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Outline

» What are Turaev genus one links?

» How are Turaev genus one links related to some familiar
families of links?

» What can we say about the Jones polynomial and Khovanov
homology of a Turaev genus one link?



The Turaev surface

The Turaev surface of a link diagram D is obtained by
1. constructing a cobordism between the all-A and all-B
Kauffman states of D that has saddles corresponding with
crossings, and
2. capping off the boundary components of the above cobordism
with disks.



The Turaev surface at a crossing
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The Turaev surface
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all-B state Turaev surface of D




The Turaev genus of a link

» For a connected link diagram D, the genus of the Turaev
surface is

(2+ ¢(D) = sa(D) — s8(D))
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gr(D) =

where ¢(D) is the number of crossings in D and sa(D) and
sg(D) are the number of components in the all-A and all-B
Kauffman states of D respectively.

» The Turaev genus gr(L) of a link L is

gr(L) = min{gr(D) | D is a diagram of L}.



Alternating projection

A link L has an alternating projection on any of its Turaev surfaces.




The Turaev surface of an alternating diagram

Theorem (Turaev)

The Turaev genus of a link is zero if and only if the link is
alternating.

Idea of proof: If the link has a genus zero Turaev surface, then it
has an alternating projection to a sphere (i.e. it is alternating). If a
link has an alternating diagram, then the components of the all-A
and all-B states correspond to the complementary regions of the
diagram. Thus the diagram has Turaev genus zero.



Turaev genus as an alternating distance

The Turaev genus of a link gives a filtration on all links starting
with alternating links and becoming “more non-alternating” as the
Turaev genus increases.



Turaev genus one links

Theorem (Armond, L.; Kim)

Every non-split Turaev genus one link has a diagram as depicted
below where each R; is an alternating tangle and + or — indicates
that the first crossing that strand meets is an over or under
crossing respectively.
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Pretzel links

Non-alternating pretzel links are Turaev genus one.




Montesinos links
Non-alternating Montesinos links are Turaev genus one.
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Almost-alternating links

A non-alternating link is almost-alternating if it has a diagram that
can be transformed into an alternating diagram via one crossing
change. Almost-alternating links were first defined by a group of
undergraduates working with Colin Adams in 1991.




Almost-alternating links have Turaev genus one

Every almost-alternating link has Turaev genus one.

Open Question. Is there a Turaev genus one link that is not
almost-alternating?



Almost-alternating links and mutation

Theorem (Armond, L.)

There is a sequence of mutations transforming every Turaev genus
one link into an almost-alternating link.



Mutation proof



Mutation proof continued



Semi-adequate links

A link diagram is A-adequate if no two arcs in the resolution of the
same crossing lie on the same component of the of the all-A
Kauffman state. Similarly, a link diagram is B-adequate if no two
arcs in the resolution of the same crossing lie on the same
component of the of the all-B Kauffman state. A link with either
at least one A-adequate or B-adequate diagram is semi-adequate.
A link with no A-adequate or B-adequate diagrams is inadequate.






Turaev genus one, semi-adequate, and almost-alternating

Theorem (Kim)
Every Turaev genus one link is semi-adequate or almost-alternating.



|dea of proof

Start with a diagram like below. Then flype repeatedly to collect
all of the crossings in the boundary of wy and ws into one twist
region.
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Idea of Proof

Cancel crossings in the twist region if possible.




|dea of proof

The resulting diagram is semi-adequate unless there is a single
crossing in the twist region and exactly two alternating tangles,
one of which is the single crossing in the twist region. In that case,
the diagram is almost-alternating.
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Adjacent faces
Label the regions surrounding the dealternator uy, up, v, and v, as

below. Define adj(u1, up) to be the number of regions in R that
share crossings with both u; and wup. Similarly define adj(v1, v2).
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adj(ur, u2) =0 adj(vy, v2) =1



A- and B-almost-alternating

An almost-alternating link with a diagram where adj(u1, u2) =0 is
A-almost alternating, and an almost-alternating link with a
diagram where adj(v1, v2) = 0 is B-almost alternating.

Theorem (Dasbach, L.)

Every almost-alternating link is either A- or B-almost alternating.



Example: A-almost alternating




Sketch of Proof

1. If adj(uy, up) > 2, then adj(v1, v2) = 0, and if adj(vq, v2) > 2,
then adj(u1, up) = 0.

2. If adj(u1, up) = adj(v1, v2) = 1, then there is another
almost-alternating diagram of the link with fewer crossings.

3. If 1 < adj(u1, u2) < 2 and adj(vi, va) = 2 (or vice versa), then
the link is alternating.
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adj(u1, up) = 2 and adj(vy, vp) = 1.
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A- and B-Turaev genus one

A Turaev genus one link is A-Turaev genus one if it is
A-almost-alternating or A-adequate. A Turaev genus one link is
B-Turaev genus one if it is B-almost-alternating or B-adequate.

Every Turaev genus one link is either A-Turaev genus one or
B-Turaev genus one.



The Kauffman bracket

Recursively define the Kauffman bracket (D) by
L () =A00+AT (X)),
2. (DUQ ) =(-A-A2)(D),
3.(0)=1



The Jones polynomial

If L is an oriented link with diagram D, then its Jones polynomial is

Vi(e) = (-A)™OuD)|

where w(D) = # (27 ) — #( ) is the writhe of D.



The Kauffman bracket of an alternating link

Theorem (Dasbach-Lin)

The Kauffman bracket of a reduced alternating diagram D with ¢
crossings is given by

c
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The Kauffman bracket of an almost-alternating link

Theorem (Dasbach, L., Spyropoulos)

Let L be a link with an A-almost-alternating diagram D with c
crossings. The Kauffman bracket of D can be expressed as

c—3
<D> — Z O[I_Ac4r2vf8f4i
i=0
where

ag=(-1)"(P—-1) and

o = (—1)t (ﬁl(P—l)—(I;)JrPQ—POJrQ—S).



The Jones polynomial of a Turaev genus one link

Theorem (Dasbach, L., Spyropoulos)

Let L be a Turaev genus one link with Jones polynomial
Vi(t) = amt™ + ameat™ ™t - a1 t" 4 apt”
where a, and a, are nonzero. If L is A-Turaev genus one, then
lam| =1 and amam+1 < 0.
If L is B-Turaev genus one, then

lan| =1 and ap—1a, < 0.



Example 11ngs
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The Jones polynomial of 11ngs is
Viings(t) = 2t% — 3t3 + 5t* — 6t° + 6t° — 5t + 43 — 2¢°.

Since 11ngs has a diagram of Turaev genus two, it follows that
g-r(llng5) =2.



Example 15[741133

—<
I
L9

The Jones polynomial of 15n41133 is

t* 4+ 23t 48¢t7 —12¢8 +14¢°% — 15104+ 13¢11 — 10¢12 +- 6413 — 2114,

Thus gT(15n41133) > 2



Non-triviality of the Jones polynomial

Theorem (L., Spyropoulos)

Let L be an m-component link of Turaev genus one where m > 1,
and let V[ (t) be the Jones polynomial of L. Then

Vi(t) # ¢ (—t% _ t_%)m—l

for any k € Z. In particular, the Jones polynomial of L is different
from the Jones polynomial of the m-component unlink.



Notes about the previous theorem

» The m =1 case says the Jones polynomial detects the unknot
among all almost-alternating knots. (This is the hard part to
prove).

» The m > 2 case follows from the previous theorem almost
immediately.



Example with trivial Jones polynomial
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Eliahou, Kauffman, and Thistlethwaite found non-trivial links

whose Jones polynomials are trivial. Since the above link L has
1 1
Jones polynomial V| (t) = (—t2 —t~2)4, it follows that g1 (L) > 2.



Khovanov homology

Khovanov homology is a Z-module equipped with two gradings i
and j such that

Z(—w’ rank Kh'J(L) ¢/ = (t + )V (t?).



Example: the (3, 4)-torus knot
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Maximum and minimum gradings

Define

min{j | Kh™Y(L) # 0},

max{j | Kh™/(L) # 0},

= min{2i —j | Kh'J(L) # 0}, and
max{2i — j | Kh'J(L) # 0}.



Extremal Khovanov homology

Theorem (Dasbach, L.)
Suppose that L is a non-split link.

1. If L is A-Turaev genus one, A-almost alternating, or
A-adequate, then there is an iy € Z such that
Kh#dmin(D) (L) = Khiosmin(L)(L) 2 7. and
2ip — jmin(L) = 0min(L) + 2.

2. If L is B-Turaev genus one, B-almost alternating, or
B-adequate, then there is an iy € Z such that
Kh#imax(L) (1) = Khioumax(L)(L) 2 7, and
2ip — jmax(L) = dmax(L) — 2.



Example: the (3, 4)-torus knot
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Example: the (3, 4)-torus knot

ANilo]1]2

17

15

13

11




&

3
I

&



Example: Kh(1013,#1013))

J\i|-7|-6|-5|-4|-3|-2|-1|0|1|2|3|4|5]|6]|7
13 1 1
1 1|1 | 1
9 2 [3,12] 1

7 1 5 [3,22] 2

5 1 (3,12(3,52(2,2,

3 1 17,128,32(2,1

1 3 [8,12(4,621,3;

) 1 (4,3,(8,62(3,15

-3 2 18,12|7,32|1,12

-5 2 13,25(3,55(1,15

_7 3,22(5,2,| 1

-9 1|3 (21

-11 L L1

-13| 1 | 1




Example: 11n376
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Sketch of proof: semi-adequate links

1. If D is an A-adequate diagram, then there is only one
generator in the minimum j-grading of the Khovanov
complex. This was observed by Khovanov.

2. The diagonal grading of the generator of Kh*Jmin)(L) can be
worked out using the Lee spectral sequence and work of
Champanerkar, Kofman, and Stoltzfus.



Sketch of proof: almost-alternating links

1. Khovanov homology satisfies an exact triangle:

Kh( )
e ~

Kh( X)) ——— Kh() ()

2. Resolve crossings inside the alternating tangle R of an
almost-alternating diagram.

&



Sketch of proof: Turaev genus one links

Kim proved that a Turaev genus one link is either
almost-alternating or semi-adequate.



Legendrian front diagrams: the (3,4) torus knot
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Thurston Bennequin numbers

Let £ be a Legendrian link with front diagram F. The Thurston
Bennequin number tb(L) of L is the difference between the writhe
of F and half the number of cusps of F. The maximal Thurston
Bennequin number of a classical link L is

tb(L) = max{tb(L) | £ has topological type L}.



tb(L) and Khovanov homology

Theorem (Ng)
Let L be a non-split link. Then

tb(L) < min{j — i | Kh'¥(L) # 0}.
Theorem (Ng)
Let L be a non-split link with reduced alternating diagram D. Then

th(L) = w(D) — sa(D).



tb(L) for Turaev genus one links

Theorem (Dasbach, L.)

Let L be a link with Turaev genus one diagram D. At least one of
the following inequalities hold:

(L)
(L)

w(D) — sa(D)
—w(D) — s(D)

w(D) — sa(D) + 1, or
—w(D) — sg(D) + 1.

ININA

< tb
< tb



Relationship to semi-adequate links

Every theorem above about the Jones polynomial or Khovanov
homology of a Turaev genus one link also holds for semi-adequate
links (Lickorish, Thistlethwaite; Stoimenov; Khovanov; Abe;
Kélman).

Open Question. Is every Turaev genus one link semi-adequate?



Thank you!



