪ dt

terms, since the image of Σ2 never involves both x and z. Moreover, the µx∪µy ∪dt
terms map to themselves, and the µy∪µz∪dt terms map to themselves. Specifically,
we have

Σ∗
2(µx ∪ µy ∪ dtα) = 0,

Σ∗
2(µx ∪ µy ∪ dtβ) = µx ∪ µy ∪ dtγ ,

Σ∗
2(µx ∪ µy ∪ dtγ) = µx ∪ µy ∪ (dtα + dtβ), (34)

Σ∗
2(µy ∪ µz ∪ dtα) = µy ∪ µz ∪ (dtβ + dtγ),

Σ∗
2(µy ∪ µz ∪ dtβ) = µy ∪ µz ∪ dtα,

Σ∗
2(µy ∪ µz ∪ dtγ) = 0.

Before taking the constraints into account, the action of Σ∗
2 has eigenvalues

1, 1,−1,−1, 0 and 0, making the direct limit of this action Z
4. Because we know

that µ̃x∪ µ̃y ∪dtγ = µ̃y ∪ µ̃z ∪dtα and µ̃x∪ µ̃y ∪(dtα +dtβ) = µ̃y ∪ µ̃z ∪(dtβ +dtγ) in
H3(L), and because Σ∗

2 annihilates the µx ∪µy ∪dtα and µy ∪µz ∪dtγ terms, there
are only two independent generators left in the direct limit for H3(XΣ). These are
µx ∪ µy ∪ dtγ = µy ∪ µz ∪ tα and µx ∪ µy ∪ dtβ = µy ∪ µz ∪ dtβ . The cohomology
has registered the two possible fault lines, one between the α and γ rows, and one
between two β rows.

In dimension 4, Σ∗
2 is identically zero.



TOPOLOGY OF SOME TILING SPACES WITHOUT FLC 15

To summarize, the cohomology of XΣ is

H0 = Z,

H1 = Z[1/2] ⊕ Z = H1(Xpd),

H2 = µ ⊕ µ ⊕ µ[1/2] = µ ⊗ (H1(Xpd) ⊕ Z), (35)

H3 = (µ ⊗ µ) ⊕ (µ ⊗ µ),

Hk = 0 for k > 3.

Note that H2(XΣ) is not the tensor product of µ with the first cohomology of
the period-doubling substitution. Rather, it is the tensor product of µ with the
direct limit of the transpose of the period-doubling substitution matrix (as applied
to collared tiles), which has an additional factor of Z. The two copies of µ ⊗ µ in
H3 refer to the two types of fault lines that can occur in XΣ. One has a β row both
above and below the fault line. The other has an α row below the fault line and a
γ row above. Σ maps each of these situations to the other.

5. General direct product variations with regular fault lines. The results
of the previous section are suggestive of how the fault lines affect the cohomology
of a tiling space. In this section we prove two theorems on the cohomology of tiling
spaces with horizontal fault lines that arise as direct product variations.

Suppose we have a collection of primitive 1-dimensional substitutions σ1, σ2, ..., σN

defined on the same alphabet A. Moreover, assume that for each a ∈ A, the length
of σk(a) is the same for all k, that all of the substitutions have the same stretching
factor, and that they all yield the same tiling space. (E.g., all of the σks might
be cyclic permutations of one another). Now suppose we have another primitive
1-dimensional substitution ρ. We could then consider the direct product of the two
substitutions, with σ1 acting horizontally and ρ acting vertically. We then replace σ1

with σ2, etc in various rows, so as to introduce fault lines. Furthermore, we assume
that regular fault lines occur at every boundary of infinite-order ρ-supertiles.

We call the resulting 2-dimensional substitution Σ, and compute the cohomology
of XΣ. Let µ = H1(Xσ) and let ν = H1(Xρ). Let n be the number of configurations
in the Xρ tiling space in which two infinite-order ρ-supertiles meet at the origin.
By assumption, this is the same as the number of ways that a regular fault line can
occur in an XΣ tiling.

Theorem 1. Under these circumstances, the cohomology of XΣ is as follows:

H0(XΣ) = Z,

H1(XΣ) = ν,

H2(XΣ) = µ ⊗ (ν ⊕ Z
n−1), (36)

H3(XΣ) = (µ ⊗ µ)n,

Hk(XΣ) = 0 for k > 3.

Proof: As usual, let P be the AP complex of Xρ, and let K be the AP complex
of Xσ. We take L to be one copy of K × K × K × [0, 1] for each edge in P , with
the following identification. If the end of edge α meets the beginning of edge β at
a vertex in P , then (α, w, x, y, 1) ∼ (β, x, y, z, 0).

We compute H∗(L) by Mayer-Vietoris. Let V be a union of neighborhoods of
the vertices of P , and let U contain the edges. U retracts to a number of copies of
K × K × K (one per edge), while V retracts to a number of copies of K × K (one
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per vertex). U ∩V retracts to a number of copies of K ×K ×K (two per edge, one
at the beginning and one at the end).

Using the same bookkeeping as in section 4, one can see that the signed restriction
maps Hk(U) ⊗ Hk(V ) → Hk(U ∩ V ) are all injective, except in dimension 0. The
cokernel is understood as follows. The image of the restriction of Hk(U) to Hk(U ∩
V ) merely identifies (up to sign) the two K×K×K terms in U ∩V that correspond
to each edge. This gives obvious generators for Hk(L): In dimension 1 we have dtζ ,
where ζ is an edge in P , in dimension 2 we have µ̃x ∪ dtζ , µ̃y ∪ dtζ , and µ̃z ∪ dtζ , in
dimension 3 we have µ̃x∪ µ̃y ∪dtζ , µ̃x∪ µ̃z ∪dtζ , and µ̃y ∪ µ̃z ∪dtζ , and in dimension
4 we have µ̃x ∪ µ̃y ∪ µ̃z ∪dtζ , all subject to the identifications imposed by the image
of Hk(V ) in Hk(U ∩ V ). In H1 this is that the sum of the dtζs entering a vertex
equals the sum of the dtζs coming out. In H2 it is that the sum of the µ̃y ∪dt terms
from the edges flowing into the vertex equals the sum of the µ̃x ∪ dt terms from the
edges flowing out of the vertex, and the sum of the µ̃z ∪ dt terms from the edges
flowing into the vertex equals the sum of the µ̃y ∪ dt terms from the edges flowing
out of the vertex. For H3, the the sum of the µ̃y ∪ µ̃z ∪ dt terms from the edges
flowing into a vertex equals the sum of the µ̃x∪ µ̃y ∪dt terms from the edges flowing
out. For H4, there are no constraints. This completes the computation of Hk(L).

Now we note that Σ is homotopic to the product of σ in the horizontal direction
and ρ in the vertical direction. Taking the direct limit under σ∗ merely converts µ̃
to µ. What is left is taking the direct limit under ρ∗.

In dimension 1, this gives ν.
In dimension 2, we note that the constraints express certain combinations of the

µx ∪ dtζs or the µz ∪ dtζs in terms of the µy ∪ dtζs. They do not constrain the
µy ∪ dtζs terms, which are mapped to themselves by ρ∗. Furthermore, among these
terms the action of ρ∗ is just the transpose of the substitution matrix itself (as
applied to edges of P , i.e. to collared tiles). The direct limit of H2(L) under ρ∗

therefore contains the direct limit of this matrix.
In principle, the direct limit of H2(L) should also contain contributions from the

µx ∪dtζ and µz ∪dtζ terms. However, we claim that these contributions are zero as
a consequence of our using a complex that forces the border, as explained below.

Note that the pullback of dx∪dtζ term is a dx∪dtξ term for each tile ξ for which
ρ(ξ) is a word beginning with ζ, plus a dy ∪ dtξ term for each tile ξ for which ρ(ξ)
contains ζ in the middle or end of the word. If the substitution forces the border
in m steps, then ρm of each edge emerging from a vertex in P is a word beginning
with the same letter (call it ω). (ρm)∗(µx ∪ dtω) then equals the sum of the µx ∪ dt
terms from all the edges emerging from this vertex (plus additional µy ∪ dt terms).
However, the sum of the µx ∪ dt terms from the edges emerging from the vertex
equals the sum of the µy ∪ dt terms from the edges entering the vertex. Likewise, if
η 6= ω, then (ρm)∗(µx ∪dtη) contains none of the µx ∪dt terms from edges emerging
from the vertex. Either way, the pullback by ρm of a µx ∪ dt term can be expressed
as a sum of µy ∪ dt terms. The same argument (applied to ends of words) shows
that the pullback by ρm of a µz ∪ dt term can be expressed as a sum of µy ∪ dt
terms. In particular, the µx ∪ dt and µz ∪ dt terms that are linearly independent
of the µy ∪ dt terms do not appear in the eventual range of ρ∗, and hence do not
contribute to the direct limit of H2(L).

In dimension 3, ρ∗ sends µx∪µz ∪dt terms to µx ∪µy ∪dt and µy ∪µz ∪dt terms.
Therefore, we need only consider the direct limit of µx ∪ µy ∪ dtζ and µy ∪ µz ∪ dtζ
terms. We associate µx ∪ µy ∪ dtζ with the vertex in P that ζ leads into, and
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Figure 5. The Anderson-Putnam complex for the vertical tiling space

associate µy ∪ µz ∪ dtζ with the vertex it leads out of. As in dimension 2, forcing
the border implies that (ρm)∗ takes each µx ∪ µy ∪ dt term to either all or none of
the µx ∪ µy ∪ dt terms associated with a vertex. When dealing with µx ∪ µy ∪ dt,
we may therefore restrict our attention to sums of all the edges emerging from a
vertex, and when dealing with µy ∪µz ∪dt we may restrict our attention to sums of
all the edges leading into a vertex. However, the sum of all the µy ∪ µz ∪ dts from
the edges leading into a vertex equals the sum of all the µx ∪ µy ∪ dts leading out
of the vertex, so we have exactly one independent term per vertex.

The substitution ρ maps vertices of P to vertices, and has a natural pullback
action on the 3-forms associated to vertices. Eventually, ρ merely permutes the
vertices that describe boundaries of two infinite-order supertiles. The 3-forms asso-
ciated with these vertices give a basis for H3(XΣ).

In dimension 4, the pullback map is zero, so H4(XΣ) = 0.
Finally, we consider the coefficient of µ in H2(XΣ) and the coefficient of µ ⊗ µ

in H3(XΣ). The first is the direct limit of the transpose of the substitution matrix
as applied to edges of P , and the second is the direct limit of the transpose of
the substitution matrix as applied to vertices of P . In other words, they are the
direct limit of 1-cochains and 0-cochains on P under substitution. These are closely
related to direct limits of the cohomology of P (i.e., to the cohomology of Xρ).
Since the direct limit of the 0-cochains (namely Z

n) is Z
n−1 more than H0(Xρ),

the direct limit of the 1-cochains must be Z
n−1 more than H1(Xρ).

In stating Theorem 1, we assumed that every boundary between infinite- order
supertiles in Xρ led to a fault line. As the following example shows, this is not
always the case.

Let A1, A2 and A3 be tiles of width λ and height 1/3, and let B1, B2, and B3

be tiles of width 3 and height 1/3. Our substitution is

Σ(A1) =

(

B2 A2

B1 A1

)

Σ(A2) =

(

A1 B1

B3 A3

)

Σ(A3) =

(

A3 B3

A2 B2

)

(37)

Σ(B1) =

(

A2 A2 A2

A1 A1 A1

)

Σ(B2) =

(

A1 A1 A1

A3 A3 A3

)

Σ(B3) =

(

A3 A3 A3

A2 A2 A2

)

.

Each row in a tiling contains either A1s and B1s (call this an α row), A2s and B2s
(β) or A3s and B3s. The complex P consists of three edges (α, β, γ) running in a
circle, with α followed by β followed by γ followed by α. The vertical substition ρ
is

ρ(α) = αβ, ρ(β) = γα, ρ(γ) = βγ. (38)

Fault lines do not develop at the boundary of α and β supertiles, or at the boundary
of β and γ supertiles, just at the boundary of γ and α.
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This example may look mysterious, but it is just a rewriting of the basic example
of section 3. A1, A2, and A3 are just the bottom, middle and top thirds of the A
tile, while B1, B2 and B3 are the bottom, middle and top thirds of the B tile. The
cohomology is correctly described by Theorem 1, only with n being the number
of possible fault lines (namely 1), not the number of ways that two infinite-order
supertiles can meet (namely 2). This observation generalizes to

Theorem 2. Suppose we have a 2-dimensional substitution Σ, generated by a verti-

cal substitution ρ and horizontal substitutions σ1, . . . , σN , as in Theorem 1. Suppose

that the boundaries between infinite-order ρ-supertiles are either fault lines or are

rigid, with the patterns on both sides of the boundary being mutually locally deriv-

able. As before, let µ = H1(Xσ) and let ν = H1(Xρ). Let n be the number of ways

that a fault line can develop in an XΣ tiling. Then the cohomology of XΣ is as

follows:

H0(XΣ) = Z,

H1(XΣ) = ν,

H2(XΣ) = µ ⊗ (ν ⊕ Z
n−1), (39)

H3(XΣ) = (µ ⊗ µ)n,

Hk(XΣ) = 0 for k > 3.

Proof: Let P be the Anderson-Putnam complex of ρ. By assumption, each vertex
of P either generates a fault line (call this an essential vertex) or has the patterns
on both sides of the vertex precisely aligned. We rewrite ρ using the essential
vertices as stopping and starting rules as in [2], and rewrite Σ in terms of these new
vertical tiles. By construction, each of the n vertices of the new vertical substitution
generates a fault line, so Theorem 1 applies directly.

6. Open problems.

1. We understand fault lines for substitutions on two letters, but what about
more complicated substitutions? Is it possible to have lines without finite
local complexity that do not allow arbitrary shears? What can we say about
the cohomology of tiling spaces that allow such “irregular” fault lines?

2. In considering Theorem 2, we assumed that all boundaries between infinite-
order ρ-supertiles either generated fault lines or had the two sides remain in
lockstep. When the horizontal stretching factor is not Pisot, are these the
only possibilities?

3. What happens if the horizontal substitutions of Theorem 1 are different enough
that the rows in a supertile are not all the same up to translation? (The hori-
zontal stretching factors would all have to be the same, which would constrain
the possible abelianizations of the different σi, but the actual substitutions
could differ.) There are natural conjectures for what H1 and H3 of such a
tiling space should look like. H1 should come entirely from the vertical sub-
stitution and H3 should contain a copy of µ1 ⊗µ2 for each possible fault line,
where µ1 (resp. µ2) is H1 of the tiling space that describes the row imme-
diately above (below) the fault line. However, it is not at all clear what H2

should be.
4. Some tilings (for instance the one in Figure 2) allow both vertical and horizon-

tal fault lines. Since a single tiling can exhibit a lack of coordination across at
most one fault line, it is easy to guess what H3 of such a tiling space should
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look like, with a contribution (as in the previous problem) from each possible
fault line, vertical or horizontal. But does H1 vanish altogether? What about
H2?

5. Up to this point we have only been considering rectangular tiles. What if the
tiles are not rectangular, as in the generalized pinwheel? Again, it is possible
to predict the cohomology in the highest dimension (4 for the generalized
pinwheel, since the rotations provide an additional degree of freedom), with
a contribution from each possible species of fault line. However, we do not
venture to guess the lower dimensional cohomology.
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