An introduction to Khovanov homology

Adam Lowrance
Vassar College
Hudson River Undergraduate Mathematics Conference

April 1, 2023

Kauffman states

A Kauffman state of a link diagram D is the collection of curves obtained by performing an A-resolution or a B-resolution at each crossing of D.

$$
)(\stackrel{A}{\leftarrow}) / \stackrel{B}{\longrightarrow}
$$

A signed Kauffman state S is a Kauffman state where each component has been labeled by " + " or "-".

Kauffman state example

Monomials associated to Kauffman states

If S is a signed Kauffman state of D, define

$$
\begin{aligned}
i(S) & =\#(B \text {-resolutions }) \\
j(S) & =\#(B \text {-resolutions })+\#(+ \text { signs })-\#(- \text { signs }), \text { and } \\
\langle D \mid S\rangle & =(-1)^{i(S)} q^{j(S)}
\end{aligned}
$$

Kauffman state example

Jones polynomial

Let L be a link with diagram D. The Jones polynomial $V_{L}(q)$ is defined as

$$
\begin{aligned}
V_{L}(q) & =(-1)^{c_{-}} q^{c_{+}-2 c_{-}} \sum_{S}\langle D \mid S\rangle \\
& =(-1)^{c_{-}} q^{c_{+}-2 c_{-}} \sum_{S}(-1)^{i(S)} q^{j(S)} .
\end{aligned}
$$

Jones polynomial example

$$
V_{L}(q)=q^{2}\left(q^{-2}+1+q^{2}+q^{4}\right)=1+q^{2}+q^{4}+q^{6}
$$

The Jones polynomial and crossing number

Theorem (Murasugi, Kauffman, Thistlethwaite).

1. The span of the Jones polynomial is at most $2 c(L)+2$ where $c(L)$ is the minimum crossing number of the link L.
2. The span of the Jones polynomial is exactly $2 c(L)+2$ if and only if the link L is non-split and alternating.
3. Any "reduced" alternating diagram of a link realizes the minimum crossing number of the link.

The Jones polynomial and unknot detection

Conjecture. Let U be the unknot. If K is a knot such that $V_{K}(q)=V_{U}(q)=q+q^{-1}$, then K is the unknot.

Note. The conjecture holds for alternating knots by the previous slide.

Khovanov homology

Big idea. Start with signed Kauffman states. Instead of associating a monomial, define a vector space $C^{a, b}$ with basis the signed Kauffman states S such that $i(S)=a$ and $j(S)=b$. Instead of adding together monomials, define linear maps between the vector spaces and take homology.

Khovanov exampl

Maps $d^{a, b}: C^{a, b} \rightarrow C^{a+1, b}$ via example

$$
\begin{aligned}
& d^{0,0}: C^{0,0} \rightarrow c^{1,0} \\
& \underset{\sim}{\Omega}\left[\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

Maps $d^{a, b}: C^{a, b} \rightarrow C^{a+1, b}$ via example

$$
\begin{gathered}
d^{1,0}: c^{1,0} \rightarrow c^{2,0} \\
\overparen{O} \\
\underset{\Theta}{O}\left[\begin{array}{cc}
1 & -1
\end{array}\right]
\end{gathered}
$$

Khovanov homology

The Khovanov homology $K h_{L}(h, q)$ is the two variable polynomial

$$
K h_{L}(h, q)=h^{-c_{-}} q^{c_{+}-2 c_{-}} \sum_{a, b \in \mathbb{Z}} n_{a, b} h^{a} q^{b}
$$

where $n_{a, b}=$ nullity $d^{a, b}-\operatorname{rank} d^{a-1, b}$.

Example: The Hopf link

If L is the Hopf link, then

$$
K h_{L}(h, q)=1+q^{2}+h^{2} q^{4}+h^{2} q^{6}
$$

Observe

$$
\begin{aligned}
K h_{L}(-1, q) & =1+q^{2}+(-1)^{2} q^{4}+(-1)^{2} q^{6} \\
& =1+q^{2}+q^{4}+q^{6} \\
& =V_{L}(q)
\end{aligned}
$$

Advantages of Khovanov homology

Let L be a link.

1. $K h_{L}(-1, q)=V_{L}(q)$.
2. $2 c(L)+2 \geq \operatorname{span}_{q} K h_{L}(h, q) \geq \operatorname{span} V_{L}(q)$.
3. (Kronheimer and Mrowka) Let U be the unknot. $K h_{U}(h, q)=K h_{L}(h, q)$ if and only if $U=L$.

Alternating and almost-alternating links

A link diagram is alternating if the crossings alternate between over and under. A knot diagram is almost-alternating if one crossing change makes the diagram alternating.
A link is alternating if it has an alternating diagram and is almost-alternating if it is not alternating and has an almost alternating diagram.

Alternating

Almost-alternating

$V_{L}(q)$ and $K h_{L}(h, q)$ for almost-alternating

Theorem (Dasbach, L). If L is almost-alternating, then the highest or lowest coefficient of $V_{L}(q)$ has absolute value 1 .

Theorem (L, Spyropoulos). If L is almost alternating, then $V_{L}(q) \neq V_{U}(q)$.

Theorem (Dasbach, L). If L is almost-alternating, then the highest or lowest q-degree in $K h_{L}(h, q)$ looks like $h^{a} q^{b}$.
$11 n_{95}$

$$
V_{11 n_{95}}(q)=2 q^{3}-q^{5}+2 q^{7}-q^{9}+q^{13}-q^{15}+2 q^{17}-2 q^{19}
$$

