Near extremal Khovanov homology of Turaev genus one links

Adam Lowrance
Vassar College
Knots in Washington 49.5

December 3, 2021

Motivating question

Links with Turaev genus one include almost-alternating links and non-alternating pretzel and Montesinos links. Such links are "close" to alternating.

Question. What can we say about the Jones polynomial and Khovanov homology of a Turaev genus one link?

The Turaev surface

The Turaev surface of a link diagram D is obtained by

1. constructing a cobordism between the all- A and all- B Kauffman states of D that has saddles corresponding with crossings, and
2. capping off the boundary components of the above cobordism with disks.

The Turaev surface at a crossing

The Turaev surface

The Turaev genus of a link

- For a connected link diagram D, the genus of the Turaev surface is

$$
g_{T}(D)=\frac{1}{2}\left(2+c(D)-s_{A}(D)-s_{B}(D)\right)
$$

where $c(D)$ is the number of crossings in D and $s_{A}(D)$ and $s_{B}(D)$ are the number of components in the all- A and all- B Kauffman states of D respectively.

- The Turaev genus $g_{T}(L)$ of a non-split link L is

$$
g_{T}(L)=\min \left\{g_{T}(D) \mid D \text { is a diagram of } L\right\}
$$

- The Turaev genus of a non-split link is zero if and only if the link is alternating.

Turaev genus one link

Theorem (Armond, L.; Kim)

Every non-split Turaev genus one link has a diagram as depicted below where each R_{i} is an alternating tangle and + or - indicates that the first crossing that strand meets is an over or under crossing respectively.

Example of a Turaev genus one knot

Almost-alternating link

A non-alternating link is almost-alternating if it has a diagram that can be transformed into an alternating diagram via one crossing change (Adams et al.).

Adequacy

A link diagram is A-adequate if no two arcs in the resolution of the same crossing lie on the same component of the of the all- A Kauffman state. A link is A-adequate if it has an A-adequate diagram. Similarly define B-adequate.

Almost-alternating, semi-adequacy, mutation

The Turaev genus of an almost-alternating link is one.

Theorem (Armond, L.)
There is a sequence of mutations transforming every Turaev genus one link into an almost-alternating link.

Theorem (Kim)
Every Turaev genus one link is A-adequate, B-adequate, or almost-alternating.

The Jones polynomial of an alternating link

Theorem (Kauffman, Thistlethwaite)
Let L be a non-split alternating link with Jones polynomial

$$
V_{L}(t)=a_{m} t^{m}+a_{m+1} t^{m+1}+\cdots+a_{n-1} t^{n-1}+a_{n} t^{n}
$$

where a_{m} and a_{n} are nonzero. Then

- $\left|a_{m}\right|=\left|a_{n}\right|=1$, and
- $a_{i} a_{i+1} \leq 0$ for $i=m, \ldots, n-1$.

The Jones polynomial of an adequate link

Theorem (Lickorish, Thistlethwaite, Stoimenow)
Let L be a non-split semi-adequate link with Jones polynomial

$$
V_{L}(t)=a_{m} t^{m}+a_{m+1} t^{m+1}+\cdots+a_{n-1} t^{n-1}+a_{n} t^{n}
$$

where a_{m} and a_{n} are nonzero. If L is A-adequate, then

$$
\left|a_{m}\right|=1 \text { and } a_{m} a_{m+1} \leq 0
$$

If L is B-adequate, then

$$
\left|a_{n}\right|=1 \text { and } a_{n} a_{n-1} \leq 0
$$

The Jones polynomial of a Turaev genus one link

Theorem (Dasbach, L., Spyropoulos)
Let L be a non-split link of Turaev genus one with Jones polynomial

$$
V_{L}(t)=a_{m} t^{m}+a_{m+1} t^{m+1}+\cdots+a_{n-1} t^{n-1}+a_{n} t^{n}
$$

where a_{m} and a_{n} are nonzero. Then

$$
\left|a_{m}\right|=1 \text { and } a_{m} a_{m+1} \leq 0
$$

or

$$
\left|a_{n}\right|=1 \text { and } a_{n-1} a_{n} \leq 0
$$

Example $11 n_{95}$

The Jones polynomial of $11 n_{95}$ is

$$
V_{11 n_{95}}(t)=2 t^{2}-3 t^{3}+5 t^{4}-6 t^{5}+6 t^{6}-5 t^{7}+4 t^{8}-2 t^{9}
$$

Since $11 n_{95}$ has a diagram of Turaev genus two, it follows that $g_{T}\left(11 n_{95}\right)=2$.

Example $15 n_{41133}$

The Jones polynomial of $15 n_{41133}$ is
$t^{4}+t^{5}-3 t^{6}+8 t^{7}-12 t^{8}+14 t^{9}-15 t^{10}+13 t^{11}-10 t^{12}+6 t^{13}-2 t^{14}$.
Thus $g_{T}\left(15 n_{41133}\right) \geq 2$.

Khovanov homology

Khovanov homology is a \mathbb{Z}-module equipped with two gradings i and j such that

$$
\sum_{i, j}(-1)^{i} \operatorname{rank} K h^{i, j}(L) t^{j}=\left(t+t^{-1}\right) V_{L}\left(t^{2}\right)
$$

Example: the (3,4)-torus knot

$j \backslash i$	0	1	2	3	4	5
17						1
15						1
13				1	1	
11				12	1	
9			1			
7	1					
5	1					

$\sum_{i, j}(-1)^{i} \operatorname{rank} K h^{i, j}\left(T_{3,4}\right) t^{j}=-t^{17}-t^{15}+t^{11}+t^{9}+t^{7}+t^{5}$

$$
V_{T_{3,4}}(t)=-t^{8}+t^{5}+t^{3}
$$

Maximum and minimum gradings

Define

$$
\begin{aligned}
i_{\min }(L) & =\min \left\{i \mid K h^{i, j}(L) \neq 0\right\}, \\
i_{\max }(L) & =\max \left\{i \mid K h^{i, j}(L) \neq 0\right\}, \\
j_{\min }(L) & =\min \left\{j \mid K h^{i, j}(L) \neq 0\right\}, \\
j_{\max }(L) & =\max \left\{j \mid K h^{i, j}(L) \neq 0\right\}, \\
\delta_{\min }(L) & =\min \left\{2 i-j \mid K h^{i, j}(L) \neq 0\right\}, \text { and } \\
\delta_{\max }(L) & =\max \left\{2 i-j \mid K h^{i, j}(L) \neq 0\right\} .
\end{aligned}
$$

Theorem (Champanerkar, Kofman, Stoltzfus)
If L is non-split and has Turaev genus one, then

$$
2 \leq \delta_{\max }(L)-\delta_{\min }(L) \leq 4
$$

Extremal Khovanov homology

- The Khovanov homology of a non-split Turaev genus one link in either its maximal or minimal polynomial grading is isomorphic to \mathbb{Z}, and this \mathbb{Z} summand must be on a specific diagonal.
- A certain summand of the Khovanov homology of a non-split Turaev genus one link in its near maximal or near minimal polynomial grading is trivial.

Extremal Khovanov homology

Theorem (Beldon, Dasbach, DeStefano, L., Milgrim, Villaseñor)
Let L be a non-split link with Turaev genus one. Either

1. $K h^{*, j_{\min }(L)}(L) \cong K h^{i_{\min }}(L), j_{\min }(L)(L) \cong \mathbb{Z}$,
2. $2 i_{\text {min }}(L)-j_{\text {min }}(L)=\delta_{\text {min }}(L)+2$, and
3. $K h^{i_{\text {min }}}(L)+2, j_{\text {min }}(L)+2(L)$ is trivial.
or
4. $K h^{*, j_{\max }(L)}(L) \cong K h^{i_{\max }(L), j_{\max }(L)}(L) \cong \mathbb{Z}$,
5. $2 i_{\text {max }}(L)-j_{\max }(L)=\delta_{\text {max }}(L)-2$, and
6. $K h^{i_{\max }(L)-2, j_{\max }(L)-2}(L)$ is trivial.

Example: the (3,4)-torus knot

$j \backslash i$	0	1	2	3	4	5
17						1
15						1
13				1	1	
11				12	1	
9			1			
7	1					
5	1					

Example: the (3,4)-torus knot

$j \backslash i$	0	1	2	3	4	5
17						1
15						1
13				1	1	
11				$1 / 2$	1	
9			1			
7	1					
5	1					

Example: $10_{132} \# \overline{10_{132}}$

Example: $K h\left(10_{132} \# \overline{10_{132}}\right)$

$j \backslash i$	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
13														1	1
11													1	1_{2}	1_{2}
9												2	$3,1_{2}$	1	
7										1	5	$3,2_{2}$	2_{2}		
5									1	$3,1_{2}$	$3,5_{2}$	$2,2_{2}$			
3								1	$7,1_{2}$	$8,3_{2}$	$2,1_{2}$				
1							3	$8,1_{2}$	$4,6_{2}$	$1,3_{2}$					
-1						1	$4,3_{2}$	$8,6_{2}$	$3,1_{2}$						
-3					2	$8,1_{2}$	$7,3_{2}$	$1,1_{2}$							
-5				2	$3,2_{2}$	$3,5_{2}$	$1,1_{2}$								
-7				$3,2_{2}$	$5,2_{2}$	1									
-9		1	3	$2,1_{2}$											
-11		1_{2}	$1,1_{2}$												
-13	1	1													

Example: $11 n_{376}$

$j \backslash i$	-7	-6	-5	-4	-3	-2	-1	0
-3								2
-5							1	2
-7						2	1_{2}	
-9				1	1	$1,2_{2}$		
-11				4	$2,1_{2}$			
-13				$2,2_{2}$				
-15		1	2					
-17		1_{2}						
-19	1							

Example: $11 n_{376}$

$j \backslash i$	-7	-6	-5	-4	-3	-2	-1	0
-3								2
-5								2
-7							1	
-9						122		
-11					2	12		
-13				2	2			
-15		2						
-17	1							
-19								

Example: $14 n_{21152}$

| $j \backslash i$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | | | | | | | | | | | 1 |
| 13 | | | | | | | | | 1 | | 1_{2} |
| 11 | | | | | | | | 1 | $1,1_{2}$ | 1 | |
| 9 | | | | | | | 3 | $2,1_{2}$ | 1_{2} | | |
| 7 | | | | | | 2 | $1,3_{2}$ | $1,1_{2}$ | | | |
| 5 | | | | | 3 | $4,2_{2}$ | 1 | | | | |
| 3 | | | | 3 | $2,3_{2}$ | 1_{2} | | | | | |
| 1 | | | 1 | $4,2_{2}$ | 1 | | | | | | |
| -1 | | 2 | $2,1_{2}$ | | | | | | | | |
| -3 | | $1,2_{2}$ | | | | | | | | | |
| -5 | 2 | | | | | | | | | | |

Proof ingredients

- Khovanov homology techniques: long exact sequence, direct computation, etc.
- Diagram specific results for Turaev genus one links, especially how they relate to almost-alternating and semi-adequate links.

Application: Rasmussen's invariant

Let $s(K)$ be the Rasmussen invariant of the knot K, and let $c_{-}(D)$ be the number of negative crossings in D.

Theorem (Beldon, DeStefano, L., Milgrim, Villaseñor)
Let D be a diagram of the knot K. If D is A-adequate, has Turaev genus one, and $c_{-}(D)=2$, then

$$
s(K)=c(D)-s_{A}(D)-1
$$

Proof

Suppose D is A-adequate with two negative crossings and has Turaev genus one.

$j \backslash i$	-2	-1	0
$j_{\min }+6$			$?$
$j_{\min }+4$			$?$
$j_{\min }+2$			
$j_{\min }$	1		

Example

If R is a positive alternating tangle and D is A-adequate, then

$$
s(K)=\frac{1}{2}\left(c(D)-s_{A}(D)-1\right) .
$$

Thank you!

