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Plan for the talk

1. Define the arc index and Turaev genus of a link.

2. Describe a conjectural relationship between the crossing
number, arc index, and Turaev genus of a link, and prove the
conjecture for some infinite families.

3. Compute the arc index of some infinite families of links (e.g.
adequate links).



Arc presentation

Consider the open-book decomposition of R3 where the z-axis is
the binding and the pages are half planes. An arc presentation of a
link L is an embedding of L in finitely many pages of the
open-book decomposition so that each of these pages meets L in a
single simple arc.



An arc presentation of the trefoil



Arc presentations and grid diagrams



Arc index

Cromwell defined the arc index α(L) of a link L to be the
minimum number of pages in any arc presentation of L.



Returning to the trefoil

α(31) = 5



The Turaev surface

The Turaev surface of a link diagram D is obtained by

1. constructing a cobordism between the all-A and all-B
Kauffman states of D that has saddles corresponding with
crossings, and

2. capping off the boundary components of the above cobordism
with disks.



The Turaev surface at a crossing
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The Turaev surface
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The Turaev genus of a link

▶ For a connected link diagram D, the genus of the Turaev
surface is

gT (D) =
1

2
(2 + c(D)− |sAD| − |sBD|)

where c(D) is the number of crossings in D and |sAD| and
|sBD| are the number of components in the all-A and all-B
Kauffman states of D respectively.

▶ The Turaev genus gT (L) of a link L is

gT (L) = min{gT (D) | D is a diagram of L}.



Computing the genus of the Turaev surface
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c(D) = 15, |sAD| = 4, |sBD| = 5, gT (D) = 4.



Alternating projection

A link L has an alternating projection on any of its Turaev surfaces.



The Turaev surface of an alternating diagram

Theorem (Turaev)

The Turaev genus of a link is zero if and only if the link is
alternating.

Idea of proof: If the link has a genus zero Turaev surface, then it
has an alternating projection to a sphere (i.e. it is alternating). If a
link has an alternating diagram, then the components of the all-A
and all-B states correspond to the complementary regions of the
diagram. Thus the diagram has Turaev genus zero.



History of the Turaev surface

▶ (1987) - Turaev constructed the surface to give an alternate
proof that spanVL(t) ≤ c(L). In fact,

spanVL(t) + gT (L) ≤ c(L).

▶ (2003, 2006) - Manturov extended the above inequality to
virtual links and found a lower bound to gT (L) coming from
Khovanov homology thickness. See also, Champanerkar,
Kofman, and Stoltzfus (2007).

▶ (2008) - Dasbach, Futer, Kalfagianni, Lin, and Stoltzfus
showed that the Jones polynomial of a link is an evaluation of
the Bollobas-Riordan-Tutte polynomial of the all-A state
graph embedded on the Turaev surface.



History, continued

▶ (2008) - L. showed that knot Floer homology thickness gives
a lower bound to gT (L).

▶ (2015) S. Kim and Armond/L. showed that the genus of the
Turaev surface only depends on the alternating tangle
decomposition of the link diagram.

▶ (Since 2010) Many other results connecting the Turaev genus
to Khovanov homology, knot Floer homology, and to
coefficients of the Jones polynomial.



The main conjecture

Conjecture (Del Valle V́ılchez, L.)

The following inequality holds for all prime links L:

c(L) + 2− α(L) ≥ 2gT (L).



Families of knots/links where the conjecture is true

The conjecture holds for

▶ alternating links,

▶ Turaev genus one links,

▶ adequate links,

▶ torus knots,

▶ closures of positive 3-braids, and

▶ all knots with at most 12 crossings.



A top down view of an arc presentation



Binding as a stacked tangle

Perturbing the binding of an arc presentation results in a stacked
tangle, and vice versa.



From an arbitrary diagram to a stacked tangle

Jin and Lee (2012) gave a procedure that transforms an arbitrary
prime diagram D into a stacked tangle with c(D) + 2 arcs on the
exterior. Their procedure uses a filtered spanning tree of D.

This is a combinatorial rephrasing of a procedure given by Bae and
Park (2000).



From an arbitrary diagram to a stacked tangle

The edges of D not in the spanning tree become the arcs on the
exterior of the stacked tangle. There are c + 1 such edges, one of
which gets split into two arcs, resulting in c + 2 arcs on the
exterior of the stacked tangle.



Splitting one arc into two

Top. A portion of one arc pushed past another arc.
Bottom. An arc split in two, so that half of it can be pushed past
an existing arc.



An upper bound on α(L)

Theorem (Bae, Park)

For any prime link L,

α(L) ≤ c(L) + 2.



Alternating links

Theorem (Beltrami, Morton)

Let FL(v , z) be the Kauffman polynomial of L. Then

spanv FL(v , z) + 2 ≤ α(L).

When L is alternating, spanv FL(v , z) = c(L).

Corollary

If L is a prime alternating link, then

α(L) = c(L) + 2.

Our conjecture. If L is alternating, then

c(L) + 2− α(L) = 0 = 2gT (L).



Removing arcs from a stacked tangle

The two arcs labeled {8, 9} and {11, 12} can be pushed inside the
stacked tangle.



Arc index of non-alternating links

Theorem (Jin, Park)

If L is a prime, non-alternating link, then

α(L) ≤ c(L).

Our conjecture. If gT (L) = 1, then L is non-alternating, and

c(L) + 2− α(L) ≥ 2 = 2gT (L).



Non-alternating edges

In a series of papers, Gyo Taek Jin, Hwa Jeong Lee, Alexander
Stoimenow and other collaborators give a technique for removing
arcs that correspond to non-alternating edges from the stacked
tangle.



Thistlethwaite’s alternating decomposition

Mark each non-alternating edge with two points. Inside each face
with a non-alternating edge, connect each marked point to the
marked point that is nearest to it on the boundary and not on the
same non-alternating edge.

The resulting collection of curves along with the non-alternating
edges of D is the alternating decomposition of D.



Alternating decomposition example



Alternating decompositions and Turaev genus

Theorem (Armond, L. and S. Kim)

If diagrams D1 and D2 have isomorphic alternating
decompositions, then gT (D1) = gT (D2), that is, the genera of the
Turaev surfaces of those diagrams are equal.



Alternating decompositions and the conjecture

Strategy. Start with the alternating decomposition of a crossing
number minimizing diagram D. The alternating decomposition
allows us to compute gT (D). Use the techniques of Jin, Lee,
Stoimenow, and others to find an upper bound for α(L).

Results. The strategy works for some families, like the closure of
positive 3-braids, but fails for other families.



An example where this strategy works

c(13n3003) = 13, α(13n3003) = 13, gT (13n3003) = 1



An example where this strategy fails

c(L) = 24, gT (L) = 2, α(L) = 22.

Cannot remove 4 edges from the stacked tangle.



Grid diagrams and Legendrian fronts

Rotating a grid diagram π/4 counterclockwise and smoothing
north/south corners results in a Legendrian front diagram.

Similarly, rotating π/4 clockwise results in a Legendrian front
diagram for the mirror.



Thurston-Bennequin number

The Thurston-Bennequin number tb(L) of a Legendrian link L
with front F is the writhe of F minus the number of right cusps of
F .

w(F ) = 6
c(F ) = 5
tb(L) = 6− 5 = 1

The maximum Thurston-Bennequin number tb(L) of a link L is

tb(L) = max{tb(L) | L is a Legendrian representative of L}.



Arc index and maximum Thurston-Bennequin number

Theorem (Matsuda - 2006)

Let L be a link with mirror L. Then

α(L) ≥ −tb(L)− tb(L).

Proof. Suppose that L has a grid diagram of size α(L) yielding
Legendrian fronts F and F . Then

−tb(L)− tb(L) ≤ − tb(F )− tb(F )

= − w(F ) + c(F )− w(F ) + c(F )

= c(F ) + c(F )

= α(L).



Arc index and maximum Thurston-Bennequin number

Theorem (Dynnikov, Prasolov - 2013)

Let L be a link with mirror L. Then

α(L) = −tb(L)− tb(L).



Ungraded rulings

An ungraded ruling is a partial A-resolution of a front F such that
each component of the resolution has one right cusp, every
(unresolved) crossing is between distinct components of the
resolution, and the components involved in any resolution look like
the middle of the picture below.



Ungraded rulings and Thurston-Bennequin number

Theorem (Rutherford - 2006)

Let F be a front of a Legendrian link L with classical link type L.
If F has an ungraded ruling, then tb(L) = tb(L).



Adequate links

A link diagram D is A-adequate if no two arcs in the A-resolution
of any crossing lie on the same component of the all-A state sAD
of D. Similarly define B-adequate. A link is adequate if it has a
diagram that is both A- and B-adequate.

Theorem (Kálmán - 2008)

If D is an A-adequate diagram of the link L, then

tb(L) = w(D)− |sAD|.



Sketch of Kálmán’s proof

There is a front diagram F that is planar isotopic to D such that
c(F ) = |sAD|. Choosing to resolve every crossing in F results in an
ungraded ruling.



The arc index of adequate links

Conjecture (Park, Seo - 2000)

Let D be an adequate diagram of a link L. The arc index of L is

α(L) = c(L) + 2ρ(D),

where ρ(D) is a quantity computed from the checkerboard graphs
of D.

Theorem (Del Valle V́ılchez, L.)

Let D be an adequate diagram of a link L. The arc index of L is

α(L) = |sAD|+ |sBD| = c(L) + 2ρ(D).



Proof

Kálmán implies that

tb(L) = w(D)− |sAD| and
tb(L) = w(D)− |sAD|

= − w(D)− |sBD|.

Dynnikov and Prasolov imply that

α(L) = −tb(L)− tb(L) = |sAD|+ |sBD|.



Our conjecture for adequate links

Lickorish and Thistlethwaite (1988) proved that adequate diagrams
minimize crossing number. Abe (2009) proved that adequate
diagrams minimize Turaev genus.

Our conjecture. If D is an adequate diagram of a link L, then

c(L) + 2− α(L) = c(D) + 2− |sAD| − |sBD| = 2gT (D) = 2gT (L).



Our conjecture for torus knots

Matsuda (2006) proved that the arc index of the (p, q)-torus knot
Tp,q is α(Tp,q) = |p|+ |q|.
Assume 0 < p < q. We find a diagram of D of Tp,q such that

c(Tp,q) + 2− α(Tp,q) = pq − 2q − p + 2 ≥ 2gT (D) ≥ 2gT (Tp,q).

Our conjectured inequality is strict for T3,4:

c(T3,4) + 2− α(T3,4) = 8 + 2− 7 = 3 > 2 = 2gT (T3,4).



Work in progress

1. Prove that c(L) + 2− α(L) ≥ 2gT (L) for other families.

2. Prove that c(L) + 2− α(L) ≥ ηgT (L) for some η with
0 < η < 2.

3. Use rulings, Kálmán, and Dynnikov and Prasolov to find new
infinite families where we can compute arc index.



Happy Birthday Lou!


