
Chapter 9 Sample Answers
Justin Touchon
8/3/2021
This page provides sample answers to the assignment at the end of Chapter 9 of Applied Statistics with R: A
Practical Guide for the Life Sciences by Justin Touchon. Chapter 9 focuses on Advanced Data Wrangling and
Plotting. Throughout the book you have been learning the basis for these skills bit by bit, but Chapter 9 really
aims to solidify and further your understanding of data manipulation (primarily using the package dplyr, but others
as well) and making effective graphics with ggplot2. The magic really happens when you integrate these two
skills together!

There was only one very open ended assignment listed at the end of Chapter 9. I will explore a few different
options, but the possibilities are sort of endless here.

Question 1
Your goal is to pick a variable (final SVL, time to resorb the tail, etc.) and make a bargraph that shows the
mean and standard error for each tank in the experiment. Make sure to give it meaningful axis titles and all
that.

As always, let’s load any packages we will need. Here, we can load pretty much everything we need with the
tidyverse collection of packages. I’ll also throw in cowplot of course.

library(tidyverse)
library(cowplot)

Alright, what should we examine? There are so many possibilities!

The key to this assignment that is a little different from what you did in the chapter is that you want to plot each
tank. Since you are also supposed to have error bars for each bar, that means using the raw data (RxP.clean)
instead of the summarized data (RxP.byTank). Let’s make sure we have those data loaded in and ready to go.

RxP.clean<-read.csv("~/Desktop/Biostats_class/RxP/RxP_clean.csv", stringsAsFactors = T)
#I'm going to go ahead and make the logged versions of these variables
RxP.clean$log.SVL.final<-log(RxP.clean$SVL.final)
RxP.clean$log.Age.FromEmergence<-log(RxP.clean$Age.FromEmergence)
RxP.clean$log.Age.DPO<-log(RxP.clean$Age.DPO)
RxP.clean$log.Mass.final<-log(RxP.clean$Mass.final)
#Remember to reorder the Pred factor
RxP.clean$Pred<-factor(RxP.clean$Pred, levels=c("C","NL","L"))
str(RxP.clean)

'data.frame': 2493 obs. of 18 variables:
$ Ind : int 1 2 3 4 5 6 7 8 9 10 ...
$ Block : int 5 5 5 5 5 5 5 2 2 1 ...
$ Tank : int 7 4 4 7 10 4 4 5 4 1 ...
$ Tank.Unique : int 55 52 52 55 58 52 52 17 16 1 ...
$ Hatch : Factor w/ 2 levels "E","L": 1 2 2 1 2 2 2 1 2 2 ...
$ Pred : Factor w/ 3 levels "C","NL","L": 2 1 1 2 3 1 1 3 1 2 ...
$ Res : Factor w/ 2 levels "Hi","Lo": 1 1 1 1 1 1 1 1 1 1 ...
$ Age.DPO : int 35 35 35 35 36 36 36 39 39 39 ...
$ Age.FromEmergence : int 1 1 1 1 2 2 2 5 5 5 ...
$ SVL.initial : num 18 17.7 18.1 16.8 18.7 17.5 17.3 19.6 16.5 17.5 ...
$ Tail.initial : num 5.4 1.1 5 6.4 6.3 4.4 1.3 1.5 2 5.1 ...
$ SVL.final : num 17 18 17.8 17.1 19.3 17.8 17.9 19.6 17.7 19.5 ...
$ Mass.final : num 0.38 0.35 0.41 0.3 0.46 0.3 0.42 0.5 0.33 0.46 ...
$ Resorb.days : int 3 3 3 3 3 4 2 2 2 3 ...
$ log.SVL.final : num 2.83 2.89 2.88 2.84 2.96 ...
$ log.Age.FromEmergence: num 0 0 0 0 0.693 ...
$ log.Age.DPO : num 3.56 3.56 3.56 3.56 3.58 ...
$ log.Mass.final : num -0.968 -1.05 -0.892 -1.204 -0.777 ...

We will explore two different variables, time to resorb the tail (Resorb.days) and final SVL at metamorphosis
(SVL.final). The basic process will be the same for each variable.

1. Group the data and calculate means and standard errors.
2. Plot those data for each tank in the experiment.

Time needed to fully resorb the tail after leaving the
water
The first thing we need to do is summarize the data for each tank. You will want to make sure you group the data
by Tank.Unique and not just Tank. Why you ask? Because summarizing based on just Tank would lump tanks
together across blocks, which is certainly not what we want. That said, you could use Tank as a grouping variable
if you also included Block, since that would correctly separate each individual tank.

RxP.clean %>%
 group_by(Tank.Unique) %>%
 summarize(Resorb.days.mean = mean(Resorb.days),
 Resorb.days.SD = sd(Resorb.days),
 Resorb.days.N = length(Resorb.days)) %>%
 mutate(Resorb.days.SE = Resorb.days.SD/sqrt(Resorb.days.N))

A tibble: 78 x 5
Tank.Unique Resorb.days.mean Resorb.days.SD Resorb.days.N Resorb.days.SE
<int> <dbl> <dbl> <int> <dbl>
1 1 3.49 1.12 47 0.163
2 2 3.79 1.30 42 0.200
3 3 3.51 0.843 45 0.126
4 4 3.65 1.23 26 0.241
5 5 4.22 1.61 40 0.254
6 6 5 1.20 8 0.423
7 7 4.09 0.947 43 0.144
8 8 4.82 1.12 39 0.179
9 9 4.22 1.17 23 0.243
10 10 3.70 1.02 44 0.154
… with 68 more rows

Okay, that worked to create a summarized data frame to use for plotting. I didn’t want to create a new object, so
I’m just going to copy that code and use it for plotting in the next step. Just like we did before, we can pipe the
summarized data to ggplot(). The most basic version of the figure might look like this.

RxP.clean %>%
 group_by(Tank.Unique) %>%
 summarize(Resorb.days.mean = mean(Resorb.days),
 Resorb.days.SD = sd(Resorb.days),
 Resorb.days.N = length(Resorb.days)) %>%
 mutate(Resorb.days.SE = Resorb.days.SD/sqrt(Resorb.days.N)) %>%
 ggplot(data=., aes(x=Tank.Unique, y=Resorb.days.mean))+
 geom_col()+
 geom_errorbar(aes(ymin=Resorb.days.mean-Resorb.days.SE,
 ymax=Resorb.days.mean+Resorb.days.SE),
 width=0.5)

We can make this figure a little more interesting though. For example, we could also include Block as a grouping
variable, which would then allow us to facet or color based on Block. But, as we will see, that can cause some
wierd things to happen.

RxP.clean %>%
 group_by(Block, Tank.Unique) %>%
 summarize(Resorb.days.mean = mean(Resorb.days),
 Resorb.days.SD = sd(Resorb.days),
 Resorb.days.N = length(Resorb.days)) %>%
 mutate(Resorb.days.SE = Resorb.days.SD/sqrt(Resorb.days.N)) %>%
 ggplot(data=., aes(x=Tank.Unique, y=Resorb.days.mean, fill=Block))+
 geom_col()+
 geom_errorbar(aes(ymin=Resorb.days.mean-Resorb.days.SE,
 ymax=Resorb.days.mean+Resorb.days.SE),
 width=0.5)

`summarise()` has grouped output by 'Block'. You can override using the `.groups` arg
ument.

So what happened there? Since Block is a continuous variable, R decided color our bars with a gradient from
dark blue to light blue. We could get around this in two ways.

1. We could use mutate to make Block a factor in the first part of the code.
2. We could just specify that we want Block to be a factor directly in the first line of the ggplot() code. Let’s do

that one. We can do that by just placing the name of our variable, in this case Block inside the function
factor().

RxP.clean %>%
 group_by(Block, Tank.Unique) %>%
 summarize(Resorb.days.mean = mean(Resorb.days),
 Resorb.days.SD = sd(Resorb.days),
 Resorb.days.N = length(Resorb.days)) %>%
 mutate(Resorb.days.SE = Resorb.days.SD/sqrt(Resorb.days.N)) %>%
 ggplot(data=., aes(x=Tank.Unique, y=Resorb.days.mean, fill=factor(Block)))+
 geom_col()+
 geom_errorbar(aes(ymin=Resorb.days.mean-Resorb.days.SE,
 ymax=Resorb.days.mean+Resorb.days.SE),
 width=0.5)

`summarise()` has grouped output by 'Block'. You can override using the `.groups` arg
ument.

That’s starting to look nice. What if we wanted to facet the different blocks into separate panels?

RxP.clean %>%
 group_by(Block, Tank.Unique) %>%
 summarize(Resorb.days.mean = mean(Resorb.days),
 Resorb.days.SD = sd(Resorb.days),
 Resorb.days.N = length(Resorb.days)) %>%
 mutate(Resorb.days.SE = Resorb.days.SD/sqrt(Resorb.days.N)) %>%
 ggplot(data=., aes(x=Tank.Unique, y=Resorb.days.mean, fill=factor(Block)))+
 geom_col()+
 geom_errorbar(aes(ymin=Resorb.days.mean-Resorb.days.SE,
 ymax=Resorb.days.mean+Resorb.days.SE),
 width=0.5)+
 facet_wrap(facets=.~Block)

`summarise()` has grouped output by 'Block'. You can override using the `.groups` arg
ument.

Whoa, that probably isn’t what we expected! This is because when we facet a plot, by default the x-axis is
constrained to be the same across every panel. Thus, the x-axis goes from 1-98 in each panel. Once again, there
are two ways to work around this.

1. We could change our grouping variable to be Tank instead of Tank.Unique. Since we also group by Block,
we will still see every tank.

2. We could specify that we want the x-axis to be different in each panel of the faceted plot. We do that by
specifying scales=“free” in the facet_wrap() function. That is what I’m going to do.

RxP.clean %>%
 group_by(Block, Tank.Unique) %>%
 summarize(Resorb.days.mean = mean(Resorb.days),
 Resorb.days.SD = sd(Resorb.days),
 Resorb.days.N = length(Resorb.days)) %>%
 mutate(Resorb.days.SE = Resorb.days.SD/sqrt(Resorb.days.N)) %>%
 ggplot(data=., aes(x=Tank.Unique, y=Resorb.days.mean, fill=factor(Block)))+
 geom_col()+
 geom_errorbar(aes(ymin=Resorb.days.mean-Resorb.days.SE,
 ymax=Resorb.days.mean+Resorb.days.SE),
 width=0.5)+
 facet_wrap(facets=.~Block, scales="free")

`summarise()` has grouped output by 'Block'. You can override using the `.groups` arg
ument.

Cool! We can see here that it would be more intuitive to specify that Tank.Unique should be a factor, like we did
for Block. Since we’ve figured out the basics of our plot, I’m going to go ahead and fix up the axis labels and
everything else here. In the code below I’ve done a bunch of things.

1. I’ve specified that Tank.Unique should be a factor.
2. I’ve modified the x- and y-axis labels with the labs() function. I’ve also used this to change the title of the

legend. Normally you might change the title of a legend using scale_fill_manual() but since I didn’t want to
change the colors, this a more efficient way to accomplish the same job.

3. I’ve specified to use the cowplot theme, which I like a lot.
4. Unfortunately theme_cowplot() makes the axis fonts a little too big, such that the numbers of the tanks

became a little unreadable. Thus, I’ve used the theme() function to specify a slightly smaller font size.

RxP.clean %>%
 group_by(Block, Tank.Unique) %>%
 summarize(Resorb.days.mean = mean(Resorb.days),
 Resorb.days.SD = sd(Resorb.days),
 Resorb.days.N = length(Resorb.days)) %>%
 mutate(Resorb.days.SE = Resorb.days.SD/sqrt(Resorb.days.N)) %>%
 ggplot(data=., aes(x=factor(Tank.Unique), y=Resorb.days.mean, fill=factor(Block)))+
 geom_col()+
 geom_errorbar(aes(ymin=Resorb.days.mean-Resorb.days.SE,
 ymax=Resorb.days.mean+Resorb.days.SE),
 width=0.5)+
 facet_wrap(facets=.~Block, scales="free")+
 labs(x="Tank", y="Time needed to resorb the tail (days)", fill="Block")+
 theme_cowplot()+
 theme(axis.text.x = element_text(size=10), axis.text.y = element_text(size=10))

`summarise()` has grouped output by 'Block'. You can override using the `.groups` arg
ument.

Final SVL at metamorphosis
Now that we’ve worked through all that to make a nice figure, I wanted to show how easy it is to make a new
figure using the preexisting code. Below, I’ve just modified the text above to summarize a different variable
(SVL.final). All I did was a “find and replace” to swap Resorb.days for SVL.final. So easy! To make this figure a little

different, I did change the colors for the plot and I grouped it by Tank instead of Tank.Unique, which I did by
specifying scale_fill_hue(). This is essentially a special version of scale_fill_manual() that lets you create a
gradient of colors based on two points in a color wheel. I chose to start in the greens and progress to the end of
the color wheel (blue/purple). I also specified a low value for the chroma, or purity of the color (via the c=
argument). There are so many ways you can play with color in ggplot2!

RxP.clean %>%
 group_by(Block, Tank) %>%
 summarize(SVL.final.mean = mean(SVL.final),
 SVL.final.SD = sd(SVL.final),
 SVL.final.N = length(SVL.final)) %>%
 mutate(SVL.final.SE = SVL.final.SD/sqrt(SVL.final.N)) %>%
 ggplot(data=., aes(x=factor(Tank), y=SVL.final.mean, fill=factor(Block)))+
 geom_col()+
 geom_errorbar(aes(ymin=SVL.final.mean-SVL.final.SE,
 ymax=SVL.final.mean+SVL.final.SE),
 width=0.5)+
 facet_wrap(facets=.~Block, scales="free")+
 labs(x="Tank", y="Final SVL at metamorphosis (mm)", fill="Block")+
 theme_cowplot()+
 theme(axis.text.x = element_text(size=10), axis.text.y = element_text(size=10))+
 scale_fill_hue(h=c(180,360), c=50)

`summarise()` has grouped output by 'Block'. You can override using the `.groups` arg
ument.

