The expected value of invariants of rational knots

Adam Lowrance Vassar College AMS Eastern Sectional - Spring 2024

April 7, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Collaborators

- Moshe Cohen SUNY New Paltz
- Thomas Kindred Wake Forest
- Patrick Shanahan Loyola Marymount
- Cornelia Van Cott University of San Francisco

Undergraduate collaborators from Vassar College

• Toby Clark, Abby Dinardo, Jeremy Frank, Steven Raanes, Izabella Rivera, Drew Steindl, Ella Wanebo

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Vassar's Undergraduate Research Science Institute (URSI)

★ 差 ▶ 差 ■ の Q @

Chronology

- (2014-2021) Cohen and collaborators study random models of 2- and 3-bridge knots coming from Chebyshev billiard table diagrams. Cohen finds a lower bound for the average genus of 2-bridge knots.
- (2022) Suzuki-Tran, Diao-Ray, and Cohen-L. compute the average genus of 2-bridge knots.
- (2022-2023) Cohen-L. and Vassar undergrads Dinardo, Raanes, Rivera, Steindl, and Wanebo compute median, mode, and variance of the genus of 2-bridge knots and show that the distribution of genera is asymptotically normal.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Chronology continued

- (2023-2024) Suzuki-Tran and Clark-Frank-L. compute the average braid index of 2-bridge knots.
- (In progress) Cohen-L.-Raanes compute the average signature of 2-bridge knots.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• (In progress) Cohen, Kindred, L., Shanahan, and Van Cott compute the average crosscap number of 2-bridge knots.

Results

Invariant	Average value as $c o \infty$
Genus	$\frac{3c+1}{12}$
Braid index	$\frac{3c+11}{9}$
Absolute value of signature	$\sqrt{\frac{2c}{\pi}}$
Crosscap number	$\frac{11c+2}{32}$

The signature of a knot

- (Trotter, 1968) The signature of a knot K is the difference in the number of positive and negative eigenvalues of V + V^T for any Seifert matrix V of K.
- (Traczyk, 2004) The signature of an alternating knot K with reduced alternating diagram D is

$$\sigma(K) = s_A(D) - c_+(D) - 1$$

where $s_A(D)$ is the number of components in the all-A Kauffman state and $c_+(D)$ is the number of positive crossings in D.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Signature example

$$\sigma(K) = s_A(D) - c_+(D) - 1 = -2$$

SA(D)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Rational or 2-bridge knots

Every rational knot has an alternating diagram of the form $D[a_1, \ldots, a_n]$ where the *i*th twist region has $|a_i|$ crossings.

 $D[a_1,\ldots,a_n]$ for n=2m and n=2m+1

(日) (四) (日) (日) (日)

Alternating diagrams of rational knots

D[2, 1, 2, 1, 1]

D[-3,-1,-1,-1]

(日) (四) (日) (日) (日)

Equivalent diagrams of rational knots

Palindromic diagrams

D[2,1,1,2]

D[-2,-1,-1,-2]

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

The set R_m

- The set R_m contains alternating diagrams $D[a_1, \ldots, a_n]$ of crossing numbers c = 2m + 1 and c = 2m + 2.
- The set *R_m* can be combinatorially related to the set *R_{m-1}*. Let *r_{m,σ}* be the number of diagrams in *R_m* whose signature is *σ*. Then

$$r_{m,\sigma} = r_{m-1,\sigma-2} + 2r_{m-1,\sigma} + r_{m-1,\sigma+2}.$$

Consequently,

$$r_{m,\sigma} = \binom{2m}{m+\sigma/2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The set R_1

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

The set R_2

More about R_m

- Most rational knots appear twice in *R_m*. A small number only appear once.
- The average of the absolute value of signature of a rational knot approaches the average over the set R_m .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Total signature example: R_2

 $Tot_{\sigma}(2) = 4 \cdot 1 + 2 \cdot 4 + 6 \cdot 0 + 2 \cdot 4 + 4 \cdot 1 = 24.$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Total signature

$$Tot_{\sigma}(m) = \sum_{D \in R(m)} |\sigma(D)|$$
$$= \sum_{\sigma} |\sigma| r_{m,\sigma}$$
$$= \sum_{k=-m}^{m} 2|k| \binom{2m}{m+k}$$
$$= 2m \binom{2m}{m} \approx 2^{2m+1} \sqrt{\frac{m}{\pi}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Average signature

$$egin{aligned} \mathsf{Average} &= rac{\mathsf{Tot}_\sigma(c)}{|R_m|} \ &pprox rac{2^{2m+1}\sqrt{rac{m}{\pi}}}{2^{2m}} \ &= 2\sqrt{rac{m}{\pi}} \end{aligned}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Average signature theorem

Theorem (Cohen, L., Raanes)

The average $\sigma_{avg}(c)$ of the absolute value of the signature of rational knots with c crossings satisfies

$$\lim_{c\to\infty}\left(\sigma_{avg}(c)-\sqrt{\frac{2c}{\pi}}\right)=0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The upper bound is implied by Baader, Kjuchukova, Lewark, Misev, and Ray (2019).

Corollary

The average 4-genus of a 2-bridge knot is sublinear and bounded from below by $\sqrt{\frac{c}{2\pi}}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thank you!