The genus distribution of 2-bridge knots

Adam Lowrance Vassar College AMS Spring Southeastern Sectional Meeting Joint work with M. Cohen (SUNY - New Paltz), A. Dinardo, S. Raanes, I. Rivera, A. Steindl, E. Wanebo (Vassar College)

March 19, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question: What is the genus of a "random" knot?

Question: What is the genus of a "random" knot?

Slightly better question: What is the expected value of the genus of a knot with crossing number *c* selected uniformly at random from the set of prime knots with crossing number *c*?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question: What is the genus of a "random" knot?

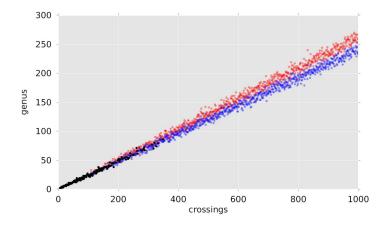
Slightly better question: What is the expected value of the genus of a knot with crossing number c selected uniformly at random from the set of prime knots with crossing number c?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Answer: I don't know.

Some data

Dunfield et al. gave experimental data suggesting a linear relationship between the crossing number of a knot and its genus.



Question: What is the expected value of the genus of a 2-bridge knot with crossing number c selected uniformly at random from the set of 2-bridge knots with crossing number c?

Theorem (Cohen, L. and Suzuki, Tran - 2022)

The expected value of the genus of a 2-bridge knot with crossing number c approaches $\frac{c}{4} + \frac{1}{12}$ as $c \to \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Vassar's Undergraduate Research Summer Institute (URSI)

URSI Question

URSI 2022 Question: What else can we say about the distribution of the genera of 2-bridge knots of crossing number *c*?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

URSI 2022 Question: What else can we say about the distribution of the genera of 2-bridge knots of crossing number *c*?

Answer: Quite a lot!

Median, mode, and variance

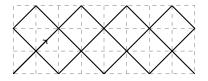
Theorem (Cohen, Dinardo, L., Raanes, Rivera, Steindl, Wanebo)

- 1. The median and mode of the genera of 2-bridge knots with crossing number c is $\lfloor \frac{c+2}{4} \rfloor$.
- 2. The variance of the genera of 2-bridge knots with crossing number c approaches $\frac{c}{16} \frac{17}{144}$ as $c \to \infty$.

Theorem (L., Raanes)

The distribution of the genera of 2-bridge knots with crossing number c approaches a normal distribution as $c \rightarrow \infty$.

Billiard table knot diagram

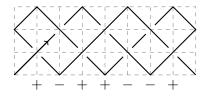


Take a $3 \times b$ grid where $3 \nmid b$ and draw a piecewise-linear arc that starts by bisecting the bottom left corner and reflects when it hits an edge of the rectangle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Each interior vertical grid line has exactly one double point.

Billiard table knot diagram



Choose crossing information at each double point. A crossing corresponding to a + looks like \swarrow , and a crossing corresponding to a - looks like \searrow .

Connect the endpoints of the piecewise-linear segment outside of the rectangle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A list of 2-bridge knots

Let T(c) be the set of words in the symbols $\{+, -\}$ defined as follows. When c is odd, T(c) consists of words of the form

$$+(-)^{\varepsilon_2}(+)^{\varepsilon_3}(-)^{\varepsilon_4}\dots(-)^{\varepsilon_{c-1}}+,$$

where $\varepsilon_i \in \{1, 2\}$ for $2 \le i \le c - 1$, and the length of the word $\sum_{i=1}^{c} \varepsilon_i \equiv 1 \mod 3$. When *c* is even, T(c) consists of words of the form

$$+(-)^{\varepsilon_2}(+)^{\varepsilon_3}(-)^{\varepsilon_4}\dots(+)^{\varepsilon_{c-1}}-,$$

where $\varepsilon_i \in \{1, 2\}$ for $2 \le i \le c - 1$ and the length of the word $\sum_{i=1}^{c} \varepsilon_i \equiv 1 \mod 3$.

Examples of T(c)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

A list of 2-bridge knots

Using Schubert's 1956 classification of 2-bridge knots and work of Koseleff and Pecker (2011), Cohen, Even-Zohar, and Krishnan (2018) showed the following.

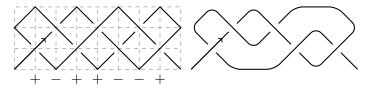
Theorem (Cohen, Even-Zohar, Kirshnan)

Every 2-bridge knot of crossing number c corresponds to one or two words in T(c).

The 2-bridge knots that correspond to one word in T(c) are rare compared to those represented by two words. For this talk, we pretend every 2-bridge knot of crossing number c is represented by two words in T(c).

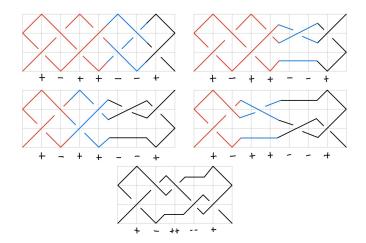
Alternating diagrams

Every billiard table diagram coming from a word in T(c) has an equivalent alternating diagram obtained by replacing + and -- with \times on the first row and by replacing - and ++ with \times on the second row.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Billiard table to alternating diagram



The genus of an alternating knot

Murasugi (1958) and Crowell (1959) proved that the genus of an alternating knot K is the genus of the surface obtained from Seifert's algorithm applied to an alternating diagram D of K. Thus

$$g(K)=rac{1}{2}\left(1+c-s
ight)$$

where D has c crossings and s Seifert circles.

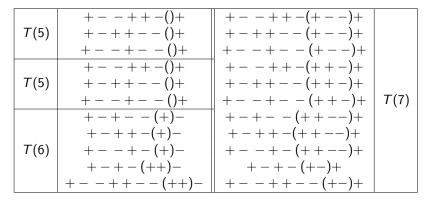
Average genus of a 2-bridge knot

Theorem (Cohen, L. and Suzuki, Tran - 2022) The expected value of the genus of a 2-bridge knot with crossing number c approaches $\frac{c}{4} + \frac{1}{12}$ as $c \to \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sketch of the proof

The set T(c) lists 2-bridge knots with crossing number c twice.* The set T(c) can be recursively built from two copies of T(c-2) and one copy of T(c-1).



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Compare the alternating diagrams when constructing T(c) from two copies of T(c-2) and one copy of T(c-1). The difference in the number of Seifert circles for each replacement can be determined. This yields a recursive formula for the sum of the genera of knots coming from T(c). Call this sum $g_{total}(c)$.

Use the recursive formula for $g_{total}(c)$ to obtain a closed form.

Average genus is the quotient of $g_{total}(c)$ and the number of words in T(c).

Median, mode, and variance

A similar approach yields an exact formula for the number of 2-bridge knots with crossing number c and genus g:

$$\frac{1}{2} \left((-1)^{c'-g-1} \sum_{n=0}^{c'-g-1} (-1)^n \binom{n+g-1}{n} + (-1)^{c-1} \sum_{i=0}^{c-2g-1} (-1)^i \binom{i+2g-1}{i} \right),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $c' = \lfloor \frac{c+1}{2} \rfloor$ and $1 \le g \le \lfloor \frac{c-1}{2} \rfloor$.

This formula and other recursive techniques lead to the computation of the median, mode, and variance.

Median, mode, and variance

Theorem (Cohen, Dinardo, L., Raanes, Rivera, Steindl, Wanebo)

- 1. The median and mode of the genera of 2-bridge knots with crossing number c is $\lfloor \frac{c+2}{4} \rfloor$.
- 2. The variance of the genera of 2-bridge knots with crossing number c approaches $\frac{c}{16} \frac{17}{144}$ as $c \to \infty$.

Theorem (L., Raanes)

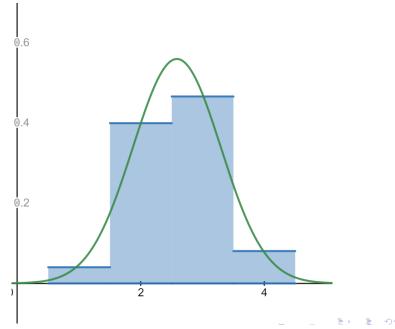
The distribution of the genera of 2-bridge knots with crossing number c approaches a normal distribution as $c \rightarrow \infty$.

The number of 2-bridge knots of genus g with crossing number *c*

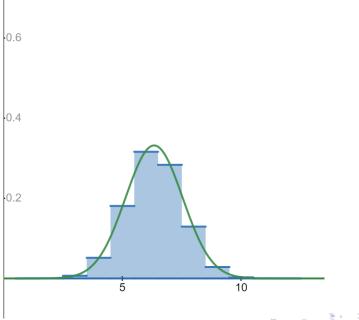
$c \setminus g$	1	2	3	4	5	6	7	8	9
3	1								
4	1								
5	1	1							
6	1	2							
7	2	4	1						
8	2	7	3						
9	2	12	9	1					
10	2	18	21	4					
11	3	26	45	16	1				
12	3	36	85	47	5				
13	3	49	151	123	25	1			
14	3	64	251	280	89	6			
15	4	82	400	588	276	36	1		
16	4	103	610	1141	736	151	7		
17	4	128	904	2094	1784	542	49	1	
18	4	156	1294	3648	3960	1658	237	8	
19	5	188	1814	6104	8230	4558	967	64	1
20	5	224	2486	9842	16126	11394	3339	351	9

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

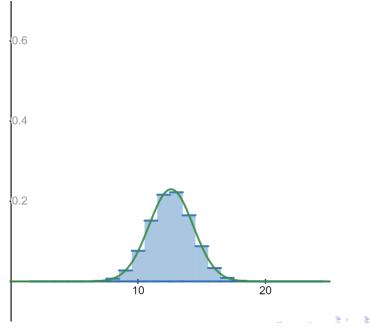
Approaching a normal distribution: c = 10



Approaching a normal distribution: c = 25



ヨー のへで



- na (~

Future directions

- Study other invariants for 2-bridge knots using similar techniques.
 - (L., Raanes in progress) A 2-bridge knot is p-colorable with probability ¹/_{p+1}.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What does the genus distribution look like for alternating knots?