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Abstract
Wepresent a study of a longitudinal one-dimensionalmechanical topological insulator based on a
slinky spring in the Su-Schrieffer-Heeger (SSH) configuration. The systemdemonstrates key
characteristics of topological insulators, including the existence of edge states in the bandgap,
exponential decay of amplitude, and awinding number of 1 for topological phases. Bymanipulating
the stiffness of the spring through the placement ofmasses, we transition between trivial, metallic, and
topological phases. Ourfindings also show that the edge states are robust against perturbations, and
we observe a critical phase transitionwhere the coherence length follows a critical exponent of -1, as
predicted by theory. This simplemechanical systemprovides an accessible platform for studying the
special properties of topological insulators and opens up newpossibilities for exploring topological
phenomena in classical systems.

1. Introduction

Topological insulators (TIs) are a distinct state ofmatter that has attracted considerable attention in thefield of
condensedmatter physics for the last twenty years [1]. TIs differ from typical insulators in that they allow current
conduction on their surface or edges—called surface or edge states—while still preserving insulating qualities in
their interior [2–4]. This phenomenon occurs as a result of topological features in thematerial's electronic band
structure, which are resistant to disturbances like impurities and defects [4]. The presence of time-reversal
symmetry ensures the protection of these surface/edge states, resulting in notable characteristics such as spin-
momentum locking and resistance to backscattering [1–4]. AlthoughTIswere first found in quantum systems
[3, 4], the foundations of topological insulators do not rely exclusively on quantumphenomena [5]. This led to
the exploration of topological phases in classical systems, which have been observedwith acoustic [6, 7],
photonic [8, 9], andmechanical waves [10, 11].

Su, Schrieffer, andHeeger proposed amodel to explain the existence of solitons in polyacetylene [12]. This
model has been called the SSHmodel and has be an important reference for the study of topological phases in
one-dimensional structures not only in quantum systems but also in classical applications [11, 13, 14]. There are
three unique topologies the SSHmodel has proven to predict that are dependent on the values of the intracell
and intercell electron hopping probabilities, v andw, respectively [11, 15].When v>w the SSHmodel predicted
an insulating phase with awell-defined band gap.When v=w, the bandgap closed and themodel acted as a
conductor. Finally, if v<w, themodel predicted a topological phasewith the existence of a bandgap and a pair of
edge states within the band gap [11, 15].

Although severalmechanical topological insulators have been reported [11], there is no evidence of an
experimental implementation of a longitudinal configuration. In this work, we experimentally demonstrate the
existence of phase transitions in a longitudinal one-dimensionalmechanical topological insulator based on the
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SSHmodel using a systemofmasses on a slinky acting as sites in the SSHmodel.We also demonstrate the
characteristic properties of topological insulators, i.e., the existence of edge states, exponential decay of
amplitude at the edge state, and awinding number different than zero, through a systematic analysis of the
geometry of our device.We support our experimental results with amathematicalmodel based on the classical
arrangement ofmasses in parallel configuration and found that the resultsmatch quite well. It is important to
notice that this work complements our previous approach to themechanical topological insulators in an
affordable way [11].

2. Experimentalmethods

2.1. The device
The reported device was composed of ametallic slinky spring of ~ 1.20 mof length, 85 spirals, and 16metallic
masses located at specific positions to emulate the SSHmodel, see figure 1(a). One of the edges was connected to
amechanical shaker that functioned as the excitation of the device, while the other endwas connected to a soft
wall to reduce reflections. In ourmechanicalmodel, the intra- and inter-cell interactions weremediated by the
spring stiffness in those regions. Thismeans that by controlling the spring stiffness between themetallicmasses,
wewere able tomanipulate the values of v andw as required by the SSHmodel [11, 15]. Due to the nature of our
device, the control of the position of eachmetallicmass, and consequently of the stiffness of the spring, wasmade
in terms of the number of spirals in the spring; as expected, the spring stiffness had an inverse relationshipwith
the number of spirals [11], see Supplementary Information (SI) section I.

Wefixed the lattice constant to beΛ= 10 spirals. The distance between themasseswas controlled by
d1=Λ2+ t and d2=Λ2− t, the intra- and inter-cell distances, respectively. Here, t is the parameter, in
number of spirals, that determined the phase our device displayed. Thismethodology allowed us to control the
stiffness of the spring and, consequently, the interaction strengths. In this sense, d1< d2, or t< 0, represented the
trivial phase, while d1= d2 or t= 0, and d1> d2, or t> 0,meant themetallic and topological cases,
respectively [15].

2.2. Vibrationmodes
Our device was designed to prevent transversemodes from appearing by holding the device laterally with
0.1 mmplastic strings,meaning that themassesmovedmainly in the longitudinal direction.We found that by
measuring the oscillation of a singlemass in our device, we could determine the resonantmodes of thewhole
device. This was due to the coupling of themasses through the slinky spring.We selected the firstmass A, next to
the exciter, seefigure 1(a), as the probemass.

The resonantmodes of the device were excited by a square pulsewith a duration of 10ms; a delay of 50ms
was added for convenience in the observation infigure 1(b), panel I. The timewidth of the pulsewas selected to
ensure its frequency spectrumwas broad enough to contain the frequency region inwhichweweremeasuring
the resonantmodes, see the inset to panel I infigure 1(b). The square pulse generated amechanical perturbation
of amplitude 1 cm that was transmitted to the device by a hard joint between themechanical shaker and the
slinky spring, see panel II infigure 1(b).

Our vibration sensor was composed of a green light emitting diode (LED) powered by a small battery,
mounted in the probemass, and a photodetector located at afixed distance of 5 cm from the LED. The
photodetectormeasured the intensity of the LED light as a function of its position and time. As our devicewas
restricted to longitudinal oscillations, the change in intensity at the photodetector position changed by about
26% from the rest position to themaximumamplitude of oscillation in the expanded and contracted positions.
This change in the intensity was enough tomap the oscillations of the probewell beyond the noise level that was
measured as 5%of themaximum registered signal, see panel III in figure 1(b). The frequency spectrum from the
photodetector signal wasmeasured using a lock-in amplifier. The lock-in amplifier was set tomeasure a span of
10 Hz centered at 5 Hz, with a resolution of 1024 points. The result was a clear set of peaks located at the resonant
modes of the device, see panel IV infigure 1(b).We repeated the procedure for each value of t so the results could
be compared, and the different phases of the device observed.

3. Results

It is well known that the phases in the SSHmodel are topological when the following three conditions aremet
[11]: 1. Existence ofmodes in the bandgap; 2. Exponential decay of the amplitude of the edgemodes; 3.Winding
number 0 and 1 for the trivial and topological phases, respectively. As such, sections 3.1, 3.2, and 3.4 next are
dedicated to checking each of these conditions.
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3.1. Existence ofmodes in the bandgap
Each configuration of t, with t an integer, in the range − 4�t� 4was tested; we arranged the results in such a
way that the different phases were visible. Figure 2 shows a normalized representation of the resonantmodes for
each of the values of t. Asmentioned above, the noise level of our experiments was 5%, see the red dashed line in
panel IV offigure 1(b). As such, infigure 2we limited the signalfloor to this value for better observation of the
edgemodes. Additionally, figure 2 demonstrates that our device presented a bandgap for all the cases inwhich
t≠ 0.Moreover, the bandgapwas empty for the cases − 4�t< 0 and showed clear edgemodes for 0< t�4, see
yellow arrows. This proved that our device exhibited edgemodes in the bandgap, so the first condition has been
met.Moreover, figure 2 shows the isolation of the edgemodes as the value of t increased. It is clear that the edge
modes becomemore definedwithin a larger bandgapwith the increase of t, as expected [11].We confirmed our
experimental results by creating amathematicalmodel. Themathematicalmodel and comparisonwith our
experimental results are available in sections II and III of the SI. Additionally, we confirmed the robustness of the
edgemodeswith the observation of edgemodes even after breaking the symmetry of the first A site, see section
IV of the SI. It has been demonstrated that this kind of symmetry breaking does not affect the topological order
[16]. A set of previously reported implementations of this preservation of the topological order can be found
elsewhere [17, 18].

Figure 1. (a) Schematic representation of the experimental setup implementing the one-dimensional topological insulator. (b)
Scheme for themeasurement of oscillationmodes in the one-dimensional longitudinal array, startingwith the excitation pulse,
followed by thewave propagation, the optical detection, and the Fourier Transform to determine the resonantmodes.
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3.2. Exponential decay of amplitude
Oncewe identified the frequencies of the edgemodes, we excited the device at those frequencies for values of 0�t
andmeasured the amplitude of oscillation of each of themasses. Asmentioned before, we limited the amplitude
of oscillations to remain in the linear regime. This way, we could treat themotion of themasses in our device as a
harmonic oscillator, followingHooke's law [19]. It is well-known that the SSHmodel presents an exponential
decay of amplitude in thewave function of the edge states [15]. As such, we expected to see similar behavior in
our device, i.e. the amplitude of oscillation to decay exponentially. A visualization of the exponentially decaying
energy is available in sectionV of the SI.

The amplitude of oscillation as a function of themass position, called site, and t is shown infigure 3. It is clear
that the decay of amplitude resembled an exponential function that fit better as t increased. This was an expected
result, as larger tmeant stronger topological behavior. It is important to note that figure 3 only displays the
position of the Amasses for a clearer visualization. Additionally, the growth of the amplitude formasses beyond
the 10thmass was due to the symmetric behavior of the device, i.e., the edgemode in the opposite site was also
weakly excited. Due to this diminishing energy, we only consideredmasses 1 through 16 for the exponential fits.
Also, our device did not show a perfect exponential decay due to imperfections and friction in the device.

The SSHmodel predicts that onlymasses in positionAwill have amplitudes different from zero,meaning all
masses in position Bmust have zero amplitude [11, 15]. In our experimental case, amplitudes ofmasses in
position Bwere not zero,mainly due to imperfections in the device and friction, asmentioned before, see section
V in the SI for further information.

Figure 2.Normalized amplitude of oscillations of experimental frequencies as a function of the parameter t. The color scale has been
limited to background noise (0.05).

Figure 3.Amplitude of oscillation as a function of the site position for 0 � t. Only non-zero amplitudes are shown for better
visualization.
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3.3.Winding number
Thewinding number is a topological invariant in the SSHmodel and it is a function of k1, k2, and t. Thewinding
number (ν) is defined as [15]:
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Using equation (2), we calculated thewinding number as a function of k1, k2, andΛ for the different values of
t shown infigure 2. The values of ν are shown in table table:1. It is clear that ν= 0 for t< 0 and ν= 1 for 0< t, as
expected [15]. The uncertainty of thewinding number has been omitted in table 1 for clarity purposes butwas
measured to beΔν=± 0.17, i.e., small enough to not affect our results. These results confirmed that the
topological invariant was confirmed in our experiment.

3.4. Phase transition
In order to complete our discussion about the nature of the reported device, we determined the value of t at
which the phase transition happened [11, 21, 22]. This was concluded using the coherence length (CL), defined
as the decay constant in the energy infigure 3. TheCLmustfit to a function of the form t−1 [11] after the phase
transition, i.e., the critical exponent is − 1 [21, 22], reported for thefirst time in [23]. Figure 4 shows the
experimental results (blackmarkers) and theoretical fit (red line) of theCL. It is clear that the CL dependence as
t−1 happened for t�2. The fact that the value of theCL does notmatch the theoretical fit, red line infigure 4, for
t< 2 is due to thewell-knownnature of the SSHmodel [15], i.e., the topological phase transition did not

Figure 4.Coherence length as function of t. The blackmarkers represent the experimental values and the red line is a theoretical fit to a
function of the form t−1.

Table 1.Winding number calculatedwith equation (2).
The values of k1 and k2 are the same as those shown in
figure S1.

t k1 k2 ν

−4 8.71± 1.40 25.75± 2.02 0

−3 9.57± 1.61 21.66± 5.79 0

−2 10.65± 2.04 18.39± 3.78 0

−1 11.99± 2.51 15.77± 3.12 0

0 13.67± 2.95 13.97± 2.95 Undefined

1 15.77± 3.12 11.99± 2.51 1

2 18.39± 3.78 10.65± 2.04 1

3 21.66± 5.79 9.57± 1.61 1

4 25.74± 2.02 8.71± 1.40 1
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necessarily occur at the first value beyond themetallic case; confirming onemore time the topological nature of
our device. Finally, the error bars were calculated as the standard deviation of the values obtained after three
experiments. In the case of 1< t, the error bars were duplicated in size tomake them visible in the current plot
settings. As expected, the size of the error bars decreased as t increased due to the stronger topological behavior
of the device for large values of t.

4. Conclusions

In summary, we have demonstrated a longitudinalmechanical topological insulator based on a slinky spring.
Our results have proven the inherent characteristics of a topological insulator, that is, the existence of states in
the bandgap, the exponential decay of the energy, and awinding number of zero for the trivial case and one for
the topological case. A theoreticalmodel supported our experimental findings. In addition, we have
demonstrated that the edge states are robust against disorder and that the critical exponent is -1 after the phase
transition. Finally, our study opens the possibility of studying the nature of topological phases using simple
materials available to anyone.

Data availability statement

All data that support thefindings of this study are includedwithin the article (and any supplementary files).
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