Chapter 10 Sample Answers

Justin Touchon

8/3/2021

This page provides sample answers to the assignment at the end of Chapter 10 of Applied Statistics with R: A Practical Guide for the Life Sciences by Justin Touchon. Chapter 10 focuses on Writing Loops and Functions. This chapter teaches you how to write your own functions to either automate tasks you need to do repeatedly or to simulate data so that you can better understand your experiments and what might happen.

There was essentially a three-stage assignment at the end of Chapter 10 involving the simulation function we built throughout the chapter. Since the different parts of the assignment are all quite closely tied together, l've put them all here at the top of the page but we will work through them one-by-one.

Question

1. Modify the final version of the function we wrote (predTrialSim) to include another argument which allows you to vary the number of prey animals in each predation trial.
2. Pick at least four values for the number of prey in each trial and make a meaningful plot which explores how detecting a statistically significant difference in predators varies with the size of the pool of animals in each trial.

3. Which is more important, running more trials or running trials with more animals?

Here is the final version of predTria/Sim we made. In this version, we can alter the number of predation trials we are running and what proportion of prey each predator eats, on average.

```
predTrialSim<-function(numTrials,predLevelA,predLevelB)
{
    #Build the empty data frame
    simData<-data.frame(Trial=rep(1:numTrials,times=2),
                        Pred=rep(c("PredA","PredB"),
                    each=numTrials), Eaten=NA, NotEaten=NA)
    #Simulate the predation trials
    PredA_trials<-rbinom(numTrials,10,predLevelA)
    PredB_trials<-rbinom(numTrials,10,predLevelB)
    simData$Eaten[simData$Pred=="PredA"]<-PredA_trials
    simData$Eaten[simData$Pred=="PredB"]<-PredB_trials
    simData$NotEaten<-10-simData$Eaten
    #run the GLM and return just the p-value
    simGLM<-glm(cbind(Eaten,NotEaten)~Pred, data=simData, family="binomial")
    return(Anova(simGLM)$Pr)
}
```

The assignment asks us to introduce a new argument which will allow us to modify how many prey animals are used in each trial. In the current version, the number of prey is fixed at 10 per trials. But if we replace that number with an argument, let's call it numPrey we can then adjust the number of prey in different trials. Note that there are three places where you need to replace the number 10 with the new argument numPrey.

```
predTrialSim<-function(numTrials,predLevelA,predLevelB,numPrey)
{
    #Build the empty data frame
    simData<-data.frame(Trial=rep(1:numTrials,times=2),
        Pred=rep(c("PredA","PredB"),
                            each=numTrials), Eaten=NA, NotEaten=NA)
    #Simulate the predation trials
    PredA_trials<-rbinom(numTrials,numPrey,predLevelA)
    PredB_trials<-rbinom(numTrials,numPrey,predLevelB)
    simData$Eaten[simData$Pred=="PredA"]<-PredA_trials
    simData$Eaten[simData$Pred==" PredB"]<-PredB_trials
    simData$NotEaten<-numPrey-simData$Eaten
    #run the GLM and return just the p-value
    simGLM<-glm(cbind(Eaten,NotEaten)~Pred, data=simData, family="binomial")
    return(Anova(simGLM)$Pr)
}
```

We can verify it worked by running a few examples. Don't forget that since our function uses the Anova() function from the car package, we will need to make sure that is loaded. Later on we will need ggplot2 and cowplot as well.

library(car)

```
## Loading required package: carData
```

library (ggplot2)
library (cowplot)

```
#Some trials with 10 prey
predTrialSim(numTrials=20,predLevelA=0.2,predLevelB=0.3,numPrey=10)
```

```
## [1] 0.02087594
```

predTrialSim(numTrials=20, predLevelA=0.2, predLevel $B=0.3$, numPrey=10)
\#\# [1] 0.02304125
predTrialSim(numTrials $=20$, predLevel $A=0.2$, predLevelB=0.3, numPrey $=10$)

```
## [1] 0.364578
```

```
#Some trials with 50 prey
predTrialSim(numTrials=20,predLevelA=0.2,predLevelB=0.3,numPrey=50)
```

```
predTrialSim(numTrials=20,predLevelA=0.2,predLevelB=0.3,numPrey=50)
```

```
## [1] 6.898844e-09
```

```
predTrialSim(numTrials=20,predLevelA=0.2,predLevelB=0.3,numPrey=50)
```

```
## [1] 2.579601e-08
```

Okay, so that seems like it has worked. Step 1 complete! The second part of the assignment asks us to pick four different values for the number of prey in each trial and then to plot the results. For this, we will be essentially replicating the code on page 303 of the book, but now instead of changing the number of trials, we will be changing the number of prey in each trial.

For the sake of comparison with what we did in the book, l'm going to choose the same predation levels for our two predators (50% and 60%) and we'll imagine we are doing 10 trials in total.

```
predSims.5<-replicate(1000,predTrialSim(numTrials=10,predLevelA=0.5,predLevelB=0.6, numPr
ey=5))
predSims.10<-replicate(1000,predTrialSim(numTrials=10,predLevelA=0.5,predLevelB=0.6,numP
rey=10))
predSims.20<-replicate(1000,predTrialSim(numTrials=10,predLevelA=0.5,predLevelB=0.6,numP
rey=20))
predSims.40<-replicate(1000,predTrialSim(numTrials=10,predLevelA=0.5,predLevelB=0.6,numP
rey=40))
```

Okay, now we are reading to combine these separate data frams into a single object and plot them, just like what we did in the book. l've also used the labeller= argument in facet_wrap() to modify the labels at the top of each of the faceted panels.

```
#Combine simulations into a single data frame
predSims<-data.frame(Reps=rep(c(5,10,20,40), each=1000), P=c(predSims.5, predSims.10, pr
edSims.20, predSims.40))
#Plot the data
qplot(data=predSims, x=P, geom="histogram", bins=20)+
    facet_wrap(facets=Reps~.,
                labeller=labeller(Reps=c("5"="5 prey","10"="10 prey","20"="20 prey","40"="4
O prey")))+
    geom_vline(xintercept=0.05, color="red")+
    theme_cowplot()
```


We can also calculate the actual probability of detecting a significant result as we increase the number of prey in each trial.

```
sum(predSims.5<0.05)/1000
```

```
## [1] 0.168
```

sum(predSims. 10<0.05)/1000

```
## [1] 0.321
```

```
sum(predSims.20<0.05)/1000
```

```
## [1] 0.529
```

sum(predSims. $40<0.05$)/1000

```
## [1] 0.83
```

If we compare that to the numbers on page 305 in the book, we can make a direct appraisal of the power of increasing sample size via reps or the number of individuals in each trial. As we increase from 5 to 10 to 20 to 40 trials, our probability of finding a significant result goes from about 18% to 32% to 51% to 80%.

So what's the answer? Both are important! You can achieve adequate statistical power both via having more replicates AND via having more individuals in each replicate. Thus, when you are planning an experiment you have two options for how you can maximize your power. In a perfect world of course, you could do both! Perhaps choosing a middle ground for each is the best strategy. For example, conducting 20 replicates and having 20 prey per trial also yields about an 80% chance of detecting a statistically significant difference between our two hypothetical predators, which only differ by 10% in their predation efficacy.

```
predSims.20<-replicate(1000,predTrialSim(numTrials=20,predLevelA=0.5,predLevelB=0.6,numP
rey=20))
sum(predSims.20<0.05)/1000
```

\#\# [1] 0.842

