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Abstract

We present a study of a longitudinal one-dimensional mechanical topological insulator based on a
slinky spring in the Su-Schrieffer-Heeger (SSH) configuration. The system demonstrates key
characteristics of topological insulators, including the existence of edge states in the bandgap,
exponential decay of amplitude, and a winding number of 1 for topological phases. By manipulating
the stiffness of the spring through the placement of masses, we transition between trivial, metallic, and
topological phases. Our findings also show that the edge states are robust against perturbations, and
we observe a critical phase transition where the coherence length follows a critical exponent of -1, as
predicted by theory. This simple mechanical system provides an accessible platform for studying the
special properties of topological insulators and opens up new possibilities for exploring topological
phenomena in classical systems.

1. Introduction

Topological insulators (TIs) are a distinct state of matter that has attracted considerable attention in the field of
condensed matter physics for the last twenty years [1]. TIs differ from typical insulators in that they allow current
conduction on their surface or edges—called surface or edge states—while still preserving insulating qualities in
their interior [2—4]. This phenomenon occurs as a result of topological features in the material's electronic band
structure, which are resistant to disturbances like impurities and defects [4]. The presence of time-reversal
symmetry ensures the protection of these surface/edge states, resulting in notable characteristics such as spin-
momentum locking and resistance to backscattering [ 1-4]. Although T1Is were first found in quantum systems
[3, 4], the foundations of topological insulators do not rely exclusively on quantum phenomena [5]. This led to
the exploration of topological phases in classical systems, which have been observed with acoustic [6, 7],
photonic [8, 9], and mechanical waves [10, 11].

Su, Schrieffer, and Heeger proposed a model to explain the existence of solitons in polyacetylene [12]. This
model has been called the SSH model and has be an important reference for the study of topological phases in
one-dimensional structures not only in quantum systems but also in classical applications [11, 13, 14]. There are
three unique topologies the SSH model has proven to predict that are dependent on the values of the intracell
and intercell electron hopping probabilities, v and w, respectively [11, 15]. When v > w the SSH model predicted
an insulating phase with a well-defined band gap. When v = w, the bandgap closed and the model acted as a
conductor. Finally, if v < w, the model predicted a topological phase with the existence of a bandgap and a pair of
edge states within the band gap [11, 15].

Although several mechanical topological insulators have been reported [11], there is no evidence of an
experimental implementation of a longitudinal configuration. In this work, we experimentally demonstrate the
existence of phase transitions in a longitudinal one-dimensional mechanical topological insulator based on the
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SSH model using a system of masses on a slinky acting as sites in the SSH model. We also demonstrate the
characteristic properties of topological insulators, i.e., the existence of edge states, exponential decay of
amplitude at the edge state, and a winding number different than zero, through a systematic analysis of the
geometry of our device. We support our experimental results with a mathematical model based on the classical
arrangement of masses in parallel configuration and found that the results match quite well. It is important to
notice that this work complements our previous approach to the mechanical topological insulators in an
affordable way[11].

2. Experimental methods

2.1. The device

The reported device was composed of a metallic slinky spring of ~ 1.20 m of length, 85 spirals, and 16 metallic
masses located at specific positions to emulate the SSH model, see figure 1(a). One of the edges was connected to
amechanical shaker that functioned as the excitation of the device, while the other end was connected to a soft
wall to reduce reflections. In our mechanical model, the intra- and inter-cell interactions were mediated by the
spring stiffness in those regions. This means that by controlling the spring stiffness between the metallic masses,
we were able to manipulate the values of v and w as required by the SSH model [11, 15]. Due to the nature of our
device, the control of the position of each metallic mass, and consequently of the stiffness of the spring, was made
in terms of the number of spirals in the spring; as expected, the spring stiffness had an inverse relationship with
the number of spirals [11], see Supplementary Information (SI) section I.

We fixed the lattice constant to be /A = 10 spirals. The distance between the masses was controlled by
dy=A,/2+tandd, = A2 — t, the intra- and inter-cell distances, respectively. Here, ¢ is the parameter, in
number of spirals, that determined the phase our device displayed. This methodology allowed us to control the
stiffness of the spring and, consequently, the interaction strengths. In this sense, d; < d,, or t < 0, represented the
trivial phase, while d; = d, or t =0, and d; > d,, or t > 0, meant the metallic and topological cases,
respectively [15].

2.2.Vibration modes

Our device was designed to prevent transverse modes from appearing by holding the device laterally with

0.1 mm plastic strings, meaning that the masses moved mainly in the longitudinal direction. We found that by
measuring the oscillation of a single mass in our device, we could determine the resonant modes of the whole
device. This was due to the coupling of the masses through the slinky spring. We selected the first mass A, next to
the exciter, see figure 1(a), as the probe mass.

The resonant modes of the device were excited by a square pulse with a duration of 10 ms; a delay of 50 ms
was added for convenience in the observation in figure 1(b), panel I. The time width of the pulse was selected to
ensure its frequency spectrum was broad enough to contain the frequency region in which we were measuring
the resonant modes, see the inset to panel I in figure 1(b). The square pulse generated a mechanical perturbation
of amplitude 1 cm that was transmitted to the device by a hard joint between the mechanical shaker and the
slinky spring, see panel IT in figure 1(b).

Our vibration sensor was composed of a green light emitting diode (LED) powered by a small battery,
mounted in the probe mass, and a photodetector located at a fixed distance of 5 cm from the LED. The
photodetector measured the intensity of the LED light as a function of its position and time. As our device was
restricted to longitudinal oscillations, the change in intensity at the photodetector position changed by about
26% from the rest position to the maximum amplitude of oscillation in the expanded and contracted positions.
This change in the intensity was enough to map the oscillations of the probe well beyond the noise level that was
measured as 5% of the maximum registered signal, see panel IIl in figure 1(b). The frequency spectrum from the
photodetector signal was measured using a lock-in amplifier. The lock-in amplifier was set to measure a span of
10 Hz centered at 5 Hz, with a resolution of 1024 points. The result was a clear set of peaks located at the resonant
modes of the device, see panel IV in figure 1(b). We repeated the procedure for each value of t so the results could
be compared, and the different phases of the device observed.

3. Results

It is well known that the phases in the SSH model are topological when the following three conditions are met
[11]: 1. Existence of modes in the bandgap; 2. Exponential decay of the amplitude of the edge modes; 3. Winding
number 0 and 1 for the trivial and topological phases, respectively. As such, sections 3.1, 3.2, and 3.4 next are
dedicated to checking each of these conditions.
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Figure 1. (a) Schematic representation of the experimental setup implementing the one-dimensional topological insulator. (b)
Scheme for the measurement of oscillation modes in the one-dimensional longitudinal array, starting with the excitation pulse,
followed by the wave propagation, the optical detection, and the Fourier Transform to determine the resonant modes.

3.1. Existence of modes in the bandgap

Each configuration of t, with tan integer, in the range — 4 <t < 4 was tested; we arranged the results in such a
way that the different phases were visible. Figure 2 shows a normalized representation of the resonant modes for
each of the values of . As mentioned above, the noise level of our experiments was 5%, see the red dashed line in
panel IV of figure 1(b). As such, in figure 2 we limited the signal floor to this value for better observation of the
edge modes. Additionally, figure 2 demonstrates that our device presented a bandgap for all the cases in which
t= 0. Moreover, the bandgap was empty for the cases — 4 <t < 0and showed clear edge modes for 0 < t <4, see
yellow arrows. This proved that our device exhibited edge modes in the bandgap, so the first condition has been
met. Moreover, figure 2 shows the isolation of the edge modes as the value of tincreased. It is clear that the edge
modes become more defined within a larger bandgap with the increase of ¢, as expected [11]. We confirmed our
experimental results by creating a mathematical model. The mathematical model and comparison with our
experimental results are available in sections II and III of the SI. Additionally, we confirmed the robustness of the
edge modes with the observation of edge modes even after breaking the symmetry of the first A site, see section
IV of the SI. It has been demonstrated that this kind of symmetry breaking does not affect the topological order
[16]. A set of previously reported implementations of this preservation of the topological order can be found
elsewhere [17, 18].
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Figure 2. Normalized amplitude of oscillations of experimental frequencies as a function of the parameter t. The color scale has been
limited to background noise (0.05).
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Figure 3. Amplitude of oscillation as a function of the site position for 0 < ¢. Only non-zero amplitudes are shown for better
visualization.

3.2. Exponential decay of amplitude

Once we identified the frequencies of the edge modes, we excited the device at those frequencies for values of 0<(¢
and measured the amplitude of oscillation of each of the masses. As mentioned before, we limited the amplitude
of oscillations to remain in the linear regime. This way, we could treat the motion of the masses in our device as a
harmonic oscillator, following Hooke's law [19]. It is well-known that the SSH model presents an exponential
decay of amplitude in the wave function of the edge states [15]. As such, we expected to see similar behavior in
our device, i.e. the amplitude of oscillation to decay exponentially. A visualization of the exponentially decaying
energy is available in section V of the SI.

The amplitude of oscillation as a function of the mass position, called site, and ¢ is shown in figure 3. It is clear
that the decay of amplitude resembled an exponential function that fit better as t increased. This was an expected
result, as larger t meant stronger topological behavior. It is important to note that figure 3 only displays the
position of the A masses for a clearer visualization. Additionally, the growth of the amplitude for masses beyond
the 10th mass was due to the symmetric behavior of the device, i.e., the edge mode in the opposite site was also
weakly excited. Due to this diminishing energy, we only considered masses 1 through 16 for the exponential fits.
Also, our device did not show a perfect exponential decay due to imperfections and friction in the device.

The SSH model predicts that only masses in position A will have amplitudes different from zero, meaning all
masses in position B must have zero amplitude [11, 15]. In our experimental case, amplitudes of masses in
position B were not zero, mainly due to imperfections in the device and friction, as mentioned before, see section
V in the SI for further information.
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Figure 4. Coherence length as function of . The black markers represent the experimental values and the red line is a theoretical fit to a
function of the form ¢ .

Table 1. Winding number calculated with equation (2).
The values of k; and k, are the same as those shown in

figure S1.

t ki k, v
—4 8.71+ 1.40 25.75 £ 2.02 0
-3 9.57+ 1.61 21.66 £5.79 0
-2 10.65 £ 2.04 18.39 £3.78 0
-1 11.99£2.51 15.77 £3.12 0
0 13.67 £2.95 13.97 £2.95 Undefined
1 15.77 £3.12 11.99 £2.51 1
2 18.39£3.78 10.65 £2.04 1
3 21.66 £5.79 9.57£1.61 1
4 25.74£2.02 8.71+1.40 1

3.3. Winding number
The winding number is a topological invariant in the SSH model and it is a function of ky, k,, and ¢. The winding
number (v) is defined as [15]:

1 T o d
= — dk— log(h(k 1
v=— [ dkZlog(h(h) M
where h(k) = —k 'k — cos(kA) — isin(kA) for our system, see section I in SI. After substituting these

values in equation (1), we computed, using Wolfram Mathematica 13 [20]:

(k1 + kym(";)]

2 2 arctan
4k —k. (k1 +k2) +k (k1 + ko) A K=k
(k1 — k)22 (—k1+ k)22

V= 2t k) - - 2

Using equation (2), we calculated the winding number as a function of k;, k,, and A for the different values of
tshown in figure 2. The values of v are shown in table table:1. Itis clear thatv =0for t < 0 and v =1for 0 < t, as
expected [15]. The uncertainty of the winding number has been omitted in table 1 for clarity purposes but was
measured to be Av= = 0.17, i.e., small enough to not affect our results. These results confirmed that the
topological invariant was confirmed in our experiment.

3.4. Phase transition

In order to complete our discussion about the nature of the reported device, we determined the value of tat
which the phase transition happened [11, 21, 22]. This was concluded using the coherence length (CL), defined
as the decay constant in the energy in figure 3. The CL must fit to a function of the form ' [11] after the phase
transition, i.e., the critical exponentis — 1[21, 22], reported for the first time in [23]. Figure 4 shows the
experimental results (black markers) and theoretical fit (red line) of the CL. It is clear that the CL dependence as
! happened for t>2. The fact that the value of the CL does not match the theoretical fit, red line in figure 4, for
t < 2is due to the well-known nature of the SSH model [15], i.e., the topological phase transition did not
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necessarily occur at the first value beyond the metallic case; confirming one more time the topological nature of
our device. Finally, the error bars were calculated as the standard deviation of the values obtained after three
experiments. In the case of 1 < t, the error bars were duplicated in size to make them visible in the current plot
settings. As expected, the size of the error bars decreased as t increased due to the stronger topological behavior
of the device for large values of .

4. Conclusions

In summary, we have demonstrated a longitudinal mechanical topological insulator based on a slinky spring.
Our results have proven the inherent characteristics of a topological insulator, that is, the existence of states in
the bandgap, the exponential decay of the energy, and a winding number of zero for the trivial case and one for
the topological case. A theoretical model supported our experimental findings. In addition, we have
demonstrated that the edge states are robust against disorder and that the critical exponent is -1 after the phase
transition. Finally, our study opens the possibility of studying the nature of topological phases using simple
materials available to anyone.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).
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