
10. Simplicial Complexes

The upshot was that he (Poincaré) introduced an entirely new

approach to algebraic topology: the concept of complex and the

highly elastic algebra going so naturally with it.

Solomon Lefschetz, 1970

The gratings of the previous chapter have two nice features—they provide approxi-

mations to compact spaces that can be refined to any degree of necessity, and they enjoy

a combinatorial and algebraic calculus. These aspects are greatly extended in this chapter

and the next. We replace a grating of a square in the plane with a simplicial complex, a

particular sort of topological space defined by combinatorial data. Continuous mappings

between simplicial complexes can be defined using the combinatorial data. By refining

simplicial complexes, we can approximate arbitrary continuous mappings by these combi-

natorial ones. Approximations are related by homotopies between mappings, giving the

homotopy relation further importance. In the next chapter, we will introduce the algebraic

structures associated to the combinatorial data. We begin with the basic building blocks.

Definition 10.1. A set of vectors S = {v0, . . . ,vn} in RN
for N large is in general

position if the set {v0 − vn,v1 − vn, . . . ,vn−1 − vn} is linearly independent. A set

S = {v0, . . . ,vn} in general position is called an n-simplex or a simplex of dimension
n and it determines a subset of RN

defined by

∆
n
[S] = {t0v0 + t1v1 + · · · + tnvn ∈ RN | ti ≥ 0, t0 + · · · + tn = 1}

= convex hull({v0, . . . ,vn}).

If the set S = {v0, . . . ,vn} is not in general position, then we say that the n-simplex

determined by S is degenerate.

}][{D1 v0 v1, [{ }]v3v0 v1 v2D3 , , ,v0 v1 v2}][{D2 , ,

For example, a triple {v0,v1,v2} is in general position if the points are not collinear. A 0-

simplex ∆
0
[{v0}] is simply the point v0 ∈ RN

. A 1-simplex {v0,v1} determines a line seg-

ment ∆
1
[{v0,v1}]; ∆

2
[{v0,v1,v2}] is a triangle (with its interior) and ∆

3
[{v0,v1,v2,v3}]

is a solid tetrahedron. In general we write ∆
n

= ∆
n
[S] when there is no need to be specific

about vertices. When a vertex is repeated, the simplex is degenerate. Degenerate simplices

will be important when discussing mappings between simplicial complexes.

In what follows, the combinatorics of sets of vertices play the principal role. We

will assume that the vertices determining a simplex are ordered. This assumption is for

convenience; in fact, coherent orderings around a simplicial complex determine a useful
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topological property, orientability (see [Croom], [Giblin]), an extra bit of structure to be

developed another day.

A point p ∈ ∆
n

may be specified uniquely by the coefficients (t0, t1, . . . , tn). To see

this suppose

t0v0 + t1v1 + · · · + tnvn = t�0v0 + t�1v1 + · · · + t�nvn.

Then (t0 − t�0)v0 + · · · + (tn − t�n)vn = 0. Since
�n

i=0 ti =
�n

i=0 t�i = 1, it follows that�n
i=0(ti − t�i) = 0, and so tn − t�n =

�n−1
i=0 −(ti − t�i). In particular,

(t0 − t�0)v0 + · · · + (tn − t�n)vn = (t0 − t�0)(v0 − vn) + · · · + (tn−1 − t�n−1)(vn−1 − vn) = 0.

Because the set {v0−vn,v1−vn, . . . ,vn−1−vn} is linearly independent, we deduce that

ti = t�i for all i and so the coefficients are uniquely determined by p. The list of coefficients

(t0, t1, . . . , tn) is called the barycentric coordinates of p ∈ ∆
n
.

Although ∆
n
[{v0, . . . ,vn}] is a subspace of RN

, as a topological space, it is determined

by the barycentric coordinates.

Proposition 10.2. Let ∆n
denote the subspace of Rn+1

given by ∆n
= {(t0, . . . , tn) ∈

Rn+1 | t0 + · · ·+ tn = 1, ti ≥ 0}. If S = {v0, . . . ,vn} is a set of vectors in general position

in RN
, then ∆

n
[S] is homeomorphic to ∆n

.

Proof: The mapping φ:∆n → ∆
n
[S] given by φ(t0, . . . , tn) = t0v0 + · · · + tnvn is a

bijection by the uniqueness of barycentric coordinates. The mapping φ is given by matrix

multiplication and so is continuous. The inverse of φ is given by projections on a subspace,

and so it too is continuous. ♦

The topological properties of ∆n
are shared with ∆

n
[S] for any other n-simplex. For

example, as a subspace of RN
, ∆

n
[S] is compact because ∆n

is closed and bounded in

Rn+1
.

Proposition 10.3. The points p ∈ ∆
n
[S] with barycentric coordinates that satisfy ti > 0

for all i form an open subset of ∆
n
[S] (as a subspace of RN

); p is in the boundary of

∆
n
[S] if and only if ti = 0 for some i.

Proof: In ∆n ⊂ Rn+1
, the subset of points with barycentric coordinates ti > 0 is the

intersection of the open subsets Ui = {(t0, . . . , tn) ∈ Rn+1 | ti > 0} with ∆n
and so it is

an open subset of ∆n
. Its homeomorphic image in ∆

n
[S] is also open in ∆

n
[S].

We can extend the mapping φ:∆n → ∆
n
[S] to the subspace Π of Rn+1

, where

Π = {(t0, . . . , tn) ∈ Rn+1 | t0 + · · · + tn = 1},

the hyperplane containing ∆n
in Rn+1

. The mapping �φ: Π → RN
, given by �φ(t0, . . . , tn) =

t0v0 + · · ·+ tnvn, takes points on the boundary of ∆n
to points on the boundary of ∆

n
[S].

The points on the boundary have some ti = 0 because open sets in Rn+1
containing such

points must contain points with ti < 0 which map by �φ to points outside ∆
n
[S]. Conversely,

if a point p is on the boundary of ∆
n
[S], any open set containing p meets the complement

of ∆
n
[S] and, by a distance argument, points in the image of Π under �φ with negative

coordinates. This implies some tj = 0. ♦
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Notice that a 0-simplex is also its own interior—the topology is discrete on a one-

point space. Interesting subsets of a simplex, like the boundary or interior, have nice

combinatorial expressions. Define the face opposite a vertex vi as the subset

∂i{v0, . . . ,vn} = {v0, . . . , �vi, . . . ,vn} = {v0, . . . ,vi−1,vi+1, . . . ,vn},
where the hat over a vertex means that it is omitted. Any subset of S = {v0, . . . ,vn}
determines a subsimplex of S, and so a subspace of ∆

n
[S]; for example, the subset T =

{vj0 , . . . ,vjk} determines ∆
k
[T ] = ∆

k
[{vj0 , . . . ,vjk}] ⊂ ∆

n
[S]. The inclusion is based on

the fact that
�

i tjivji =
�n

l=0 tlvl where tl = 0 if l �= ji.

When S = {v0, . . . ,vn} and T ⊂ S, we denote the inclusion of the subsimplex by

T ≺ S. If j0 < j1 < · · · < jk, then each such face can be obtained by iterating the

operation of taking the face opposite some vertex. The combinatorics of the face opposite

operators encodes the lower dimensional subsimplices (or faces) of ∆
n
[S]. By Proposition

10.3, the geometric boundary of ∆
n
[S] can be expressed combinatorially:

bdy∆
n
[S] = ∆

n−1
[∂0S] ∪ · · · ∪∆

n−1
[∂nS] ⊂ ∆

n
[S].

Given any point p ∈ ∆
n
[S], writing p = t0v0 + · · · + tnvn, we can eliminate the

summands with ti = 0 to write p = ti0vi0 + · · · + timvim with
�

tij = 1 and tij > 0 for

all j. Thus p is in the interior of ∆
m

[{vi0 , . . . ,vim}]. Because barycentric coordinates

are unique, every point in ∆
n
[S] is contained in the interior of a unique subsimplex,

∆
m

[{vi0 , . . . ,vim}] ⊂ ∆
n
[S].

The simplices ∆
n
[S] form the building blocks of an important class of spaces.

Definition 10.4. A (geometric) simplicial complex is a finite collection K of simplices

in RN
satisfying 1) if S = {v0, . . . ,vn} is in K and T ≺ S (T is a subset of S), then T is

also in K; 2) for S and T in K, if ∆
n
[S] ∩∆

m
[T ] �= ∅, then ∆

n
[S] ∩∆

m
[T ] = ∆

k
[U ] for

some U in K, that is, if simplices of K intersect, then they do so along a common face.

The dimension of a geometric simplicial complex, dim K, is the largest n for which there

is an n-simplex in K.

Two collections of triangles in R3
are shown in the picture. The one on the left

represents a simplicial complex, while on the right we have just a union of triangles—this

is because the intersections fail to satisfy condition 2) in the definition.

Since n-simplices are homeomorphic to one another for fixed n, it is the collection K of

simplices that determines a simplicial complex. We distinguish between the combinatorial

data K, collections of sets of vertices, and the topological space determined by the union

of the simplices ∆
n
[S] as a subspsace of RN

,

|K| =

�
S∈K

∆
n
[S].
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The space |K| is called the realization of K; |K| is also referred to as the underlying

space of K [Giblin], the geometric carrier of K [Croom], or the polyhedron determined by

K [Hilton-Wylie].

By separating the combinatorial data from the topological data for a simplicial com-

plex, this definition frees us to introduce an abstraction of geometric simplicial complexes.

Definition 10.5. A finite collection of sets L = {Sα | Sα = {vα0, . . . , vαnα}, 1 ≤ α ≤ N}
is an abstract simplicial complex if whenever T = {vj0 , . . . , vjk} is a subset of S and

S is in L, then T is also in L.

In its simplicity there is a gain in flexibility with the notion of an abstract simplicial

complex. We can define all sorts of combinatorial objects in this manner (see, for example,

[Björner]). To maintain the connection to topology, we ask if it is possible to associate to

every vertex v in an abstract simplicial complex L a point v in RN
in such a way that L

determines a geometric simplicial complex. The answer is yes, and the proof is an exercise

in linear algebra (sketched in the exercises) in which we associate a list of vectors in RN

in general position to each set S in L. In fact, if the abstract simplicial complex contains

a set of cardinality at most m + 1, then there is a geometric simplicial complex L� with

corresponding sets consisting of vectors in R2m+1
in general position.

Another way to connect with topology is to use the combinatorial data given by an

abstract simplicial complex and construct a topological space by gluing simplices together:

If L = {S | S = {v0, . . . , vn}}, then the set of equivalence classes, |L| =

��
S∈L

∆n
S

�
,

associated to the equivalence relation given by p ∼ q for p ∈ ∆n
S and q ∈ ∆m

T if there is

a shared face U ≺ S, U ≺ T and p = q in ∆k
U ⊂ ∆n

S and ∆k
U ⊂ ∆m

T , that is, we glue

the simplices S and T along their shared subsimplex U . We give this space the quotient

topology as a quotient of the disjoint union of the simplices ∆n
S . The reader should check

that this quotient construction determines a space homeomorphic to the realization of a

geometric simplicial complex built out of vertices in RN
.

The general class of topological spaces modeled by simplicial complexes is the class of

the triangulable spaces.

Definition 10.6. A topological space X is said to be triangulable if there is an abstract

simplicial complex K and a homeomorphism f :X → |K|.

a

a

b

b c

c

d d

e e

a

a

a a

b

b

c

c

u

v

w

x y

z
w

Examples: 1) We can describe triangulable spaces by giving the triangulation explicitly,
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not as a collection of sets of vectors, but as a collection of simplices with clear gluing data.

For example, the diagrams above show how RP (2) and the torus S1 × S1
are triangulable

spaces. Notice how the simplices abu and abw in RP (2) and the simplices abx and abe in

the torus share the side ab, encoding the gluing data by the identification of the simplices

as shown.

2) The sphere Sn ⊂ Rn+1
is triangulable in a particularly nice way. Consider the n-simplex

∆n ⊂ Rn+1
for which the vertices are e0, e1, . . . , en with ei = (0, 0, . . . , 0, 1, 0, . . . , 0) where

the one is in the (i + 1)-st place. Consider the point

βn =

�n

i=0

1

n + 1
ei = (1/(n + 1), 1/(n + 1), . . . , 1/(n + 1)).

This point is the barycenter of ∆n
, and it can be defined for any simplex as the center of

gravity of the vertices. We use the barycenter to move the hyperplane in which ∆n
lies to

pass through the origin. Since ∆n
lies in the hyperplane Π = {(t0, . . . , tn) | t0 + · · ·+ tn =

1}, the translated hyperplane through the origin is Π−βn = {(s0, . . . , sn) | s0 + · · ·+ sn =

0}. We identify a copy of Sn−1
with the intersection of Sn

and Π− βn, that is, elements

of x ∈ Rn+1
satisfying x2

0 + x2
1 + · · · + x2

n = 1 and x0 + x1 + · · · + xn = 0.

Define the following mapping

Ψ: bdy∆n → Sn−1, Ψ(x) =
x− βn

�x− βn�
.

Since the sum of the coordinates of x is 1, x − βn lies in Π − βn and hence Ψ(x) is in

Sn−1
. Furthermore, Ψ is defined by translation followed by normalization and so Ψ is

continuous. Since bdy∆n
is given by ∂0∆n ∪ · · · ∪∂n∆n

, bdy∆n
is compact. To see that

Ψ is a homeomorphism, it suffices, by Proposition 6.9, to show that Ψ has an inverse.

Suppose s = (s0, . . . , sn) is an element of Sn−1
= Sn∩ (Π−βn), then there is an entry

sk for which sk ≤ si for all 0 ≤ i ≤ n. Furthermore, since
�

i si = 0 and
�

i s2
i = 1, we

must have sk < 0. Define

Φ: Sn−1
= Sn ∩ (Π− βn) → bdy∆n, Φ(s) =

−1

sk(n + 1)
s + βn.

To see that Φ◦Ψ is the identity, let x ∈ bdy∆n
. Then for some 0 ≤ k ≤ n, there is an

entry xk = 0 in x. It follows that s = Ψ(x) has entry sk =
−1

(n + 1)�x− βn�
. Furthermore,

since xi ≥ 0 for all i, sk is the least entry in s and so the composite Φ ◦Ψ gives

Φ ◦Ψ(x) = Φ

�
x− βn

�x− βn�

�
=

−1

(n + 1)(−1/((n + 1)�x− βn�))

�
x− βn

�x− βn�

�
+ βn = x.

The opposite composite Ψ ◦ Φ gives the identity on Sn−1
: because �s� = 1 and sk < 0,

Ψ ◦ Φ(s) = Ψ

�
−1

(n + 1)sk
s + βn

�
=

(−1/(n + 1)sk) s + βn − βn

�(−1/(n + 1)sk) s + βn − βn�
= s.
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It follows that bdy∆n
is homeomorphic to Sn−1

. Since the boundary of ∆n
is given as a

simplicial complex by the union ∂0∆n ∪ · · · ∪ ∂n∆n
, the sphere Sn−1

is triangulable. This

fact will prove useful in Chapter 11.

As with spaces we can apply set-theoretic constructions to simplicial complexes to

produce new ones.

Definition 10.7. If K is an abstract simplicial complex and L is a subset of simplices in

K, then L is a subcomplex of K if whenever S ≺ T and T ∈ L, then S ∈ L.

In example 2) above we have shown that

�n

i=0
∂i∆

n
= bdy∆

n
is a subcomplex of ∆

n
.

In the torus triangulation, notice that the set of simplices {dex, xez, xzw, xyw, dyw, dew}
together with all the associated subsimplices forms a subcomplex of the torus, whose

realization is a cylinder. In the projective plane the subcomplex generated by the collection

of 2-simplices {abu, auv, uvw, vbw, abw} determines a triangulation of the Möbius band.

Simplicial mappings and barycentric subdivision

How do we compare simplicial complexes? Mappings between simplicial complexes

are based on their combinatorial structure.

Definition 10.8. Let K and L be two simplicial complexes. A simplicial mapping is

function φ:K → L satisfying, for all n ≥ 0, if S = {v0, . . . , vn} is an n-simplex in K, then

{φ(v0), . . . , φ(vn)} is a (possibly degenerate) simplex in L. Two simplicial complexes are

isomorphic if there are simplicial mappings φ:K → L and γ:L → K with φ ◦ γ = idL

and γ ◦ φ = idK . A simplicial mapping φ:K → L determines a continuous mapping

of the associated realizations |φ|: |K| → |L|: If φ:K → L is a simplicial mapping, then

p =
�n

i=0 tivi ∈ |K| maps to |φ|(p) =
�n

i=0 tiφ(vi) ∈ |L|.
Given a subcomplex L ⊂ K of a simplicial complex, then the inclusion map, i:L → K

is a simplicial mapping. Also, a composite of simplicial mappings K
φ−→L

γ−→M is a

simplicial mapping.

Since the mapping |φ|: |K| → |L| associated to a simplicial mapping is linear on each

simplex, it is continuous. Notice that there are only finitely many continuous mappings

|K| → |L| that are realized in this manner. Because there are only finitely many 0-simplices

in K and L, there are only finitely many vertex mappings, of which the simplicial mappings

are a subset. In what follows, we construct more simplicial mappings between |K| and |L|.
To do so, we refine a simplicial complex in order to make approximations. A refinement of

a grating in Chapter 9 was accomplished by the addition of line segments, subdividing the

rectangles into smaller cells. To refine a simplicial complex, we subdivide the simplices.

Definition 10.9. Let K be a simplicial complex. The barycentric subdivision of K,

denoted sd K, is the simplicial complex whose simplices are given by

{β(S0), β(S1), . . . , β(Sr)}, where Si ∈ K, and S0 ≺ S1 ≺ · · · ≺ Sr.

Here β(S) = β({v0, . . . ,vn}) =

�n

i=0

1
n+1vi is the barycenter of ∆

n
[S] for S in K. If

φ:K → L is a simplicial mapping, then the barycentric subdivision of φ is the simplicial

mapping sd φ: sdK → sd L given on vertices by sd φ(β(S)) = β(φ(S)).
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The operation K �→ sd K may be summarized: First find the barycenters of every

simplex in K, then subdivide the simplices of K into new simplices organized by the subset

ordering of simplices, S ≺ T . For example, a one-simplex {a, b} is realized by the line

segment ab. The barycenter is the midpoint of ab and the barycentric subdivision sd {a, b}
has two one-simplices {a, β1} and {β1, b} corresponding to {a} ≺ {a, b} and {b} ≺ {a, b}.
The barycentric subdivision of a two-simplex, ∆

2
[{a, b, c}] has six two-simplices as in the

picture:

a b

c

a b

c

c < {ac} < {abc} c < {bc} < {abc}

a < {ac} < {abc}

a < {ab} < {abc} b < {ab} < {abc}

b < {bc} < {abc}

The effect of barycentric subdivision on a simplicial mapping is to send the new barycenters

of simplices in K to the corresponding barycenters of the image simplices in L.

To understand the kind of approximation the barycentric subdivision provides, we

introduce the diameter of a simplex: Let K be a simplicial complex, realized in RN
. Then

diam S = max{�vi − vj� | i �= j, S = {v0, . . . ,vq}}.

The diameter depends on the embedding of |K| in RN
, but this dependence will not affect

the combinatorial use of subdivision.

Proposition 10.10. If S is a q-simplex in K, a geometric simplicial complex, then for

any simplex T ∈ sd K with ∆
p
[T ] ⊂ ∆

q
[S], we have diam T ≤ q

q+1diam S.

Proof: We proceed by induction on q. If q = 1, then ∆
1
[S] is a line segment and the

simplices of the barycentric subdivision are halves of the segment with diameter equal to

1/2 the length of the segment. Assume the result for simplices of dimension less than

q ≥ 2.

A p-simplex T ∈ sd K can be written as

T =

�
vσ(0),

vσ(0) + vσ(1)

2
,
vσ(0) + vσ(1) + vσ(2)

3
, . . . ,

vσ(0) + vσ(1) + · · · + vσ(p)

p + 1

�
,

where σ is some permutation of (0, 1, . . . , q). If p < q, then we are done because T is a

simplex in the barycentric subdivision of a face of S. When p = q, write the vertices of T
as T = {w0,w1, . . . ,wq}. The diameter of T is given by �wi0 −wj0� = max{�wi −wj� |
wi,wj ∈ T}. If i0 and j0 are less than q, then the diameter of T is achieved on the face

∂qT and we deduce

�wi0 −wj0� ≤
q − 1

q
diam ∂qS ≤

q

q + 1
diam S.
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If one of i0 or j0 is q, then we first observe the following estimate:

����vi −
vσ(0) + vσ(1) + · · · + vσ(q)

q + 1

���� =

����
�q

j=0

1

q + 1
(vi − vj)

����

≤
�q

j=0

1

q + 1
�vi − vj� ≤

q

q + 1
max{�vi − vj�} =

q

q + 1
diam S.

This proves the proposition. ♦

We define a measure of the refinement of a simplicial complex by taking the maximum

of the diameters of the constituent simplices, the mesh of K,

mesh (K) = max{diam S | S ∈ K}.

Corollary 10.11. If K has dimension q, then mesh (sdK) ≤ q

q + 1
mesh (K).

By iterating barycentric subdivision, we can make the simplices in sd
NK as small as

we like: For any � > 0, there is an N with mesh (sd
NK) ≤

�
q

q + 1

�N

mesh (K) < �.

How does barycentric subdivision affect the topological space |K|?
Theorem 10.12. If K is a geometric simplicial complex, then |sd K| = |K|.
Proof: Suppose that p ∈ |K|. Then we can write p =

�q
i=0 tivi ∈ ∆

q
[S] with S =

{v0, . . . ,vq}. Permute the values {ti} to bring them into descending order

tσ(0) ≥ tσ(1) ≥ · · · ≥ tσ(q) ≥ 0.

Next solve the matrix equation:





1
1
2

1
3 · · · 1

q+1

0
1
2

1
3 · · · 1

q+1

0 0
1
3 · · · 1

q+1

.

.

.
.
.
.

.

.

. · · ·
.
.
.

0 0 0 · · · 1
q+1









s0

s1

s2
.
.
.

sq




=





tσ(0)

tσ(1)

tσ(2)

.

.

.

tσ(q)




.

The solution exists and is unique. Furthermore, by solving from the bottom up, the

solution satisfies sq = (q + 1)tσ(q) and sj−1 = j(tσ(j−1) − tσ(j)) ≥ 0. Summing the values

of sj we get

q�

j=0

sj = s0 + 2((1/2)s1) + 3((1/3)s2) + · · · + (q + 1)((1/(q + 1))sq)

= (s0 + (1/2)s1 + (1/3)s2 + · · · + (1/(q + 1))sq)

+ ((1/2)s1 + (1/3)s2 + · · · + (1/(q + 1))sq) + · · · + (1/(q + 1))sq

= tσ(0) + tσ(1) + · · · + tσ(q) = t0 + · · · + tq = 1.
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Thus (s0, . . . , sq) are the barycentric coordinates of p in the simplex with

p = s0vσ(0) + s1

�
vσ(0) + vσ(1)

2

�
+ s2

�
vσ(0) + vσ(1) + vσ(2)

3

�

+ · · · + sq

�
vσ(0) + vσ(1) + · · · + vσ(q)

q + 1

�
.

Thus p lies in the q-simplex ∆
q
[T ] where T ∈ sd K is given by

T = {β({vσ(0)}), β({vσ(0),vσ(1)}), β({vσ(0),vσ(1),vσ(2)}), . . . , β({vσ(0),vσ(1), . . . ,vσ(q)}}.

This proves that |K| ⊂ |sd K|. The inclusion |sd K| ⊂ |K| follows by rewriting the expres-

sion for a point in the barycentric coordinates of sdK in terms of the contributing vertices

of K by rearranging terms. ♦
Barycentric subdivision leads to a notion of approximation. Given a continuous map-

ping f : |K| → |L|, we seek a simplicial mapping φ:K → L that approximates f in some

sense. Since we can replace |K| with |sdnK| where sd
nK denotes the iterated barycentric

subdivision of K, sd
0K = K, and sd

nK = sd(sd
n−1K), then we can approximate f by us-

ing simplicial mappings between subdivisions of the complexes involved. To make precise

what we mean by an approximation, we introduce a point-set notion.

Definition 10.13. If v is a vertex in a simplicial complex K, then the star of v, starK(v),

is the collection of all simplices in K for which v is a vertex. The open star of v, OK(v),

is the union of the interiors of simplices in K with v as a vertex,

starK(v) =

�
{v}≺S

∆
n
[S], OK(v) =

�
{v}≺S

int ∆
n
[S].

The stars of vertices can be used to recognize simplices in a simplicial complex.

Lemma 10.14. Suppose v0, v1, . . . , vn are vertices in a simplicial complex K. Then

{v0, . . . , vq} is a simplex in K if and only if

�q

i=0
OK(vi) �= ∅. If p ∈ |K|, then p ∈ OK(v)

if and only if p =

�q

i=0
tivi with v = vj for some 0 ≤ j ≤ q and tj �= 0.

Proof: If S = {v0, . . . , vq} is a q-simplex in K, then int ∆
q
[S] ⊂ OK(vi) for i = 0, . . . , q.

Hence

�q

i=0
OK(vi) �= ∅.

Suppose p ∈
�q

i=0
OK(vi) �= ∅. then p =

�
tjwj ∈ ∆

r
[S] with {v0, . . . , vq} ⊂

{w0, . . . , wr}. Furthermore, if wmi = vi, then tmi > 0. Thus all of the vi appear in the

barycentric coordinates of p and so the subset of S, {v0, . . . , vq}, is a simplex in K. ♦
To approximate a continuous mapping f : |K| → |L| by a simplicial mapping φ:K → L,

we expect that points in f(∆
q
[S]) are ‘close’ to points in |φ|(∆q

[S]).

Definition 10.15. If K and L are simplicial complexes and f : |K| → |L| a continuous

function, then a simplicial mapping φ:K → L is a simplicial approximation to f if

whenever p ∈ |K|, then f(p) ∈ ∆
q
[T ] for T ∈ L implies |φ|(p) ∈ ∆

q
[T ].
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This definition can be difficult to establish, but there is a more convenient condition for

our purposes that works in a manner analogous to the way open sets simplify continuity

arguments when compared with the classical �-δ arguments.

Proposition 10.16. A simplicial mapping φ:K → L is a simplicial approximation to a

continuous mapping f : |K| → |L| if and only if, for any vertex v of K, we have

f(OK(v)) ⊂ OL(φ(v)),

that is, the image of the open star of v under f is contained in the open star of φ(v), a

vertex of L.

Proof: Suppose p ∈ OK(v) for some vertex v ∈ K. Then p ∈ int ∆
q
[S] for some unique

S ∈ K with v ∈ S. Because φ is a simplicial mapping, φ(S) = T for some simplex in L, and

|φ|(p) ∈ int ∆
q�

[T �] ⊂ OL(φ(v)) for some T � ≺ T . Since φ is a simplicial approximation to

f , if p ∈ ∆
r
[S�] for S ≺ S� and f(p) ∈ int ∆

s
[T ��] for some T �� ∈ L, then |φ|(p) ∈ ∆

s
[T ��].

Since points lie in unique interiors of simpices, |φ|(p) ∈ int ∆
q�

[T �] implies that T � ≺ T ��

and so φ(v) ∈ T ��. Therefore, f(p) ∈ OL(φ(v)).

We introduce a weaker notion than a simplicial mapping. Let K0 = {v ∈ K | {v}, a

0-simplex in K}. A vertex map φ:K0 → L0 satisfies if v ∈ K is a vertex, then φ(v) ∈ L is

also a vertex. Suppose also, for every vertex v ∈ K0, that f(OK(v)) ⊂ OL(φ(v)). Suppose

that S ∈ K is a simplex and S = {v0, . . . , vq}. Then

f
��

i
OK(vi)

�
⊂

�
i
f(OK(vi)) ⊂

�
i
OL(φ(vi)).

Since int ∆
q
[S] ⊂

�
i
OK(vi), this intersection is nonempty, and φ(S) = {φ(v0), . . . , φ(vq)}

is a simplex in L. This establishes that a vertex mapping φ with f(OK(v)) ⊂ OL(φ(v)),

for all v, is a simplicial mapping. Furthermore, if p ∈ int ∆
q
[S] and f(p) ∈ int ∆

r
[T ]

for some T ∈ L, then for each vertex vi of S, f(p) ∈ f(OK(vi)) ⊂ OL(φ(vi)), and so

φ(vi) ∈ T . It follows that φ(S) ≺ T and so |φ|(p) ∈ ∆
r
[T ]. Therefore, φ is a simplicial

approximation to f . ♦

Example: In Theorem 10.12 we proved that |sd K| = |K|. Is there a simplicial approx-

imation to the identity mapping? Consider the vertex mapping λ: sdK → K, defined

by

λ:β(S) = β({v0, . . . , vq}) �→ vq.

To see that we have a simplicial approximation, we check that Osd K(β(S)) ⊂ OK(vq). A

simplex with β(S) as a vertex takes the form T = {β(S0), β(S1), . . . , β(Sn)} with S1 ≺
S2 ≺ · · · ≺ Sn in K and S = Sj for some j. If p ∈ int ∆

q
[T ], then p =

�
i
tiβ(Si)

with ti > 0. We can rewrite the barycenters as the averages of the vertices in Si for i = 0

to q, and we get p =

�
k
ukwk with uk > 0 and wk ∈ K for all k. Since vq is among

the vertices and its barycentric coordinate is positive, p ∈ OK(vq). Thus λ is a simplicial

approximation to id: |sd K| → |K|. In fact, we did not need to choose the last vertex vq

to define λ. As the argument shows, any choice of vertex from S for each S ∈ K will do.

This added flexibility will come in handy later.
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The topology of a triangulable space may be used to show that simplicial approxima-

tions are plentiful.

Simplicial Approximation Theorem. Given two simplicial complexes K and L and a

continuous mapping f : |K| → |L|, then there is a nonnegative integer r and a simplicial

mapping φ: sd
rK → L with φ a simplicial approximation to f .

Proof: We use the fact that |K| and |L| are compact metric spaces. Suppose dimK = n.

The collection {f−1
(OL(w)) | w a vertex in L} is an open cover of |K|. By Lebesgue’s

Lemma (Chapter 6) the cover has a Lebesgue number δK > 0. Iterating barycentric

subdivision, we can subdivide K until

mesh (sd
rK) ≤

�
n

n + 1

�r

mesh (K) < δK/2.

This is possible because (
n

n+1 )
r

goes to zero as r goes to infinity. It follows that sd
rK has

all simplices of diameter less than δK/2 and so, for each v ∈ sd
rK, the diameter of OK(v)

is less than δK . Thus each OK(v) is contained in some f−1
(OL(w)). This determines a

vertex map φ: v �→ w, which satisfies f(OK(v)) ⊂ OL(φ(v)), a simplicial approximation.♦
Simplicial approximations exist in abundance. How are these combinatorial mappings

related to their approximated topological mappings? What relation is there between two

simplicial approximations of the same continuous mapping? We can answer these questions

with the homotopy relation between continuous mappings. This relationship formed the

basis for the combinatorial nature of some of the earliest developments in topology (see,

for example, [Brouwer1]).

Proposition 10.17. If a simplicial mapping φ:K → L is a simplicial approximation to

a continuous mapping f : |K| → |L|, then |φ| is homotopic to f .

Proof: Suppose that p ∈ int ∆
q
[S] for S ∈ K and S = {v0, . . . , vq}. By Lemma 10.14,

p ∈
�

vi∈S
OK(vi). It follows that

f(p) ∈
�

vi∈S
f(OK(vi)) ⊂

�
vi∈S

OL(φ(vi)).

Therefore, {φ(v0), . . . , φ(vq)} is a simplex in L and the convex set ∆
q
[φ(S)] contains both

|φ|(p) and f(p). We define a homotopy on int ∆
q
[S] by

H(p, t) = tf(p) + (1− t)|φ|(p).

The homotopy extends to all of |K| by Theorem 4.4 and so f � |φ|. ♦

It follows from the proposition that two, possibly different, simplicial approximations

to a given continuous function have homotopic realizations. The simplicial mappings also

enjoy a further combinatorial property.

Definition 10.18. Two simplicial mappings φ and ψ:K → L are said to be contiguous
if, for all simplices S ∈ K, the set φ(S) ∪ ψ(S) is a simplex in L.

Lemma 10.19. Suppose f : |K| → |L| is a continuous function for which φ and ψ:K → L
are simplicial approximations to f . Then φ and ψ are contiguous.

11



Proof: Suppose S is a simplex in K with S = {v0, . . . , vq}. Then for p ∈ int ∆
q
[S], we

have

f(p) ∈ f
��

i
OK(vi)

�
⊂

�
i
f(OK(vi)) ⊂

�
i
OL(φ(vi)) ∩OL(ψ(vi)).

Since this intersection is not empty, the collection φ(S) ∪ ψ(S) is a simplex in L. ♦
The condition of being contiguous is combinatorial—we are only checking that unions

of images of sets of vertices in K appear among the sets of vertices of L. The following

results show that contiguity encodes the relation of homotopy very well.

Proposition 10.20. Contiguous simplicial mappings have homotopic realizations.

Proof: If p ∈ int ∆
q
[S] ⊂ |K|, then the points |φ|(p) and |ψ|(p) lie in the simplex of L

given by φ(S) ∪ ψ(S). The homotopy H(p, t) = (1 − t)|φ|(p) + t|ψ|(p) is well-defined,

continuous, and establishes |φ| � |ψ|. ♦
A partial converse to Proposition 10.20 is the following theorem.

Theorem 10.21. Suppose that f and g are continuous mappings |K| → |L| and f is

homotopic to g. Then there exists simplicial mappings φ and ψ: sd
NK → L with φ a

simplicial approximation to f , ψ a simplicial approximation to g, and there is a sequence

of simplicial mappings φ = φ0, φ1, . . . , φn−1, φn = ψ with φi contiguous to φi+1 for

0 ≤ i ≤ n− 1.

Proof: Let H: |K| × [0, 1] → |L| be a homotopy with H(p, 0) = f(p) and H(p, 1) = g(p).

Cover |K|× [0, 1] with the open cover {H−1
(OL(w)) | w is a vertex of L}. Since |K|× [0, 1]

is compact, by a careful use of Lebegue’s Lemma, we can find a partition of [0, 1], 0 = t0 <
t1 < · · · < tn−1 < tn = 1 such that, for any p ∈ |K|, H(p, ti−1) and H(p, ti) lie in OL(w)

for some vertex w ∈ L. Define the functions hi: |K| → |L| by hi(p) = H(p, ti). Construct

another open cover of |K| defined as U = U1 ∪ · · · ∪ Un where

Ui = {h−1
i (OL(w)) ∪ h−1

i−1(OL(w)) | w a vertex in L}.

Subdivide K enough times so that the simplices in sd
NK are finer than the cover U . Let

φi: sd
NK → L be the vertex mapping which satisfies hi(OK(v))∪hi−1(OK(v)) ⊂ OL(φi(v))

for each vertex v ∈ sd
NK. By construction, φi is a simplicial approximation to hi and

hi−1. Regrouping these data, we find that φi and φi+1 are both simplicial approximations

to hi and hence φi and φi+1 are contiguous by Proposition 10.19. Since h0 = f and hn = g,

φ = φ0 is a simplicial approximation of f , and ψ = φn is a simplicial approximation to g.

This proves the theorem. ♦
We close with a consequence of these ideas. Suppose X and Y are triangulable spaces.

Then the set of homotopy classes of mappings from X to Y , is denoted by [X, Y ], as in-

troduced in Chapter 7. We can replace this set by [|K|, |L|] where |K| is homeomorphic

to X and |L| homeomorphic to Y . By the Simplicial Approximation Theorem, for each

homotopy class [f ] ∈ [|K|, |L|], there is a simplicial mapping φ: sd
rK → L with [|φ|] = [f ].

Furthermore, by Proposition 10.20 and Theorem 10.21, different choices of representa-

tive for [f ] always stay in the same homotopy class of the realization of the simplicial

approximation.
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Let S(K, L) denote the set of simplicial mappings from K to L. Because K and

L involve only finitely many simplices, S(K, L) is a finite set. With this notation, the

Simplicial Approximation Theorem implies that the mapping

Θ:

�
N≥0

S(sd
NK, L) −→ [|K|, |L|], Θ(φ) = [|φ|],

is onto. The union of countably many finite sets is countable and so we have proved that

[X, Y ] is countable whenever X and Y are triangulable. This implies, for example, since

π1(X, x0) ⊂ [S1, X], the fundamental group of a triangulable space is countable.

Exercises

1. Suppose that K is an abstract simplicial complex of dimension n. To find a geometric

realization of K, we want to identify vertices of K with points in some RN
in such a way

that, whenever {v0, . . . , vq} is a simplex in K, then the associated points {v0, . . . ,vq}
are in general position in RN

. In R2n+1
consider the curve

C = {(r, r2, . . . , r2n+1
) | r ∈ R}.

Using the Vandermonde determinant, any 2n + 2 distinct points on C are in general

position ([35]). Assign to each vertex in K, a distinct point on C. Since dim K =

n, a simplex in K determines at most n points on C and hence a set in general

position. We next worry about intersections of these geometric simplices. Suppose

{v0, . . . ,vi, . . . ,vi+k} and {vi, . . . ,vi+k, . . . ,vm} are simplices with a shared face.

Then m < 2n + 2 because dim K = n and so the union of these sets is in general

position. Show that this guarantees that the intersection between these simplices is

along a common face alone. Thus we can take an abstract simplicial complex as a

geometric simplicial complex without hesitation.

2. Draw a picture (or better yet, make a model) of the first and second barycentric

subdivisions of ∆�
.

3. If K and L are simplicial complexes, their join, K ∗ L is the set consisting of the

simplices of K, the simplices of L, and the set of 1-simplices {{a, b} | a a vertex in

K, b a vertex in L}. Show that K ∗ L is a simplicial complex. When L = {v0} and

v0 /∈ K, show that K ∗ {v0} has CK, the cone on K, as realization.

4. Suppose that φ:K → L is a simplicial mapping. Suppose that ψ:K → L is a simplicial

approximation to |φ|: |K| → |L|. Show that ψ = φ. Thus a simplicial mapping is its

own simplicial approximation.

5. Suppose that f : |K| → |L| has a simplicial approximation φ:K → L. Show that

sd φ: sdK → sd L is also a simplicial approximation of f .
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6. Prove that composites of contiguous simplicial mappings are contiguous.

7. Suppose K has dimension m and φ:K → bdy∆n
is a simplicial mapping. If m < n,

show that |φ| is null homotopic by showing that the image of |φ| is not all of |bdy∆n|.
This implies that [Sm, Sn

] has cardinality one for m < n.
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