The Jones polynomial and Khovanov homology of Turaev genus one links

Adam Lowrance Vassar College

September 24, 2019

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

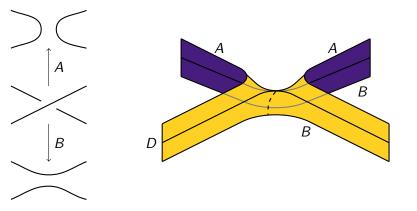
Outline

- What are Turaev genus one links?
- How are Turaev genus one links related to some familiar families of links?
- What can we say about the Jones polynomial and Khovanov homology of a Turaev genus one link?

The *Turaev surface* of a link diagram *D* is obtained by

- 1. constructing a cobordism between the all-A and all-BKauffman states of D that has saddles corresponding with crossings, and
- 2. capping off the boundary components of the above cobordism with disks.

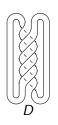
The Turaev surface at a crossing

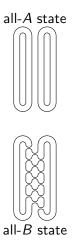


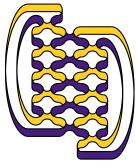
<ロト <回ト < 注ト < 注ト

æ

The Turaev surface







Turaev surface of ${\cal D}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The Turaev genus of a link

For a connected link diagram D, the genus of the Turaev surface is

$$g_T(D) = \frac{1}{2} (2 + c(D) - s_A(D) - s_B(D))$$

where c(D) is the number of crossings in D and $s_A(D)$ and $s_B(D)$ are the number of components in the all-A and all-B Kauffman states of D respectively.

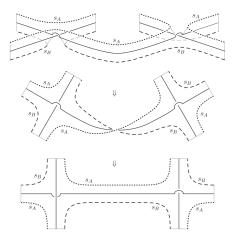
• The Turaev genus $g_T(L)$ of a link L is

 $g_T(L) = \min\{g_T(D) \mid D \text{ is a diagram of } L\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Alternating projection

A link L has an alternating projection on any of its Turaev surfaces.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Turaev surface of an alternating diagram

Theorem (Turaev)

The Turaev genus of a link is zero if and only if the link is alternating.

Idea of proof: If the link has a genus zero Turaev surface, then it has an alternating projection to a sphere (i.e. it is alternating). If a link has an alternating diagram, then the components of the all-A and all-B states correspond to the complementary regions of the diagram. Thus the diagram has Turaev genus zero.

- ロ ト - 4 回 ト - 4 □

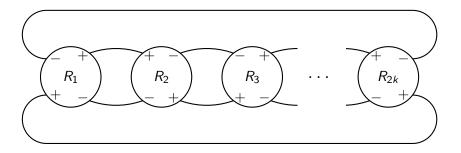
Turaev genus as an alternating distance

The Turaev genus of a link gives a filtration on all links starting with alternating links and becoming "more non-alternating" as the Turaev genus increases.

Turaev genus one links

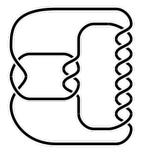
Theorem (Armond, L.; Kim)

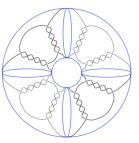
Every non-split Turaev genus one link has a diagram as depicted below where each R_i is an alternating tangle and + or - indicates that the first crossing that strand meets is an over or under crossing respectively.



Pretzel links

Non-alternating pretzel links are Turaev genus one.

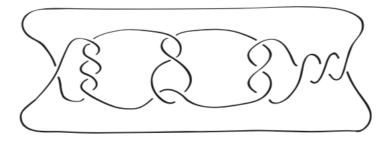




◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

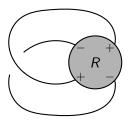
Montesinos links

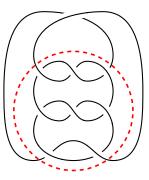
Non-alternating Montesinos links are Turaev genus one.



Almost-alternating links

A non-alternating link is *almost-alternating* if it has a diagram that can be transformed into an alternating diagram via one crossing change. Almost-alternating links were first defined by a group of undergraduates working with Colin Adams in 1991.





Almost-alternating links have Turaev genus one

Every almost-alternating link has Turaev genus one.

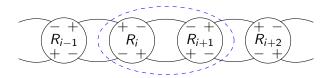
Open Question. Is there a Turaev genus one link that is not almost-alternating?

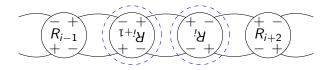
Almost-alternating links and mutation

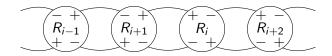
Theorem (Armond, L.)

There is a sequence of mutations transforming every Turaev genus one link into an almost-alternating link.

Mutation proof

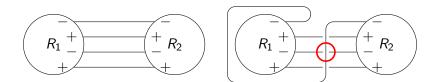






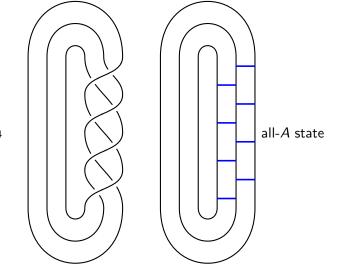
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 - のへで

Mutation proof continued



A link diagram is *A*-adequate if no two arcs in the resolution of the same crossing lie on the same component of the of the all-*A* Kauffman state. Similarly, a link diagram is *B*-adequate if no two arcs in the resolution of the same crossing lie on the same component of the of the all-*B* Kauffman state. A link with either at least one *A*-adequate or *B*-adequate diagram is *semi-adequate*. A link with no *A*-adequate or *B*-adequate diagrams is *inadequate*.

A-adequate example



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

*T*_{3,4}

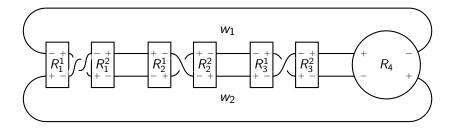
Turaev genus one, semi-adequate, and almost-alternating

Theorem (Kim)

Every Turaev genus one link is semi-adequate or almost-alternating.

Idea of proof

Start with a diagram like below. Then flype repeatedly to collect all of the crossings in the boundary of w_1 and w_2 into one twist region.

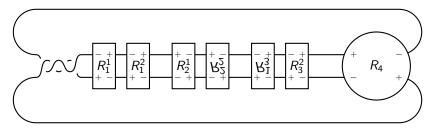


イロト 不得 トイヨト イヨト

э

Idea of Proof

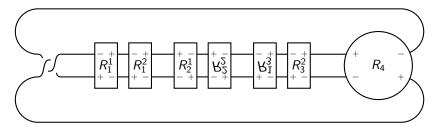
Cancel crossings in the twist region if possible.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

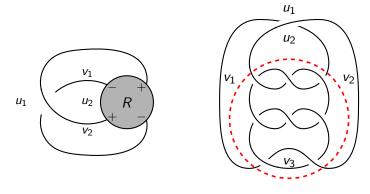
Idea of proof

The resulting diagram is semi-adequate unless there is a single crossing in the twist region and exactly two alternating tangles, one of which is the single crossing in the twist region. In that case, the diagram is almost-alternating.



Adjacent faces

Label the regions surrounding the dealternator u_1, u_2, v_1 , and v_2 as below. Define $adj(u_1, u_2)$ to be the number of regions in R that share crossings with both u_1 and u_2 . Similarly define $adj(v_1, v_2)$.



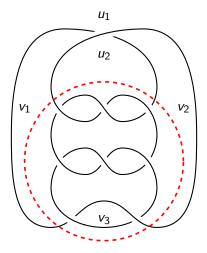
 $\operatorname{adj}(u_1, u_2) = 0 \operatorname{adj}(v_1, v_2) = 1$

An almost-alternating link with a diagram where $adj(u_1, u_2) = 0$ is *A-almost alternating*, and an almost-alternating link with a diagram where $adj(v_1, v_2) = 0$ is *B-almost alternating*.

Theorem (Dasbach, L.)

Every almost-alternating link is either A- or B-almost alternating.

Example: A-almost alternating



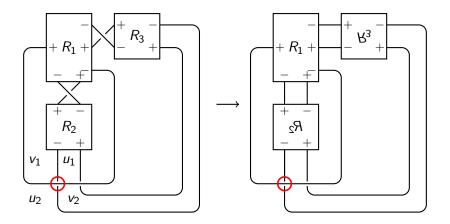
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Sketch of Proof

- 1. If $adj(u_1, u_2) > 2$, then $adj(v_1, v_2) = 0$, and if $adj(v_1, v_2) > 2$, then $adj(u_1, u_2) = 0$.
- 2. If $adj(u_1, u_2) = adj(v_1, v_2) = 1$, then there is another almost-alternating diagram of the link with fewer crossings.
- 3. If $1 \le \operatorname{adj}(u_1, u_2) \le 2$ and $\operatorname{adj}(v_1, v_2) = 2$ (or vice versa), then the link is alternating.

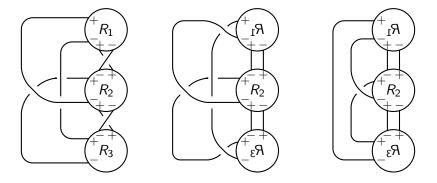
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\mathsf{adj}(u_1, u_2) = \mathsf{adj}(v_1, v_2) = 1$



▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

 $adj(u_1, u_2) = 2$ and $adj(v_1, v_2) = 1$.



A Turaev genus one link is *A*-Turaev genus one if it is *A*-almost-alternating or *A*-adequate. A Turaev genus one link is *B*-Turaev genus one if it is *B*-almost-alternating or *B*-adequate.

Every Turaev genus one link is either A-Turaev genus one or B-Turaev genus one.

The Kauffman bracket

Recursively define the Kauffman bracket $\langle D \rangle$ by

1.
$$\langle \checkmark \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \searrow \rangle$$
,
2. $\langle D \sqcup \bigcirc \rangle = (-A^2 - A^{-2}) \langle D \rangle$,
3. $\langle \bigcirc \rangle = 1$.

The Jones polynomial

If L is an oriented link with diagram D, then its Jones polynomial is

$$V_L(t) = (-A^3)^{-w(D)} \langle D \rangle \Big|_{A=t^{-1/4}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $w(D) = \#(\swarrow) - \#(\searrow)$ is the writhe of D.

The Kauffman bracket of an alternating link

Theorem (Dasbach-Lin)

The Kauffman bracket of a reduced alternating diagram D with c crossings is given by

$$\langle D \rangle = \sum_{i=0}^{c} \gamma_i A^{c+2\nu-2-4i}$$

where

$$\begin{split} \gamma_0 &= (-1)^{\nu-1}, \\ \gamma_1 &= (-1)^{\nu-2}(e-\nu+1), \text{ and} \\ \gamma_2 &= (-1)^{\nu-3} \left(\binom{\nu-1}{2} - e(\nu-2) + \mu + \binom{e}{2} - \tau \right). \end{split}$$

The Kauffman bracket of an almost-alternating link

Theorem (Dasbach, L., Spyropoulos)

Let L be a link with an A-almost-alternating diagram D with c crossings. The Kauffman bracket of D can be expressed as

$$\langle D \rangle = \sum_{i=0}^{c-3} \alpha_i A^{c+2\nu-8-4i}$$

where

$$\alpha_0 = (-1)^{\nu} (P-1) \text{ and}$$

 $\alpha_1 = (-1)^{\nu-1} \left(\beta_1 (P-1) - {P \choose 2} + P_2 - P_0 + Q - S \right).$

The Jones polynomial of a Turaev genus one link

Theorem (Dasbach, L., Spyropoulos)

Let L be a Turaev genus one link with Jones polynomial

$$V_L(t) = a_m t^m + a_{m+1} t^{m+1} + \dots + a_{n-1} t^{n-1} + a_n t^n$$

where a_m and a_n are nonzero. If L is A-Turaev genus one, then

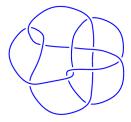
$$|a_m|=1$$
 and $a_ma_{m+1}\leq 0$.

If L is B-Turaev genus one, then

$$|a_n| = 1$$
 and $a_{n-1}a_n \le 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 11n₉₅



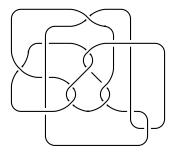
The Jones polynomial of $11n_{95}$ is

$$V_{11n_{95}}(t) = 2t^2 - 3t^3 + 5t^4 - 6t^5 + 6t^6 - 5t^7 + 4t^8 - 2t^9.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Since $11n_{95}$ has a diagram of Turaev genus two, it follows that $g_T(11n_{95}) = 2$.

Example 15*n*₄₁₁₃₃



The Jones polynomial of $15n_{41133}$ is

 $t^4 + t^5 - 3t^6 + 8t^7 - 12t^8 + 14t^9 - 15t^{10} + 13t^{11} - 10t^{12} + 6t^{13} - 2t^{14}.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Thus $g_T(15n_{41133}) \ge 2$.

Non-triviality of the Jones polynomial

Theorem (L., Spyropoulos)

Let L be an m-component link of Turaev genus one where $m \ge 1$, and let $V_L(t)$ be the Jones polynomial of L. Then

$$V_L(t) \neq t^k \left(-t^{rac{1}{2}}-t^{-rac{1}{2}}
ight)^{m-1}$$

for any $k \in \mathbb{Z}$. In particular, the Jones polynomial of L is different from the Jones polynomial of the m-component unlink.

Notes about the previous theorem

The m = 1 case says the Jones polynomial detects the unknot among all almost-alternating knots. (This is the hard part to prove).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► The m ≥ 2 case follows from the previous theorem almost immediately.

Example with trivial Jones polynomial



Eliahou, Kauffman, and Thistlethwaite found non-trivial links whose Jones polynomials are trivial. Since the above link *L* has Jones polynomial $V_L(t) = (-t^{\frac{1}{2}} - t^{-\frac{1}{2}})^4$, it follows that $g_T(L) \ge 2$.

Khovanov homology is a $\mathbb{Z}\text{-module}$ equipped with two gradings i and j such that

$$\sum_{i,j} (-1)^i \operatorname{rank} Kh^{i,j}(L) \ t^j = (t+t^{-1})V_L(t^2).$$

(ロ)、(型)、(E)、(E)、 E) の(()

Example: the (3, 4)-torus knot

j∖i	0	1	2	3	4	5
17						1
15						1
13				1	1	
11				1_{2}	1	
9			1			
7	1					
5	1					

$$\sum_{i,j}(-1)^i$$
 rank Kh $^{i,j}(T_{3,4})\;t^j=-\;t^{17}-t^{15}+t^{11}+t^9+t^7+t^5$ $V_{T_{3,4}}(t)=-\;t^8+t^5+t^3$

Maximum and minimum gradings

Define

$$\begin{split} j_{\min}(L) &= \min\{j \mid Kh^{i,j}(L) \neq 0\}, \\ j_{\max}(L) &= \max\{j \mid Kh^{i,j}(L) \neq 0\}, \\ \delta_{\min}(L) &= \min\{2i - j \mid Kh^{i,j}(L) \neq 0\}, \text{ and } \\ \delta_{\max}(L) &= \max\{2i - j \mid Kh^{i,j}(L) \neq 0\}. \end{split}$$

<ロト < 団ト < 三ト < 三ト < 三 ・ つへの</p>

Extremal Khovanov homology

Theorem (Dasbach, L.)

Suppose that L is a non-split link.

- 1. If L is A-Turaev genus one, A-almost alternating, or A-adequate, then there is an $i_0 \in \mathbb{Z}$ such that $Kh^{*,j_{\min}(L)}(L) = Kh^{i_0,j_{\min}(L)}(L) \cong \mathbb{Z}$ and $2i_0 - j_{\min}(L) = \delta_{\min}(L) + 2.$
- 2. If L is B-Turaev genus one, B-almost alternating, or B-adequate, then there is an $i_0 \in \mathbb{Z}$ such that $Kh^{*,j_{max}(L)}(L) = Kh^{i_0,j_{max}(L)}(L) \cong \mathbb{Z}$ and $2i_0 - j_{max}(L) = \delta_{max}(L) - 2.$

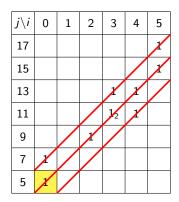
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: the (3, 4)-torus knot

j∖i	0	1	2	3	4	5
17						1
15						1
13				1	1	
11				1_{2}	1	
9			1			
7	1					
5	1					

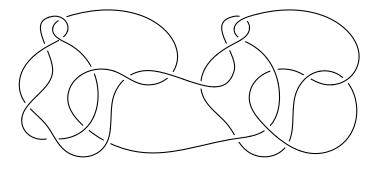
◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Example: the (3, 4)-torus knot



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Example: $10_{132} \# \overline{10_{132}}$



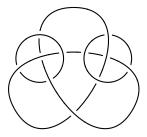
▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ● ●

Example: $Kh(10_{132}\#\overline{10_{132}})$

j∖i	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
13														1	1
11													1	12	12
9												2	3,12	1	
7										1	5	3,22	22		
5									1	3,12	3,5 ₂	2,22			
3								1	7,1 ₂	8,3 ₂	2,12				
1							3	8,1 ₂	4,62	1,3 ₂					
-1						1	4,3 ₂	8,62	3,1 ₂						
-3					2	8,1 ₂	7,3 ₂	1,12							
-5				2	3,22	3,5 ₂	$1, 1_{2}$								
-7				3,2 ₂	5,2 ₂	1									
-9		1	3	$2,1_{2}$											
-11		12	$1, 1_{2}$												
-13	1	1													

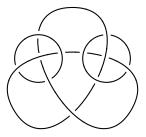
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

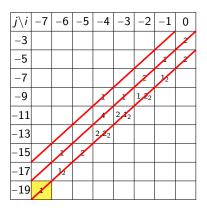
Example: 11n₃₇₆



$j \setminus i$	-7	-6	-5	-4	-3	-2	-1	0
-3								2
-5							1	2
-7						2	12	
-9				1	1	1,22		
-11				4	2,12			
-13				2,22				
-15		1	2					
-17		12						
-19	1							

Example: $11n_{376}$





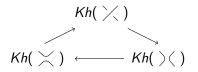
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Sketch of proof: semi-adequate links

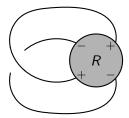
- 1. If *D* is an *A*-adequate diagram, then there is only one generator in the minimum *j*-grading of the Khovanov complex. This was observed by Khovanov.
- The diagonal grading of the generator of Kh^{*,jmin(L)}(L) can be worked out using the Lee spectral sequence and work of Champanerkar, Kofman, and Stoltzfus.

Sketch of proof: almost-alternating links

1. Khovanov homology satisfies an exact triangle:



2. Resolve crossings inside the alternating tangle R of an almost-alternating diagram.

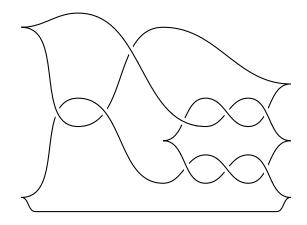


Sketch of proof: Turaev genus one links

Kim proved that a Turaev genus one link is either almost-alternating or semi-adequate.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Legendrian front diagrams: the (3, 4) torus knot



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thurston Bennequin numbers

Let \mathcal{L} be a Legendrian link with front diagram F. The *Thurston Bennequin number* $tb(\mathcal{L})$ of \mathcal{L} is the difference between the writhe of F and half the number of cusps of F. The maximal Thurston Bennequin number of a classical link L is

 $\overline{\mathsf{tb}}(L) = \max\{\mathsf{tb}(\mathcal{L}) \mid \mathcal{L} \text{ has topological type } L\}.$

 $\overline{\mathrm{tb}}(L)$ and Khovanov homology

Theorem (Ng) Let L be a non-split link. Then

$$\overline{\mathsf{tb}}(L) \leq \min\{j-i \mid \mathsf{Kh}^{i,j}(L) \neq 0\}.$$

Theorem (Ng) Let L be a non-split link with reduced alternating diagram D. Then

$$\overline{\operatorname{tb}}(L) = w(D) - s_A(D).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$\overline{\text{tb}}(L)$ for Turaev genus one links

Theorem (Dasbach, L.)

Let L be a link with Turaev genus one diagram D. At least one of the following inequalities hold:

$$w(D) - s_A(D) \leq \overline{tb}(L) \leq w(D) - s_A(D) + 1, \text{ or} -w(D) - s_B(D) \leq \overline{tb}(\overline{L}) \leq -w(D) - s_B(D) + 1.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Relationship to semi-adequate links

Every theorem above about the Jones polynomial or Khovanov homology of a Turaev genus one link also holds for semi-adequate links (Lickorish, Thistlethwaite; Stoimenov; Khovanov; Abe; Kálmán).

Open Question. Is every Turaev genus one link semi-adequate?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you!