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This page provides sample answers to the assignment at the end of Chapter 8 of Applied Statistics with R: A
Practical Guide for the Life Sciences by Justin Touchon. Chapter 8 introduces you to Mixed Effects Models, also
known just as Mixed Models or also as Random Effects Models. Mixed models are incredibly useful in the life
sciences, as they allow you to account for additional sources of variation beyond just the the things you are
interested in. For this reason, they can also be used to account for non-independence that may occur in your
data.

There was only one assignment listed at the end of Chapter 8. That said, it is a pretty big and open ended one!
You could of course explore more models as well.

Question 1
Rerun the ANCOVA models you explored in Chapter 6 but using all of the data and include random effects
for block and tank within block. Don’t forget to check the model fit via the Q-Q plot. How does it look?

Depending on which models you want to explore here, you might need different packages. The ANCOVA we
created in Chapter 6 was this:

lm5<-lm(log.SVL.final~log.Age.DPO*Pred, data=RxP.byTank)

You were also tasked with creating several other models of your choosing in order explore other interactions
between the continuous and categorical predictors in the data frame. For example, in the sample set of answers
I’ve created for Chapter 6, I explored the following models:

lm.tail<-lm(Tail.initial~Hatch*Pred, data=RxP.byTank) 
lm.resorb2<-lm(log(Resorb.days)~log(Tail.initial)*Res, data=RxP.byTank)

You might have created different models when you working through the homework, but these are the models I
created and what I will be working through here.

As always, let’s load any packages we will need. For the first time though, we will be working with the RxP.clean
data frame, since the mixed models will allow us to use all the data.

library(MASS) 
library(car) 
library(emmeans) 
library(cowplot) 
library(tidyverse) 
library(lattice) 
library(lme4)



RxP.clean<-read.csv("~/Desktop/Biostats_class/RxP/RxP_clean.csv", stringsAsFactors = T) 
#I'm going to go ahead and make the logged versions of these variables 
RxP.clean$log.SVL.final<-log(RxP.clean$SVL.final) 
RxP.clean$log.Age.FromEmergence<-log(RxP.clean$Age.FromEmergence) 
RxP.clean$log.Age.DPO<-log(RxP.clean$Age.DPO) 
RxP.clean$log.Mass.final<-log(RxP.clean$Mass.final) 
#Remember to reorder the Pred factor 
RxP.clean$Pred<-factor(RxP.clean$Pred, levels=c("C","NL","L")) 
str(RxP.clean)

## 'data.frame':    2493 obs. of  18 variables: 
##  $ Ind                  : int  1 2 3 4 5 6 7 8 9 10 ... 
##  $ Block                : int  5 5 5 5 5 5 5 2 2 1 ... 
##  $ Tank                 : int  7 4 4 7 10 4 4 5 4 1 ... 
##  $ Tank.Unique          : int  55 52 52 55 58 52 52 17 16 1 ... 
##  $ Hatch                : Factor w/ 2 levels "E","L": 1 2 2 1 2 2 2 1 2 2 ... 
##  $ Pred                 : Factor w/ 3 levels "C","NL","L": 2 1 1 2 3 1 1 3 1 2 ... 
##  $ Res                  : Factor w/ 2 levels "Hi","Lo": 1 1 1 1 1 1 1 1 1 1 ... 
##  $ Age.DPO              : int  35 35 35 35 36 36 36 39 39 39 ... 
##  $ Age.FromEmergence    : int  1 1 1 1 2 2 2 5 5 5 ... 
##  $ SVL.initial          : num  18 17.7 18.1 16.8 18.7 17.5 17.3 19.6 16.5 17.5 ... 
##  $ Tail.initial         : num  5.4 1.1 5 6.4 6.3 4.4 1.3 1.5 2 5.1 ... 
##  $ SVL.final            : num  17 18 17.8 17.1 19.3 17.8 17.9 19.6 17.7 19.5 ...
##  $ Mass.final           : num  0.38 0.35 0.41 0.3 0.46 0.3 0.42 0.5 0.33 0.46 ... 
##  $ Resorb.days          : int  3 3 3 3 3 4 2 2 2 3 ... 
##  $ log.SVL.final        : num  2.83 2.89 2.88 2.84 2.96 ... 
##  $ log.Age.FromEmergence: num  0 0 0 0 0.693 ... 
##  $ log.Age.DPO          : num  3.56 3.56 3.56 3.56 3.58 ... 
##  $ log.Mass.final       : num  -0.968 -1.05 -0.892 -1.204 -0.777 ...

The effect of Predators on SVL while controlling for
age at metamorphosis
Let’s start by rerunning the model from Chapter 6, just to refresh ourselves on what we concluded.

lm5<-lm(log.SVL.final~log.Age.DPO*Pred, data=RxP.byTank) 
Anova(lm5)

## Anova Table (Type II tests) 
##  
## Response: log.SVL.final 
##                    Sum Sq Df F value    Pr(>F)     
## log.Age.DPO      0.019898  1  7.2824   0.00867 **  
## Pred             0.079871  2 14.6155 4.706e-06 *** 
## log.Age.DPO:Pred 0.019731  2  3.6105   0.03204 *   
## Residuals        0.196732 72                       
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



The initial analysis shows us that both predators and age at metamorphosis influence final SVL at
metamorphosis, and the effect of age differed for each of the predator treatments (the significant interaction).

A quick visualization of the results demonstrates that this is primarily due to the Lethal predator treatment. The
regressions for the Nonlethal and Control treatments are pretty similar.

qplot(data=RxP.byTank, x=log.Age.DPO, y=log.SVL.final, geom="point", col=Pred)+ 
  geom_smooth(method="lm", se=F)+ 
  theme_cowplot()

## `geom_smooth()` using formula 'y ~ x'

Okay, what will happen when we use all the data and control for Block and Tank with random effects? Recall that
to accurately assess the significance of our fixed effects, we need to use Likelihood Ratio Tests. Below I’ve made
four models that each differ, successively, by one predictor. The first model (lmm5) contains three predictors: age
at metamorphosis, predator treatment, and the interaction between them. The second model (lmm5.1) contains
just age at metamorphosis and predator treatment, but not the interaction between them. The last two models
contain just age at metamorphosis (lmm5.2) or predator treatment (lmm5.3).

lmm5<-lmer(log.SVL.final~log.Age.DPO*Pred+(1|Block/Tank.Unique), data=RxP.clean) 
lmm5.1<-lmer(log.SVL.final~log.Age.DPO+Pred+(1|Block/Tank.Unique), data=RxP.clean) 
lmm5.2<-lmer(log.SVL.final~log.Age.DPO+(1|Block/Tank.Unique), data=RxP.clean)



## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : 
## unable to evaluate scaled gradient

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : 
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues

lmm5.3<-lmer(log.SVL.final~Pred+(1|Block/Tank.Unique), data=RxP.clean)

If you just ran those models, you might have gotten a warning for lmm5.2. This is an excellent opportunity to talk
about something that is very important but which I didn’t have space to really dive into in the book. What do you
do when you get a bunch of red text telling you things like “Model failed to converge: degenerate Hessian with 1
negative eigenvalues” or “unable to evaluate scaled gradient”. Those warnings sound scary and terrible right?
Yikes! First, it is important to recognize that they are warnings and not errors. An error means your model failed to
run. A warning means it ran but R wasn’t happy about something. Warnings mean you need to do a little digging
to figure out if you have a problem on your hands or not. For example, we can examine the summary output to
confirm the model ran.

lmm5.2<-lmer(log.SVL.final~log.Age.DPO+(1|Block/Tank.Unique), data=RxP.clean)

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : 
## unable to evaluate scaled gradient

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : 
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues

summary(lmm5.2)



## Linear mixed model fit by REML ['lmerMod'] 
## Formula: log.SVL.final ~ log.Age.DPO + (1 | Block/Tank.Unique) 
##    Data: RxP.clean 
##  
## REML criterion at convergence: -6522.6 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -5.0540 -0.5785  0.0253  0.6223  5.4815  
##  
## Random effects: 
##  Groups            Name        Variance  Std.Dev.  
##  Tank.Unique:Block (Intercept) 1.574e-02 1.254e-01 
##  Block             (Intercept) 7.745e-09 8.801e-05 
##  Residual                      3.663e-03 6.053e-02 
## Number of obs: 2493, groups:  Tank.Unique:Block, 78; Block, 8 
##  
## Fixed effects: 
##             Estimate Std. Error t value 
## (Intercept)  1.97286    0.02667   73.97 
## log.Age.DPO  0.24058    0.00550   43.74 
##  
## Correlation of Fixed Effects: 
##             (Intr) 
## log.Age.DPO -0.845 
## optimizer (nloptwrap) convergence code: 0 (OK) 
## unable to evaluate scaled gradient 
## Model failed to converge: degenerate  Hessian with 1 negative eigenvalues

Despite the warning, the model calculated the slope (0.24058) and intercept (1.97286) for our model. In this case,
these warnings mean that R couldn’t figure out an answer to our model. It couldn’t figure out the single best
relationship between our predictor and response variables while also accounting for the random effects we’ve
coded. Let’s explore further!

Try to understand what is causing the problem
The easiest way to explore what is causing a problem is to remove various things and rerun your model to see if it
will run. Sometimes you might get a warning (or an error) because you’ve coded your random effects structures to
be too complicated. For example, if we remove Block from our model, then it runs without a problem and gives us
the exact same estimates for the slope and intercept.

lmm5.2<-lmer(log.SVL.final~log.Age.DPO+(1|Block), data=RxP.clean) 
summary(lmm5.2)



## Linear mixed model fit by REML ['lmerMod'] 
## Formula: log.SVL.final ~ log.Age.DPO + (1 | Block) 
##    Data: RxP.clean 
##  
## REML criterion at convergence: -4669.8 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -2.8727 -0.6998 -0.0218  0.6702  3.2655  
##  
## Random effects: 
##  Groups   Name        Variance  Std.Dev. 
##  Block    (Intercept) 0.0005655 0.02378  
##  Residual             0.0088576 0.09411  
## Number of obs: 2493, groups:  Block, 8 
##  
## Fixed effects: 
##             Estimate Std. Error t value 
## (Intercept) 2.821456   0.023479 120.167 
## log.Age.DPO 0.027924   0.005254   5.314 
##  
## Correlation of Fixed Effects: 
##             (Intr) 
## log.Age.DPO -0.930

But why does R not give us a warning when we include both Block and Tank.Unique and a more complex set of
predictors? Let’s explore what it looks like when we plot the data for each individual tank.

ggplot(data=RxP.clean, aes(x=log.Age.DPO, y=log.SVL.final))+ 
  geom_point(size=0.2)+ 
  facet_wrap(facets=.~Tank.Unique)



This is informative because it shows us that there are a few tanks with very few individuals. Model lmm5.2 is
essentially creating a linear regression for each tank, then pooling all those regressions to get the overall
regression for our fixed effect. But tank 26 only has two individuals! We can verify this if we calculate how many
individuals are in each Tank.

RxP.clean %>%  
  group_by(Tank.Unique) %>%  
  summarize(Obs = length(Tank.Unique))

## # A tibble: 78 x 2 
##    Tank.Unique   Obs 
##          <int> <int> 
##  1           1    47 
##  2           2    42 
##  3           3    45 
##  4           4    26 
##  5           5    40 
##  6           6     8 
##  7           7    43 
##  8           8    39 
##  9           9    23 
## 10          10    44 
## # … with 68 more rows



Since we all know the shortest distance between two points is a straight line, the regression will end up drawing a
straight line and will have no estimate of variance around the regression, which is not good. R is essentially telling
us that it we don’t have enough data to really calculate the regression. One way to verify if tank 26 is indeed the
root of the problem would be to run the model without it. We can use square brackets to remove just that one
tank.

lmm5.2<-lmer(log.SVL.final~log.Age.DPO+(1|Block/Tank.Unique), data=RxP.clean[RxP.clean$T
ank.Unique!=26,])

## boundary (singular) fit: see ?isSingular

summary(lmm5.2)

## Linear mixed model fit by REML ['lmerMod'] 
## Formula: log.SVL.final ~ log.Age.DPO + (1 | Block/Tank.Unique) 
##    Data: RxP.clean[RxP.clean$Tank.Unique != 26, ] 
##  
## REML criterion at convergence: -6521.2 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -5.0527 -0.5788  0.0252  0.6203  5.4804  
##  
## Random effects: 
##  Groups            Name        Variance Std.Dev. 
##  Tank.Unique:Block (Intercept) 0.015233 0.12342  
##  Block             (Intercept) 0.000000 0.00000  
##  Residual                      0.003664 0.06053  
## Number of obs: 2491, groups:  Tank.Unique:Block, 77; Block, 8 
##  
## Fixed effects: 
##             Estimate Std. Error t value 
## (Intercept)  1.97011    0.02661   74.04 
## log.Age.DPO  0.24053    0.00550   43.74 
##  
## Correlation of Fixed Effects: 
##             (Intr) 
## log.Age.DPO -0.847 
## optimizer (nloptwrap) convergence code: 0 (OK) 
## boundary (singular) fit: see ?isSingular

The model runs and we get a different warning telling us that our model has a singular fit. That is probably not a
big deal. A singular model just means that one or more of the estimated variances are close to zero, but that is
probably okay. We can also see that we once again get essentially the same values for our slope and intercept.

Based on all of this, we can conclude that the warning we received at the outset is probably not a big deal. This
isn’t always the case of course. Sometimes a warning really means you can’t trust your results. In this case,
however, we are probably in fine shape.

Change the optimizer



One other thing to try when you get a warning or an error is to fiddle with how lmer() is actually calculating your
model. If you do a little digging on the internet, you can read lots about the guts of a complex function like lmer().
One thing that makes the function run is an optimizer algorithm, and there are of course different built in options.
When you run in to a warning like we have here, one solution is to change the optimizer function from the default.
One alternative that works well is called “Nelder-Mead” and you can change the function by adding an argument
to your model.

lmm5.2<-lmer(log.SVL.final~log.Age.DPO+(1|Block/Tank.Unique), data=RxP.clean, control =
 lmerControl(optimizer ="Nelder_Mead")) 
summary(lmm5.2)

## Linear mixed model fit by REML ['lmerMod'] 
## Formula: log.SVL.final ~ log.Age.DPO + (1 | Block/Tank.Unique) 
##    Data: RxP.clean 
## Control: lmerControl(optimizer = "Nelder_Mead") 
##  
## REML criterion at convergence: -6522.6 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -5.0539 -0.5785  0.0253  0.6224  5.4815  
##  
## Random effects: 
##  Groups            Name        Variance  Std.Dev. 
##  Tank.Unique:Block (Intercept) 1.572e-02 0.12537  
##  Block             (Intercept) 2.181e-05 0.00467  
##  Residual                      3.663e-03 0.06053  
## Number of obs: 2493, groups:  Tank.Unique:Block, 78; Block, 8 
##  
## Fixed effects: 
##             Estimate Std. Error t value 
## (Intercept)  1.97284    0.02672   73.83 
## log.Age.DPO  0.24058    0.00550   43.74 
##  
## Correlation of Fixed Effects: 
##             (Intr) 
## log.Age.DPO -0.843

Notice that we got no warning and once again we got essentially the same slope and intercept as we originally
received. This is further evidence that the original warning is probably a false alarm that our model is in trouble.
Thus, let’s ignore the warning and proceed with assessing significance of the original version of the model.

Likelihood ratio tests
Now, we can assess the significance of the different predictors.

lmm5<-lmer(log.SVL.final~log.Age.DPO*Pred+(1|Block/Tank.Unique), data=RxP.clean) 
lmm5.1<-lmer(log.SVL.final~log.Age.DPO+Pred+(1|Block/Tank.Unique), data=RxP.clean) 
lmm5.2<-lmer(log.SVL.final~log.Age.DPO+(1|Block/Tank.Unique), data=RxP.clean) 
lmm5.3<-lmer(log.SVL.final~Pred+(1|Block/Tank.Unique), data=RxP.clean)



First, we compare lmm5 (the full model) with lmm5.1, which lacks the interaction. That will tell us if the interaction
is significant or not.

anova(lmm5,lmm5.1)#Significance of the interaction

## refitting model(s) with ML (instead of REML)

## Data: RxP.clean 
## Models: 
## lmm5.1: log.SVL.final ~ log.Age.DPO + Pred + (1 | Block/Tank.Unique) 
## lmm5: log.SVL.final ~ log.Age.DPO * Pred + (1 | Block/Tank.Unique) 
##        npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq) 
## lmm5.1    7 -6570.1 -6529.3 3292.0  -6584.1                      
## lmm5      9 -6570.1 -6517.7 3294.1  -6588.1 4.0468  2     0.1322

anova(lmm5.1,lmm5.2)#Significance of Pred

## refitting model(s) with ML (instead of REML)

## Data: RxP.clean 
## Models: 
## lmm5.2: log.SVL.final ~ log.Age.DPO + (1 | Block/Tank.Unique) 
## lmm5.1: log.SVL.final ~ log.Age.DPO + Pred + (1 | Block/Tank.Unique) 
##        npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)     
## lmm5.2    5 -6527.8 -6498.7 3268.9  -6537.8                          
## lmm5.1    7 -6570.1 -6529.3 3292.0  -6584.1 46.214  2  9.222e-11 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(lmm5.1,lmm5.3)#Significance of log.Age.DPO

## refitting model(s) with ML (instead of REML)

## Data: RxP.clean 
## Models: 
## lmm5.3: log.SVL.final ~ Pred + (1 | Block/Tank.Unique) 
## lmm5.1: log.SVL.final ~ log.Age.DPO + Pred + (1 | Block/Tank.Unique) 
##        npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)     
## lmm5.3    6 -5232.2 -5197.3 2622.1  -5244.2                          
## lmm5.1    7 -6570.1 -6529.3 3292.0  -6584.1 1339.8  1  < 2.2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This is really interesting. By including all of our data and controlling for the lack of independence of metamorphs
coming out of tanks which are themselves nested in blocks, we have concluded that there is not actually a
significant interaction between the predator treatments and age at metamorphosis. That’s a really important



conclusion and including more data fundamentally changed our view of the answer. We can confirm that the
different predator treatments do not differ with emtrends().

pairs(emtrends(lmm5, specs="Pred", var="log.Age.DPO"))

##  contrast estimate     SE   df t.ratio p.value 
##  C - NL    0.00845 0.0138 2481 0.612   0.8134  
##  C - L     0.02943 0.0147 2470 2.001   0.1122  
##  NL - L    0.02097 0.0175 2477 1.196   0.4558  
##  
## Degrees-of-freedom method: kenward-roger  
## P value adjustment: tukey method for comparing a family of 3 estimates

The interaction between Hatching Age and
Predators on Tail length at metamorphosis
In the sample answers for Chapter 6, I ran the following model, which examined if the predator treatment and the
hatching age treatment affected the length of the tail when metamorphs crawled out of the water and we
determined that predators, but not hatching age, do indeed alter when froglets choose to crawl out of the water.

lm.tail<-lm(Tail.initial~Hatch*Pred, data=RxP.byTank) 
Anova(lm.tail)

## Anova Table (Type II tests) 
##  
## Response: Tail.initial 
##            Sum Sq Df F value    Pr(>F)     
## Hatch       0.920  1  1.5241 0.2210101     
## Pred        9.298  2  7.7018 0.0009309 *** 
## Hatch:Pred  1.334  2  1.1054 0.3366458     
## Residuals  43.459 72                       
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What about when we include all the data?

lmm.tail<-lmer(Tail.initial~Hatch*Pred+(1|Block/Tank.Unique), data=RxP.clean) 
lmm.tail1<-lmer(Tail.initial~Hatch+Pred+(1|Block/Tank.Unique), data=RxP.clean) 
lmm.tail2<-lmer(Tail.initial~Hatch+(1|Block/Tank.Unique), data=RxP.clean) 
lmm.tail3<-lmer(Tail.initial~Pred+(1|Block/Tank.Unique), data=RxP.clean) 
anova(lmm.tail,lmm.tail1)

## refitting model(s) with ML (instead of REML)



## Data: RxP.clean 
## Models: 
## lmm.tail1: Tail.initial ~ Hatch + Pred + (1 | Block/Tank.Unique) 
## lmm.tail: Tail.initial ~ Hatch * Pred + (1 | Block/Tank.Unique) 
##           npar   AIC   BIC  logLik deviance  Chisq Df Pr(>Chisq) 
## lmm.tail1    7 10970 11010 -5477.9    10956                      
## lmm.tail     9 10972 11025 -5477.1    10954 1.4708  2     0.4793

anova(lmm.tail1,lmm.tail2)

## refitting model(s) with ML (instead of REML)

## Data: RxP.clean 
## Models: 
## lmm.tail2: Tail.initial ~ Hatch + (1 | Block/Tank.Unique) 
## lmm.tail1: Tail.initial ~ Hatch + Pred + (1 | Block/Tank.Unique) 
##           npar   AIC   BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## lmm.tail2    5 10975 11004 -5482.5    10965                         
## lmm.tail1    7 10970 11010 -5477.9    10956 9.2877  2   0.009621 ** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(lmm.tail1,lmm.tail3)

## refitting model(s) with ML (instead of REML)

## Data: RxP.clean 
## Models: 
## lmm.tail3: Tail.initial ~ Pred + (1 | Block/Tank.Unique) 
## lmm.tail1: Tail.initial ~ Hatch + Pred + (1 | Block/Tank.Unique) 
##           npar   AIC   BIC  logLik deviance  Chisq Df Pr(>Chisq) 
## lmm.tail3    6 10969 11004 -5478.4    10957                      
## lmm.tail1    7 10970 11010 -5477.9    10956 1.0117  1     0.3145

Our new analysis gives us the same result. Predators have a very significant effect on tail length at
metamorphosis, but hatching age does not. With emmeans() we can see that the effect is driven, understandably,
by the lethal predators, which cause metamorphs to leave the water with significantly more tail left than
individuals from control tanks.

pairs(emmeans(lmm.tail3, specs="Pred"))



##  contrast estimate    SE   df t.ratio p.value 
##  C - NL    -0.0284 0.201 65.7 -0.141  0.9891  
##  C - L     -0.4506 0.154 70.2 -2.918  0.0130  
##  NL - L    -0.4222 0.212 76.3 -1.994  0.1205  
##  
## Degrees-of-freedom method: kenward-roger  
## P value adjustment: tukey method for comparing a family of 3 estimates

The effect of Resources on the time needed
to resorb the tail, while controlling for tail
length
As a reminder, in the sample answers for Chapter 6 we settled on the following model, which found that both tail
length at metamorphosis and the resources tadpoles had access to during the larval period affected the rate at
which they resorbed the tail into the body.

lm.resorb2<-lm(log(Resorb.days)~log(Tail.initial)*Res, data=RxP.byTank) 
Anova(lm.resorb2)

## Anova Table (Type II tests) 
##  
## Response: log(Resorb.days) 
##                        Sum Sq Df F value    Pr(>F)     
## log(Tail.initial)     0.58309  1 84.7679 6.771e-14 *** 
## Res                   0.13602  1 19.7735 3.014e-05 *** 
## log(Tail.initial):Res 0.01754  1  2.5504    0.1145     
## Residuals             0.50903 74                       
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Let’s explore if these results hold when we included all the data.

lmm.resorb2<-lmer(log(Resorb.days)~log(Tail.initial)*Res+(1|Block/Tank.Unique), data=Rx
P.clean)

## Error in qr.default(X, tol = tol, LAPACK = FALSE): NA/NaN/Inf in foreign function cal
l (arg 1)

Uh-oh! That’s not a warning, that’s an error. At first, this might look a little inscrutable, but what it means is that we
have somehow created some values that are either NA, NaN (Not a Number), or Inf (infinite). Maybe the problem is
that we are log-transforming something that can’t be log-transformed? Let’s use the table() function to see if
there are any zero’s in our dataset, and if so, how many.

table(RxP.clean$Tail.initial)



##  
##    0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9    1  1.1  1.2  1.3  1.4  1.5 
##    8    1    4    2    7    6    3    3    5    9   12   17    8    7   17   18 
##  1.6  1.7  1.8  1.9    2  2.1  2.2  2.3  2.4  2.5  2.6  2.7  2.8  2.9    3  3.1 
##   16   19   13   14   22   11    9   12    7    5   14   11    7    6    4    4 
##  3.2  3.3  3.4  3.5  3.6  3.7  3.8  3.9    4  4.1  4.2  4.3  4.4  4.5  4.6  4.7 
##   10    7    9   18    8   13   20   20   33   33   31   48   42   44   51   46 
##  4.8  4.9    5  5.1  5.2  5.3  5.4  5.5  5.6  5.7  5.8  5.9    6  6.1  6.2  6.3 
##   56   47   53   59   53   60   70   79   39   60   58   45   44   50   44   41 
##  6.4  6.5  6.6  6.7  6.8  6.9    7  7.1  7.2  7.3  7.4  7.5  7.6  7.7  7.8  7.9 
##   56   42   45   45   47   42   39   42   34   31   34   30   34   26   39   16 
##    8  8.1  8.2  8.3  8.4  8.5  8.6  8.7  8.8  8.9    9  9.1  9.2  9.3  9.4  9.5 
##   16   20   14    8   20   16   16   10   11   19   14   13    7   10   10    4 
##  9.6  9.7  9.8  9.9   10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9   11 11.3 
##    7    3   10    6    5    1    4    5    1    3    1    2    2    3    3    3 
## 11.4 11.5 11.6 11.7   12 12.1 12.2 12.3 12.4 12.5 12.6 12.8 12.9   13 13.2 14.2 
##    2    3    3    1    4    2    2    2    1    1    1    1    1    1    2    1 
## 14.3 14.5 14.9  
##    1    2    1

table(RxP.clean$Resorb.days)

##  
##   0   1   2   3   4   5   6   7   8   9  10  11  
##   6  11 112 537 835 596 265  80  30   7   6   8

Sure enough, there are 8 animals that had no tail when they crawled out of the water and 6 animals that were
recorded as needing 0 days to resorb their tails. (What’s the deal with the 2 animals that were recorded as having
no tail but still evidently need more than 0 days to resorb it? Hmmm….)

Let’s create a version of our dataframe that removes those individuals. We can use filter() to say we only want the
froglets with initial tail sizes longer than 0 mm, which should presumably also get rid of the six individuals that
needed just 0 days to resorb their nonexistent tails.

temp<-RxP.clean %>% 
  filter(Tail.initial > 0) 
table(temp$Resorb.days)

##  
##   1   2   3   4   5   6   7   8   9  10  11  
##  11 110 537 835 596 265  80  30   7   6   8

Yes, we have confirmed that we have gotten rid of all the 0s (at least for Resorb.days, so presumably for Tail.initial
as well). Now let’s rerun our model and see if we get the same error or not, making sure to change the data frame
in the model to temp.

lmm.resorb2<-lmer(log(Resorb.days)~log(Tail.initial)*Res+(1|Block/Tank.Unique), data=tem
p)

Hooray, no errors! Let’s code the rest of the nested models and run the LRTs.



lmm.resorb2.1<-lmer(log(Resorb.days)~log(Tail.initial)+Res+(1|Block/Tank.Unique), data=t
emp) 
lmm.resorb2.2<-lmer(log(Resorb.days)~log(Tail.initial)+(1|Block/Tank.Unique), data=temp) 
lmm.resorb2.3<-lmer(log(Resorb.days)~Res+(1|Block/Tank.Unique), data=temp) 
anova(lmm.resorb2,lmm.resorb2.1)

## refitting model(s) with ML (instead of REML)

## Data: temp 
## Models: 
## lmm.resorb2.1: log(Resorb.days) ~ log(Tail.initial) + Res + (1 | Block/Tank.Unique) 
## lmm.resorb2: log(Resorb.days) ~ log(Tail.initial) * Res + (1 | Block/Tank.Unique) 
##               npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## lmm.resorb2.1    6 340.84 375.75 -164.42   328.84                        
## lmm.resorb2      7 339.53 380.26 -162.77   325.53 3.3054  1    0.06905 . 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(lmm.resorb2.1,lmm.resorb2.2)

## refitting model(s) with ML (instead of REML)

## Data: temp 
## Models: 
## lmm.resorb2.2: log(Resorb.days) ~ log(Tail.initial) + (1 | Block/Tank.Unique) 
## lmm.resorb2.1: log(Resorb.days) ~ log(Tail.initial) + Res + (1 | Block/Tank.Unique) 
##               npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)     
## lmm.resorb2.2    5 361.79 390.88 -175.89   351.79                         
## lmm.resorb2.1    6 340.84 375.75 -164.42   328.84 22.95  1  1.663e-06 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(lmm.resorb2.1,lmm.resorb2.3)

## refitting model(s) with ML (instead of REML)

## Data: temp 
## Models: 
## lmm.resorb2.3: log(Resorb.days) ~ Res + (1 | Block/Tank.Unique) 
## lmm.resorb2.1: log(Resorb.days) ~ log(Tail.initial) + Res + (1 | Block/Tank.Unique) 
##               npar     AIC     BIC  logLik deviance  Chisq Df Pr(>Chisq)     
## lmm.resorb2.3    5 1130.68 1159.77 -560.34  1120.68                          
## lmm.resorb2.1    6  340.84  375.75 -164.42   328.84 791.85  1  < 2.2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



These results tell us that we still have a super strong effect of initial tail length, which of course makes a lot of
sense, and we have a very strong effect of resource treatment. However, when we consider all of the data, we can
see a marginal effect of the interaction between resource treatment and initial tail length. Tadpoles fed low
resources took longer to resorb their tails than animals fed high resources, even for a given tail length when they
were capture from the waters edge.

The code below visualizes that effect. The slopes appear to be pretty similar, despite the marginally non-
significant result for the interaction. The slope of the High resource treatment does appear to be somewhat
steeper, but it is difficult to really interpret what that might mean. Thus, in the end, it is good to be skeptical of the
marginal result for the interaction, but certainly we can be confident about the Resource and initial tail length
effects.

qplot(data=temp, x=log(Tail.initial), y=log(Resorb.days), col=Res, geom="point")+ 
  geom_smooth(method="lm")+ 
  theme_cowplot()

## `geom_smooth()` using formula 'y ~ x'

summary(lmm.resorb2)



## Linear mixed model fit by REML ['lmerMod'] 
## Formula: log(Resorb.days) ~ log(Tail.initial) * Res + (1 | Block/Tank.Unique) 
##    Data: temp 
##  
## REML criterion at convergence: 351.9 
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -6.6752 -0.6430  0.0035  0.6186  4.2920  
##  
## Random effects: 
##  Groups            Name        Variance Std.Dev. 
##  Tank.Unique:Block (Intercept) 0.003502 0.05918  
##  Block             (Intercept) 0.001326 0.03641  
##  Residual                      0.064625 0.25421  
## Number of obs: 2485, groups:  Tank.Unique:Block, 78; Block, 8 
##  
## Fixed effects: 
##                         Estimate Std. Error t value 
## (Intercept)              0.87255    0.02727  32.002 
## log(Tail.initial)        0.30944    0.01278  24.210 
## ResLo                    0.14983    0.03635   4.122 
## log(Tail.initial):ResLo -0.03534    0.01941  -1.820 
##  
## Correlation of Fixed Effects: 
##             (Intr) lg(T.) ResLo  
## log(Tl.ntl) -0.761               
## ResLo       -0.580  0.570        
## lg(Tl.n):RL  0.500 -0.657 -0.879

At this point, if we wanted to we could plot the regression lines for each resource treatment, as calculated after
controlling for the random effects (from the summary() output), but we don’t need to do so since the interaction is
not significant.


