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Abstract. The large number of publicly available survey datasets of wide vari-
ety, albeit useful, raise respondent-level privacy concerns. The synthetic data ap-
proach to data privacy and confidentiality has been shown useful in terms of pri-
vacy protection and utility preservation. This paper aims at illustrating how syn-
thetic data can facilitate the dissemination of highly sensitive information about
youth risk behavior by presenting a case study of synthetic data for a sample of
the Youth Risk Behavior Survey (YRBS). Given the categorical nature of almost
all variables in YRBS, the Dirichlet Process mixture of products of multinomi-
als (DPMPM) synthesizer is adopted to partially synthesize the YRBS sample.
Detailed evaluations of utility and disclosure risks demonstrate that the generated
synthetic data are able to significantly reduce the disclosure risks compared to the
confidential YRSB sample while maintaining a high level of utility.

Keywords: data privacy, data utility, disclosure risk, Dirichlet Process mixture
models, synthetic data

1 Introduction

Respondent-level data, also known as microdata, have been widely available in public
databases and are essential for students, researchers, and corporate analysts to under-
stand a variety of research questions. Such data are typically collected through surveys
and censuses, after which the data holders disseminate these data to the public. Any
data dissemination needs to follow legal and ethical guidelines, which are in place to
protect the privacy and confidentiality of the respondents.

The privacy and confidentiality concerns of releasing microdata could impact differ-
ent communities to various extents. Not surprisingly, youth is one of the most vulnerable
groups when faced with privacy intrusions. According to the Future of Privacy Forum
(FPF)1, consequences for youth data disclosure are severe as they are more likely to
encounter predators or become victims of bullying and harassment. Less visible risks
include commercial exploitation through profiling and behavioral advertising (Park and
Vance, 2021). Policy-makers and legislators across the globe have striven to sheild the
privacy of data collected from youth; examples include the Children’s Online Privacy
⋆⋆ Published in the Privacy in Statistical Databases 2022 e-proceedings.

1 https://fpf.org/blog/future-of-privacy-forum-releases-new-youth-privacy-and-data-protection-infographic/

https://fpf.org/blog/future-of-privacy-forum-releases-new-youth-privacy-and-data-protection-infographic/


Protection Act (COPPA)2 in the United States and the General Data Protection Regula-
tion (GDPR)3 in the EU.

In this paper, we provide a case study of protecting youth data using the syn-
thetic data approach. Our case study focuses on a particularly high-risk and vulnerable
database involving youth, the Youth Risk Behavior Survey (YRBS) in the United States.

1.1 The YRBS Data

The Youth Risk Behavior Surveillance System (YRBSS) was developed in 1990 by
the U.S. Centers for Disease Control and Prevention (CDC) to monitor health behav-
iors that contribute markedly to leading causes of death, disability, and social problems
among youth in the United States. The YRBS is the primary mechanism through which
the institution collects data. The YRBS data have been extensively used by researchers
and social activists to study youth behavior as well as to promote change. For exam-
ple, Reising and Cygan (2019) provides a guide for school nurses to implement the
YRBS, access results, and apply findings in their school communities, and Underwood
et al. (2020) discusses the strengths and weaknesses of the YRBS in tracking adolescent
health behavior.

Given the nature of the questions asked in the YRBS, the responses are often sensi-
tive: individuals are asked about their use of substance, sexual behavior, mental health
conditions, among other things. It is important to stress that since the respondents are
predominantly minors, disclosure of these sensitive information can cause legal, finan-
cial, and social consequences to the targeted minor, leading to imprisonment, detention,
violence, bullying, or other types of physical and mental harms. In addition, the risk
of disclosure would discourage YRBS respondents from answering these survey ques-
tions truthfully, as they might be concerned about their privacy and the risk of being
identified, resulting in potential reductions of the survey quality. Given these reasons,
it is undoubtedly important to protect the privacy of the YRBS data before their pub-
lic release. The publicly available YRBS data has undergone some primary privacy
protections during the data collection stage, mainly through administering the surveys
anonymously and voluntarily among the students. To the best of our knowledge, little
has been done to protect privacy and confidentiality at the data processing stage ac-
cording to the methodology guide of the YRBS4. For the purpose of the case study, we
download a sample from the publicly available source and treat it as the confidential
data.

We retrieve the YRBS data from the YRBSS section of the CDC website. The
district-level dataset of high school students contains 504,249 observations from multi-
ple districts across the U.S. from 1991 to 2019. For illustration purpose, we primarily
focus on the 2019 survey in New York City and Chicago. In Appendix C, we report ad-
ditional results obtained from other samples of the YRBS to demonstrate the robustness
of our methods.

2 https://www.ftc.gov/legal-library/browse/rules/childrens-online-privacy-protection-rule-coppa
3 https://gdpr-info.eu/
4 For a detailed methodology guide of the YRBS, see: https://www.cdc.gov/mmwr/pdf/rr/

rr6201.pdf.
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Table 1: YRBS categorical variable names, levels, and sensitive status.
Variable name Characteristics Sensitive
City New York City/Chicago No
Age 12 to 18 years old; seven levels No
Sex Male/female No
Grade 9th to 12th grade; four levels No
Race Seven categories No
Obesity indicator Yes/No Yes
Sexuality Four categories Yes
Ever experienced sexual violence Yes/No Yes
Current tobacco use* Yes/No Yes
Current alcohol use Yes/No Yes
Current marijuana use Yes/No Yes
Ever illicit drug use** Yes/No Yes
Ever sexual intercourse Yes/No Yes
*smoke cigarettes, electronic vapor, or cigars
**ever used cocaine, heroin, or methamphetamine

The retrieved YRBS data contain variables such as respondent ID and sample site,
demographic variables such as age, sex, and race, body mass index (BMI) variables,
sexual minority variables, and the 2019 questionnaire and supplemental variables. We
primarily focus on the variables that might present the biggest privacy concerns. Our
selected variables are summarized in Table 1.

Variables related to tobacco use and illicit drug use are created by combining some
sub-categories, while the other variables remain the same format as in the YRBS. After
removing records with missing values in the variables of interest, we arrive at a sample
containing n = 5, 949 observations with 13 variables. All variables are categorical. We
deem variables related to substance use, sex, and violence sensitive and therefore to be
synthesized for protection (all variables with “Yes" in the “Sensitive" column in Table
1).

1.2 The Synthetic Data Approach

One approach to providing privacy protection for microdata is to generate synthetic data
to be released in place of the confidential data (Rubin, 1993; Little, 1993). Since its first
proposal almost 3 decades ago, the field has witnessed a great amount of research ef-
forts to develop theories and models for releasing synthetic microdata. Given the fact
that a subset of our YRBS variables are deemed sensitive, we follow the partially syn-
thetic data approach, where only sensitive variables are replaced by synthetic values
while non-sensitive variables remain unchanged (Little, 1993). One way to generate
partially synthetic data is to first fit Bayesian models with the confidential data to es-
timate the posterior distributions. One then simulates synthetic values for the sensitive
variables given the posterior predictive distributions. With carefully designed Bayesian
models, the resulting synthetic data could preserve important statistical characteristics
of the confidential data such as means, variances, and joint probability distributions.
Moreover, they can protect the privacy of the confidential data by reducing the disclo-
sure risks of the respondents, such as preventing intruders from identifying or inferring
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the values of sensitive variables for a particular individual. For a detailed overview of
synthetic data, see Drechsler (2011).

Given the categorical nature of all of our YRBS variables, we adopt the Dirichlet
Process mixture of products of multinomials (DPMPM) synthesizer, which has been
shown effective for survey (Hu et al., 2014) and administrative (Drechsler and Hu,
2021) data. The DPMPM synthesizer is implemented by the NPBayesImputeCat
R package (Wang et al., 2021) to generate five partially synthetic YRBS datasets. We
next extensively evaluate the utility and disclosure risks of the resulting synthetic data
and conclude their effectiveness of providing useful public release of the YRBS sample
with sufficient privacy protection.

We note that a popular class of synthesizers based on classification and regression
tree (CART) would also fit our purpose of synthesizing categorical variables in YRBS.
Originally proposed by Breiman et al. (1984) and first implemented to generate syn-
thetic data by Reiter (2005), CART synthesizers synthesize each sensitive variable from
a univariate model. Comparing CART synthesizers to DPMPM synthesizers for YRBS
samples is an important future work direction.

The remainder of this paper is organized as follows: Section 2 describes our adopted
DPMPM synthesizer and our implementation details. Section 3 evaluates the utility of
the synthetic data while Section 4 evaluates the disclosure risks. we conclude the paper
with some discussions and remarks in Section 5.

2 The DPMPM Synthesis Model and Implementation

The aforementioned categorical nature of our YRBS data prompts us to adopt the
DPMPM synthesis model. The DPMPM takes the joint modeling approach by speci-
fying a joint multivariate distribution of categorical variables. Works such as Hu et al.
(2014) and Drechsler and Hu (2021) have demonstrated its effectiveness in synthesizing
survey and administrative data.

Suppose we have the sample Y with n observations and r unordered categorical
variables, where each record i is denoted as Yi = (Yi1, ...Yir). The DPMPM synthesis
model assumes that each Yi belongs to one of K underlying latent classes. The la-
tent classification is, by definition, unobserved and therefore requires estimation. Given
the latent class assignment zi of record Yi, each categorical variable j, i.e., Yij , inde-
pendently follows a multinomial distribution where dj is the number of categories in
variable j (j = 1, ..., r). Mathematically:

Yij | zi, θ
ind∼ Multinomial(θ(j)zi1

, ..., θ
(j)
zidj

; 1) ∀i, j, (1)

zi | π ∼ Multinomial(π1, ..., πK ; 1) ∀i, (2)

where π is the probability vector of the latent class assignment and θ
(j)
k is the proba-

bility vector of the categories of variable j for latent class k. One way to estimate the
model parameters is to use the truncated stick-breaking representation of the Dirichlet
process priors following Sethuraman (1994).

We implement the Markov chain Monte Carlo (MCMC) estimation process using
the NPBayesImputeCat R package (Wang et al., 2021). It uses a blocked Gibbs
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sampler to estimate the joint posterior distribution and provides posterior draws of all
model parameters, from which synthetic data can be generated. We report the utility
and disclosure results in the next sections based on m = 5 simulated synthetic datasets
as the results are not sensitive to m ≥ 5. Hu et al. (2021) presents detailed instructions
of using the NPBayesImputeCat R package for data synthesis. We include our R
script below for interested readers.

YRBS_syn <- NPBayesImputeCat::DPMPM_nozeros_syn(
X = YRBS_data,
dj = dj,
nrun = 10000,
burn = 5000,
thin = 10,
K = 80,
aalpha = 0.25,
balpha = 0.25,
m = 5,
vars = c("obesity","sexuality","sexual_violence","tobacco",

"alcohol","marijuana","drug","sexual_contact"),
seed = 221,
silent = TRUE)

3 Utility Evaluation and Results

For synthetic data to be released, a key criterion is being useful, i.e., they should pre-
serve characteristics of the confidential data. Two types of utility are typically consid-
ered in the literature: global utility and analysis-specific utility. The former evaluates
the closeness between the confidential and synthetic data distributions, while the lat-
ter evaluates whether synthetic data users can obtain inferences on the synthetic data
that are similar to those obtained from the confidential data (Woo et al., 2009; Snoke
et al., 2018). We consider a few metrics of each in our utility evaluation of the resulting
synthetic YRBS data.

3.1 Global Utility

We evaluate the global utility of the synthetic data through propensity scores (pMSE)
and the distribution of differences in relative frequencies for cross-tabulations. As the
results show, both measurements indicate that our synthetic data preserve a high level
of global utility.

Propensity scores (pMSE) Propensity score measures the probability for individuals
in a dataset being assigned to a specific treatment group given their information on other
variables. It is commonly used in causal inference to reduce bias from confounding
variables when estimating the effect of an intervention in an observational study. Woo
et al. (2009) first proposed using it for measuring global utility in the case of synthetic
data and the methodology is further expanded by Snoke et al. (2018). In this context,
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the treatment group to be predicted is whether the data record is synthesized, and the
prediction is driven by all variables in the data set as predictors.

The evaluation takes place for each of the m synthetic datasets. First, we combine
the confidential and the synthetic datasets into one. Assume the confidential dataset has
nc records and the synthetic dataset has ns records, we arrive at a concatenated dataset
with dimension (nc + ns)-by-r, where r is the number of variables. Next, we create
an additional binary variable S for each record indicating whether it belongs to the
synthetic or confidential data, i.e., Si = 1 if synthetic and Si = 0 if confidential. With
this setup, for each record, we can use the r variables to predict the probability of Si

taking value 1, which is the estimated propensity score, denoted as p̂i. In our case study,
a logistic regression is used for the prediction of p̂i

The propensity score mean-squared error, known as pMSE, is computed as pMSE =
1/(nc + ns)

∑nc+ns

i=1 (p̂i − c)2 where c is the proportion of units with synthetic data,
i.e., c = ns/(ns + nc). In our case, for each of our m = 5 partially synthetic datasets,
we compute the pMSE where n = nc = ns and c = 0.5. As can be seen from its
mathematical form, the pMSE is a measurement of how well a model can differentiate
between the confidential and the synthetic dataset given all variables. It measures the
deviation of the predicted probability from c = 1/2, i.e., how much more certain the
model is at telling the difference between two datasets than a random guess. Therefore,
the smaller the pMSE score, the poorer the model is at distinguishing the two datasets,
thus the higher the utility. In this case, the pMSE score can take values from 0 to 0.25.

The average pMSE score computed from our m = 5 synethtic datasets is 0.009,
indicating high global utility of our synethetic data. However, a major limitation of the
pMSE measurement is that it is model-dependent, i.e., the pMSE result depends on the
model used for distinguishing the two datasets. The logistic regression is presumably a
relatively “weak" model, and more complex algorithm might potentially do a better job
in separating the two datasets. See Snoke et al. (2018) for further discussion.

Absolute deviation and differences in relative frequency For categorical data, Drech-
sler and Hu (2021) considered the distributions of differences in relative frequencies be-
tween the confidential data and synthetic data for various tabulations as a measurement
of global utility. For any cross-tabulation of categorical variables, we compute the rela-
tive frequency of each cell entry as c(t)jv and s

(t)
jv (c for confidential and s for synthetic)

for tth cross-tabulation with jth variable and vth category. The relative difference is
then computed as

d
(t)
jv =

s
(t)
jv − c

(t)
jv

c
(t)
jv

, (3)

obtaining a matrix d(t) for each cross-tabulation t. The distribution of d(t) for one-way
cross-tabulations centers at 0 and ranges from -2 to 2 while that for two-way cross-
tabulations centers at 0 ranging from -5 and 5. Plots are included in Appendix A.

We further consider |s(t)jv − c
(t)
jv | as the absolute deviation between the two datasets.

The smaller the absolute deviation, the closer the two datasets, indicating high global
utility (the measurement can take values from 0 to 1). The average absolute deviation
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for one-way, two-way, and three-way cross-tabulations are 0.005, 0.006, and 0.005,
respectively, suggesting high global utility.

As with the pMSE metric, both the relative frequency difference and the absolute
deviation metrics suggest a high level of global utility of our synthetic YRBS datasets.

3.2 Analysis-specific Utility

The analysis-specific utility measures are tailored to the analyses expected to be per-
formed on the synthetic data. The expectation is that a data analyst would obtain sim-
ilar inferences from the synthetic and the confidential data. To evaluate our synthetic
YRBS data, two metrics of analysis-specific utility are considered: inference for a point
estimate and inference for regression coefficients.

Inference for a point estimate Since the synthesized variables are all categorical,
important point estimates are proportions. We believe the proportion of heterosexual
students is a highly useful quantity to report, which has a point estimate of p̂c = 0.817
and a 95% confidence interval of (0.807, 0.827) in the confidential data.

The point estimate and 95% confidence interval for the m = 5 synthetic YRBS
datasets can be obtained by using combining rules for partially synthetic data (Drech-
sler, 2011). Specifically, the point estimate is the mean of the point estimate from
the m = 5 synthetic datasets q̄m, and the variance estimate is expressed as Tp =
bm/m+ v̄m where bm is the cross-sample variance of the proportions p(l) for each sam-
ple l and v̄m is the mean of the m sample variances. The point estimate for the m = 5
synthetic datasets is p̂s = 0.815 with a 95% confidence interval of (0.801, 0.830).

To evaluate the closeness between the two confidence intervals, we compute the in-
terval overlap metric described in Drechsler and Reiter (2009): I = (Ui − Li)/2(Uc −
Lc) + (Ui − Li)/2(Us − Ls) where Ls, Lc denote the lower CI bound of the synthetic
and confidential datasets, Us, Uc denote the upper CI bound of the two datasets, and
Li = max(Ls, Lc), Ui = min(Us, Uc). The highest possible value of I is 1 and our
synthetic data yield an overlap of 0.837, indicating high utility for this particular point
estimate. We compute the same metric for the proportions of other synthesized vari-
ables, including tobacco use, alcohol, marijuana, sexual contact, and drug, with results
in a table in Appendix C. All show an interval overlap above 0.8 with the exception for
marijuana of 0.758 and drug of 0.240. The low overlap of drug is due to a very small
fraction of drug users.

Inference for regression coefficients Similar to the inference for a point estimate, we
can imagine the data analyst is conducting regression analysis, using some variables to
predict the others. For example, one might want to use city, age, sex, and race to predict
tobacco use with a logistic regression model. The point estimates and 95% confidence
intervals for selected regression coefficients from the confidential data and the synthetic
data are obtained and visualized in Figure 1. As before, we use appropriate combining
rules for the synthetic data and include interval overlap metrics in the plots.

Evidently, the interval overlaps for all considered regression coefficients are ex-
tremely high with the exception for the coefficient of city, indicating an overall high
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Fig. 1: Point estimates, confidence intervals, and interval overlaps for selected regres-
sion coefficients in a logistic regression analysis.

level of analysis-specific utility. We run similar regressions on other combinations of
variables and obtain similar results.

In summary, our partially synthetic YRBS data preserve a high level of utility both
in terms of global and analysis-specifc utility considering a series of metrics. We now
turn to the evaluation of their disclosure risks.

4 Disclosure Risk Evaluation and Results

The primary objective of releasing synthetic data in place of confidential data is to pro-
vide privacy and confidentiality protection. Therefore, an important aspect of synthetic
data evaluation is to measure the extent to which synthetic data can reduce disclosure
risks. Only when the disclosure risks of generated synthetic data are acceptable by the
data disseminators can synthetic data be released to the public.

We consider two types of disclosures: identification disclosure and attribute dis-
closure. As the names suggest, identification disclosure is when the intruder correctly
identifies records of interest, and attribute disclosure is when the intruder correctly in-
fers the true confidential values of the synthetic variables (Hu, 2019).

4.1 Identification Disclosure

We consider two approaches to evaluate identification disclosure risk: the matching-
based approach and the record linkage approach. Both approaches show that our syn-
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thetic YRBS have significantly reduced the identification disclosure risks compared to
the confidential YRBS.

Matching-based approach In the matching-based approach, we assume the intruder
possesses some knowledge for a confidential record i and tries to identify the indi-
vidual associated with this record i in the released synthetic data (Reiter and Mitra,
2009). Specifically, we consider specific scenarios that an intruder might encounter and
quantify the corresponding disclosure risks using the following three metrics: 1) expect
match risk, the expected number of correct identity matches in the released synthetic
data; 2) true match rate, the percentage of true and unique matches; and 3) false match
rate, the percentage of unique matches that are false matches. Appendix B includes
detailed definitions of these three metrics.

In our synthetic YRBS, we assume the un-synthesized city, age, sex, grade, and
race are variables available to the potential intruder. We compute the aforementioned
three metrics for both the synthetic and the confidential data to evaluate the reduction
of disclosure risks. For the synthetic data, we take the average of the metrics over the
m = 5 synthetic datasets. The IdentificationRiskCalculation R package
is used for these implementations (Hornby and Hu, 2021). Results are summarized in
Table 2. Evidently, the expected risk and the true match rate have been reduced (12

Table 2: Identification risk summaries based on the matching-based approach.

Confidential Synthetic Confidential Synthetic
Expected risk 2234 186 False match rate 0 0.891
True match rate 0.257 0.012 Unique match 1526 632

and 21 times, respectively) and the false match rate has increased significantly (from
0 to close to 90%) with the synthesis process, suggesting a high level of identification
disclosure risk reduction provided by our synthetic YRBS.

Record linkage approach Record linkage, originally conceived by Dunn (1946) and
formalized by Fellegi and Sunter (1969), has been a widely researched topic in com-
puter science. For partially synthetic data, record linkage methods can be applied to
linking records in the synthetic dataset to the records in the confidential dataset and
therefore used as metrics of identification risks (Winkler, 2004). Based on variables,
called keys, a link between two records can be established and we can evaluate identi-
fication risks in terms of true links and false links.

As with the matching-based approach, variables such as city, age, sex, grade, and
race are considered as keys, i.e., the variables the intruder may use to establish the
linkage, in our evaluation for the synthetic YRBS. For each record i in the confidential
YRBS, multiple linkages in the synthetic YRBS can be established, and the linkages are
ranked by a weight estimated using the expectation-maximization algorithm by Winkler

9



(2000). We use a greedy algorithm to search for the linkage with the highest weights for
each record. The process of linkage establishment and greedy search are implemented
by the reclin R package (van der Laan, 2018).

Similar to the matching-based approach, we calculate the percentages of the true
links and false links in both the synthetic and the confidential data for comparison.
The confidential YRBS have a true linkage rate of 100% and a false linkage rate of
0% whereas the synthetic YRBS have a true linkage rate of 8.5% and a false linkage
rate of 91.5%. A 11-fold reduction in the true linkage percentage and a 0% to 91.5%
increase in the false linkage percentage suggest that the synthetic YRBS make it much
more difficult for an intruder to establish true record links based on the knowledge
they possess, and therefore our synthesis process has successfully reduced identification
disclosure risks significantly.

4.2 Attribute Disclosure Risk

To evaluate attribute disclosure risk, we consider two methods: the correct attribution
probability (CAP) and the classification-based approach. The results show that our syn-
thetic YRBS provide a significant attribute disclosure risk reduction compared to the
confidential YRBS.

Correct Attribution Probability (CAP) The CAP, proposed by Elliot (2014) and Taub
et al. (2018), measures the probability that an intruder can correctly predict the value of
the target variable for an individual by using the empirical distribution of this variable
among synthetic observations with the same key variables. In our evaluation of the
synthetic YRBS, the key variables are city, age, sex, grade, and race, and the target
variable is marijuana usage.

We follow the set-up in Baillargeon and Charest (2020). Let Y denote the confiden-
tial dataset and yij represents the j-th variable of the i-th record. For a specific sensitive
variable l, all possible values for this variable are the targets denoted as T1, ..., TG,
where G is the number of levels of the target variable. The intruder attempts to predict
the value of yil using some or all of Y −l, the set of variables other than l. These vari-
ables are the keys, denoted as K1, ...,KH . The CAP of record y0 in confidential dataset
Y with synthetic dataset Z is given as:

CAPy0
(Z) =

∑n
i=1 I[T (zi) = T (y0),K(zi) = K(y0)]∑n

i=1 l[K(zi) = K(y0)]
. (4)

Equation (4) represents the proportion of target variable matches in all the key variable
matches for a particular sensitive variable l and a particular record y0. The CAP for a
synthetic dataset can be computed by averaging the CAP over all records. The average
CAP for the m = 5 synthetic YRBS datasets is 0.749, while the CAP computed from
the confidential dataset is 0.753.

Comparing 0.749 and 0.753 indicates that the average CAP does not reduce much
from the synthesis process for the file as a whole. However, it is important to note that
the CAP for each record could be changed by the synthesis process to different extents
which cannot be captured by the average CAP. To visualize the change of CAP at the
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individual level, Figure 2 plots the synthetic individual CAP versus the confidential
individual CAP by marijuana status.

Fig. 2: Synthetic individual CAP versus confidential individual CAP given the mari-
juana variable.

Figure 2 shows that most records fall on the 45 degree line, meaning that for these
records, there is no major difference in attribution probability before and after synthesis.
It is also notable that most records with marijuana usage equals 1, i.e., they use mari-
juana, have a low CAP in both the confidential and synthetic data, indicating that these
records are relatively safe and the true attribute value is hard to be inferred regardless
of whether they are synthesized.

Classification-based risk measure A weakness of the CAP measure is that is uses a
simple model to predict the values of the target variable. With a classification model,
sophisticated algorithms can be deployed to predict the value of the target variable
using a set of keys. In our evaluation of the synthetic YRBS, we adopt a random forest
classifier to perform the task of predicting the value of marijuana use, the same task
in the CAP illustrative above. We use city, age, sex, grade, obesity, and sexuality as
predictors.

A random forest classifier contains a number of decision trees on various subsets
of the given dataset and takes the average to improve the predictive accuracy of that
dataset (Liaw and Wiener, 2002). We use the synthetic data Z to train a model and test
the model with the confidential data Y to evaluate the accuracy. In comparison, we also
train a model using the confidential data and testing it on the confidential data. The
algorithm is implemented by the randomForest package in R. The classification
error for Marijuana = 1 is 0.995 on the confidential data and 0.988 on the synthetic
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data; the error for Marijuana = 2 is 0 on the confidential data and 0.004 on the synthetic
data.

These results show that Marijuana = 1 is always difficult to predict: Even if we train
the model with confidential data, the model performs poorly on capturing these data. In
fact, the error rate has decreased if we train the model on the synthetic data, meaning
that the risk is potentially higher in the synthetic data. However, since the marijuana
variable is highly skewed, and the random forest classifier has a random component
in it that every time it builds a slightly different model, we cannot conclusively state
whether the synthesis process has increased or reduced the attribute disclosure risks.

In summary, two metrics of identification disclosure risks indicate that our synthetic
YRBS have substantially reduced such risks, while the results are less conclusive for
attribute disclosure risk evaluation.

5 Concluding remarks

In conclusion, the respondent-level privacy and confidentiality in the YRBS data sample
are well protected by the DPMPM synthesis model, especially in terms of identification
disclosure risk reduction. At the same time, the synthetic YRBS preserve a high level
of data utility, both in terms of global and analysis-specific utility with various metrics.

There are a few limitations of our case study. First, some of the utility and risk
evaluation methods consider a few scenarios and some of the measurements such as the
inference for a regression coefficient and the classification based approach are model-
dependent. However, it is admittedly infeasible to comprehensively consider all possible
inferences and prediction models that a data analyst or a intruder might use. Second,
the YRBS data are highly skewed and unbalanced, especially in some of the sensitive
variables. Such skewness can be challenging to capture by our synthesis model, as well
as for a data analyst or a hypothetical intruder. We believe this is the main reason that for
highly unbalanced variables the utility and the risk reduction results are not satisfactory.

Despite these limitations, our case study serves as a useful demonstration of the
DPMPM synthesis model and illustrates how widely useful and applicable it can be.
The model can be extended to the rest of the YRBS survey (those before 2019 and
other than NYC and Chicago), as well as some other categorical data in general. We
also believe our case study showcases a variety of utility and disclosure risk evaluation
metrics in practice, which can be useful and beneficial to data disseminators who are
considering the synthetic data approach for microdata release.
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A Density plots of differences in relative frequencies in Section 4.1

(a) Deviation plot for one-way table. (b) Deviation plot for two-way table.

B Three key quantities to evaluate disclosure risk in
matching-based approach

The following set up is a basic version of Drechsler and Reiter (2009) to compute the
three risk metrics.

We separate the vector of responses of the i-th record into two groups: variables
available from external databases and variables unavailable to users except in the re-
leased data, denoted as yi = (yi1, ...yir) = (yA

i ,y
U
i ). We also have the matrix Y =

(YA,YU ) representing the confidential values of all n units. On the confidential data
holder side, similar to the split of yi, we have zi = (zi1, ..., zir) = (zAi , z

U
i ). We further

split zAi into the synthesized variables zAs
i and the unsynthesized variables zAus

i , and
let Z = (ZAus ,ZAs ,ZU ) be the matrix of all released data. On the intruder side, let
t be the vector of information available to the intruder, we assume t = yA for some
unit in the population, that is, the intruder obtains their knowledge about the dataset
from some external database. Additionally, let S denote the meta-data released about
the simulation models used to generate the synthetic data and R denote the meta-data
released about the reason why records were selected for synthesis. In our basic version,
we assume S and R to be both empty. Let l be the random variable that equals i when
zi0 = t0 for i ∈ Z and equals to n + 1 when zi0 = t0 for i /∈ Z, where index 0
denotes the “zero column”, a unique ID for each record. Then the intruder is interested
in calculating for i = 1, ..., n+ 1

Pr(l = i|t,Z, S,R)

The three risk summaries can then be computed as follows: Expected Match Risk =∑n
i=1

Ti

ci
, True Match Rate =

∑n
i=1

Ki

N , and False Match Rate =
∑n

i=1
Fi

s , where ci
is the number of records with the highest match probability for record i, Ti = 1 if the
true match is among the ci units and Ti = 0 otherwise, Ki = 1 if the true match is
the unique match and Ki = 0 otherwise, N is the total number of target records out of
n records, Fi = 1 if there is a unique match but it is not the true match and Fi = 0
otherwise, s is the number of unique matches.
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C Additional results

We present the results from Section 3.2, inference for a point estimate, for confidence
interval overlaps on additional variables.

Table 3: Point estimate CI overlaps on additional variables
CI overlap CI overlap

sexuality 0.837 marijuana 0.758
tobacco 0.924 alcohol 0.891
sexual contact 0.950 drug 0.240

We extend the synthetic method, utility, and risk measures to other subsets of the
YRBS with different sample sizes. The results show that the performance of the DPMPM
synthesizer is generally consistent across different samples. The main metrics are sum-
marized in Table 4.

Table 4: Results from other YRBS subsets
Global Utility Analysis Specific Utility Identification Risk Attribute Risk

Site Year Sample Size
pMSE
(range: 0 - 0.25)

Deviation in
one-way/
two-way/
three-way table
(range: 0 - 1)

CI overlap of
point estimate
on sexuality
(range: 0 - 1)

Matching-based approach
reduction in true match rate

Record linkage approach
reduction in true linkage rate reduction in CAP

New York City
& Chicago 2019 5949 0.009

0.005/
0.006/
0.005

0.837
21 times
(25% to 1.2%)

91.5%
(100% to 8.5%) 0.004

Los Angeles,
San Francisco,
Oakland & Seattle

2019 3304 0.017
0.005/
0.008/
0.005

0.928
18 times
(30% to 1.7%)

88.8%
(100% to 11.2%) 0.018

All sites other than
NYC and Chicago 2019 13248 0.009

0.003/
0.004/
0.002

0.449
13 times
(40% to 3%)

83.4%
(100% to 16.6%) 0.018

All sites 2017 10469 0.009
0.004/
0.0030/
0.004

0.532
13 times
(35% to 2.7%)

84.5%
(100% to 15.5%) 0.014
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