The expected value of invariants of rational knots

Adam Lowrance
Vassar College
AMS Eastern Sectional - Spring 2024

April 7, 2024

Collaborators

- Moshe Cohen - SUNY New Paltz
- Thomas Kindred - Wake Forest
- Patrick Shanahan - Loyola Marymount
- Cornelia Van Cott - University of San Francisco

Undergraduate collaborators from Vassar College

- Toby Clark, Abby Dinardo, Jeremy Frank, Steven Raanes, Izabella Rivera, Drew Steindl, Ella Wanebo

Vassar's Undergraduate Research Science Institute (URSI)

Chronology

- (2014-2021) Cohen and collaborators study random models of 2- and 3-bridge knots coming from Chebyshev billiard table diagrams. Cohen finds a lower bound for the average genus of 2-bridge knots.
- (2022) Suzuki-Tran, Diao-Ray, and Cohen-L. compute the average genus of 2-bridge knots.
- (2022-2023) Cohen-L. and Vassar undergrads Dinardo, Raanes, Rivera, Steindl, and Wanebo compute median, mode, and variance of the genus of 2-bridge knots and show that the distribution of genera is asymptotically normal.

Chronology continued

- (2023-2024) Suzuki-Tran and Clark-Frank-L. compute the average braid index of 2-bridge knots.
- (In progress) Cohen-L.-Raanes compute the average signature of 2-bridge knots.
- (In progress) Cohen, Kindred, L., Shanahan, and Van Cott compute the average crosscap number of 2-bridge knots.

Results

Invariant	Average value as $c \rightarrow \infty$
Genus	$\frac{3 c+1}{12}$
Braid index	$\frac{3 c+11}{9}$
Absolute value of signature	$\sqrt{\frac{2 c}{\pi}}$
Crosscap number	$\frac{11 c+2}{32}$

The signature of a knot

- (Trotter, 1968) The signature of a knot K is the difference in the number of positive and negative eigenvalues of $V+V^{T}$ for any Seifert matrix V of K.
- (Traczyk, 2004) The signature of an alternating knot K with reduced alternating diagram D is

$$
\sigma(K)=s_{A}(D)-c_{+}(D)-1
$$

where $s_{A}(D)$ is the number of components in the all- A Kauffman state and $c_{+}(D)$ is the number of positive crossings in D.

Signature example

$$
\sigma(K)=s_{A}(D)-c_{+}(D)-1=-2
$$

D
$S_{A}(D)$

Rational or 2-bridge knots

Every rational knot has an alternating diagram of the form $D\left[a_{1}, \ldots, a_{n}\right]$ where the i th twist region has $\left|a_{i}\right|$ crossings.

$$
D\left[a_{1}, \ldots, a_{n}\right] \text { for } n=2 m \text { and } n=2 m+1
$$

Alternating diagrams of rational knots

$D[2,1,2,1,1]$
$D[-3,-1,-1,-1]$

Equivalent diagrams of rational knots

Palindromic diagrams

The set R_{m}

- The set R_{m} contains alternating diagrams $D\left[a_{1}, \ldots, a_{n}\right]$ of crossing numbers $c=2 m+1$ and $c=2 m+2$.
- The set R_{m} can be combinatorially related to the set R_{m-1}. Let $r_{m, \sigma}$ be the number of diagrams in R_{m} whose signature is σ. Then

$$
r_{m, \sigma}=r_{m-1, \sigma-2}+2 r_{m-1, \sigma}+r_{m-1, \sigma+2}
$$

- Consequently,

$$
r_{m, \sigma}=\binom{2 m}{m+\sigma / 2}
$$

The set R_{1}
signature

The set R_{2}

More about R_{m}

- Most rational knots appear twice in R_{m}. A small number only appear once.
- The average of the absolute value of signature of a rational knot approaches the average over the set R_{m}.

Total signature example: R_{2}
signature

$\operatorname{Tot}_{\sigma}(2)=4 \cdot 1+2 \cdot 4+6 \cdot 0+2 \cdot 4+4 \cdot 1=24$.

Total signature

$$
\begin{aligned}
\operatorname{Tot}_{\sigma}(m) & =\sum_{D \in R(m)}|\sigma(D)| \\
& =\sum_{\sigma}|\sigma| r_{m, \sigma} \\
& =\sum_{k=-m}^{m} 2|k|\binom{2 m}{m+k} \\
& =2 m\binom{2 m}{m} \approx 2^{2 m+1} \sqrt{\frac{m}{\pi}}
\end{aligned}
$$

Average signature

$$
\begin{aligned}
\text { Average } & =\frac{\operatorname{Tot}_{\sigma}(c)}{\left|R_{m}\right|} \\
& \approx \frac{2^{2 m+1} \sqrt{\frac{m}{\pi}}}{2^{2 m}} \\
& =2 \sqrt{\frac{m}{\pi}}
\end{aligned}
$$

Average signature theorem

Theorem (Cohen, L., Raanes)
The average $\sigma_{\text {avg }}(c)$ of the absolute value of the signature of rational knots with c crossings satisfies

$$
\lim _{c \rightarrow \infty}\left(\sigma_{\text {avg }}(c)-\sqrt{\frac{2 c}{\pi}}\right)=0
$$

Average 4-genus

The upper bound is implied by Baader, Kjuchukova, Lewark, Misev, and Ray (2019).

Corollary
The average 4-genus of a 2-bridge knot is sublinear and bounded from below by $\sqrt{\frac{c}{2 \pi}}$

Thank you!

