Statistics of invariants of 2-bridge knots

Adam Lowrance
Vassar College
AMS Fall Southeastern Sectional Meeting

October 15, 2023

Collaborators

- Moshe Cohen - SUNY New Paltz

Undergraduate collaborators from Vassar College

- Toby Clark, Abby Dinardo, Jeremy Frank, Steven Raanes, Izabella Rivera, Drew Steindl, Ella Wanebo

Vassar's Undergraduate Research Summer Institute (URSI)

Pick your favorite numerical knot invariant.
Question: What can we prove about the probability distribution of the knot invariant for 2-bridge knots with a fixed crossing number?

Pick your favorite numerical knot invariant.
Question: What can we prove about the probability distribution of the knot invariant for 2-bridge knots with a fixed crossing number?

Sometimes, quite a lot!

2-bridge knots

Every 2-bridge knot can be represented by a tuple of nonzero integers $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ where $\left|a_{i}\right|$ is the number of crossings in the corresponding twist region and $\operatorname{sign}\left(a_{i}\right)$ indicates the over/under information for the crossings in that twist region.

Why 2-bridge knots?

- 2-bridge knots are completely classified.
- We can prove formulas for the average value, variance, median, mode etc. of some knot invariants on the set of 2-bridge knots with crossing number c.
- In some cases, the formulas above match with experimental data on arbitrary knots.

Genus

Theorem (Baader, Kjuchukova, Lewark, Misev, Ray). The average genus of a 2-bridge knot with crossing number c is at least $\frac{c}{4}$. Moreover, the average value of $\frac{g_{4}(K)}{g(K)}$ where K is a 2 -bridge knot with crossing number c approaches zero as $c \rightarrow \infty$.

Theorem (Suzuki and Tran, Cohen and L). The average genus of a 2-bridge knot with crossing number c approaches $\frac{c}{4}+\frac{1}{12}$ as $c \rightarrow \infty$.

Experimental data

Dunfield et al. gave experimental data suggesting a linear relationship between the crossing number of a knot and its genus.

More results on the genus of 2-bridge knots

Theorem (Cohen, Dinardo, L, Raanes, Rivera, Steindl, Wanebo).

1. The variance of the genera of 2-bridge knots with crossing number c approaches $\frac{c}{16}-\frac{17}{144}$ as $c \rightarrow \infty$.
2. The median and mode of the genera of 2-bridge knots with crossing number c are both $\left\lfloor\frac{c+2}{4}\right\rfloor$.
3. The probability distribution of the genera of 2-bridge knots with crossing number c is asymptotically normal as $c \rightarrow \infty$.

Results about braid index

Theorem (Clark, Frank, L).

1. The average braid index of 2-bridge knots with crossing number c approaches $\frac{c}{3}+\frac{11}{9}$ as $c \rightarrow \infty$.
2. The variance of the braid indices of 2 -bridge knots with crossing number c approaches $\frac{2 c}{27}-\frac{10}{81}$ as $c \rightarrow \infty$.
3. The mode of the braid indices of 2-bridge knots with crossing number c is $b=\left\lceil\frac{c}{3}\right\rceil+1$.

Representing 2-bridge knots by "even" tuples

Theorem (Murasugi). Every 2-bridge knot has a diagram of the form

$$
\left[2 a_{1}, 2 a_{2}, \ldots, 2 a_{2 m}\right]
$$

where $a_{i} \neq 0$ for $1 \leq i \leq 2 m$.

The crossing number of a 2-bridge knot

Theorem (Suzuki). The crossing number of the 2-bridge knot with diagram $\left[2 a_{1}, \ldots, 2 a_{2 m}\right]$ is

$$
c=\left(\sum_{i=1}^{2 m} 2\left|a_{i}\right|\right)-\ell
$$

where ℓ is the number of sign changes in the sequence $\left[2 a_{1}, \ldots, 2 a_{2 m}\right]$.

The braid index of a 2-bridge knot

Theorem (Murasugi). The braid index b of a two bridge knot represented by $\left[2 a_{1}, \ldots, 2 a_{2 m}\right]$ is

$$
b=\left(\sum_{i=1}^{2 m}\left|a_{i}\right|\right)-\ell+1
$$

Example

The crossing number is

$$
c=\left(\sum_{i=1}^{2 m} 2\left|a_{i}\right|\right)-\ell=(2+2+4+2)-2=8
$$

and the braid index is

$$
b=\left(\sum_{i=1}^{2 m}\left|a_{i}\right|\right)-\ell+1=(1+1+2+1)-2+1=4
$$

The set of even tuples

The 2-bridge knot $\left[-2 a_{1},-2 a_{2}, \ldots,-2 a_{2 m}\right.$] is the mirror image of the 2-bridge knot $\left[2 a_{1}, 2 a_{2}, \ldots, 2 a_{2 m}\right.$]. For this talk, we won't distinguish between a knot and its mirror image. Define

$$
E(c)=\left\{\left[2 a_{1}, \ldots, 2 a_{2 m}\right]: a_{1}>0 \text { and } c=\left(\sum_{i=1}^{2 m} 2\left|a_{i}\right|\right)-\ell\right\} .
$$

Every 2-bridge knot of crossing number c appears in the set $E(c)$ exactly once (when $\left[2 a_{1}, \ldots, 2 a_{2 m}\right]=\left[2 a_{2 m}, \ldots, 2 a_{1}\right]$) or exactly twice (otherwise).

Towards computing average braid index

The average braid index of 2-bridge knots of crossing number c is average $=\frac{\text { sum of the braid indices of 2-bridge knots with } c \text { crossings }}{\text { number of 2-bridge knots with } c \text { crossings }}$ $\approx \frac{\text { sum of braid indices of }\left[2 a_{1}, \ldots, 2 a_{2 m}\right] \in E(c)}{|E(c)|}$.

Define the total braid index $t b i(c)$ to be the sum of the braid indices of diagrams in $E(c)$.

$E(c, b)$

Define

$$
E(c, b)=\left\{\left[2 a_{1}, \ldots, 2 a_{2 m}\right] \in E(c): b=\left(\sum_{i=1}^{2 m}\left|a_{i}\right|\right)-\ell+1\right\}
$$

to be the subset of $E(c)$ consisting of tuples corresponding to knots of braid index b.

Define $e(c, b)=|E(c, b)|$ to be the number of tuples in $E(c, b)$.

A recursive formula for $e(c, b)$

The number $e(c, b)$ of even tuples corresponding to 2-bridge knots with crossing number c and braid index b satisfies

$$
e(c, b)=2 e(c-3, b-1)+2 e(c-2, b-1)+e(c-2, b)
$$

Idea of proof

- Take a tuple $\left[2 a_{1}, \ldots, 2 a_{2 m}\right]$ in $E(c, b)$ and modify it to obtain a tuple in $E\left(c^{\prime}\right)$ where $c^{\prime}<c$.
- For example, if $a_{2 m}>1$, replace $\left[2 a_{1}, \ldots, 2 a_{2 m}\right]$ with $\left[2 a_{1}, \ldots, 2 a_{2 m}-2\right]$.
- This replacement (and the analogous one when $a_{2 m}<-1$) shows that the subset

$$
\left\{\left[2 a_{1}, \ldots, 2 a_{2 m}\right] \in E(c, b):\left|a_{2 m}\right|>1\right\}
$$

of $E(c, b)$ is in bijection with $E(c-2, b-1)$.

- Several more cases yield the result.

$t b i(c)$ and the average

The total braid index is

$$
t b i(c)=\sum_{b \geq 2} b e(c, b)
$$

and satisfies the recursive formula

$$
t b i(c)=3 t b i(c-2)+2 t b i(c-3)+2^{c-4}
$$

An exact formula for tbi(c) follows from the recursive formula and yields the average braid index.

In progress results about determinant - joint with Raanes

1. The average determinant of 2-bridge knots with crossing number c is slightly more than 1.5^{c}.
2. For any odd prime p, a 2-bridge knot is p-colorable with probability $\frac{1}{p+1}$.

Related future work

1. Experimental data from Dunfield suggests the possibility that hyperbolic volume is asymptotically linear with respect to crossing number. Can we prove it for 2-bridge knots?

2. Statistics of other invariants for 2-bridge knots?

Thank you!

