Unknotting and Region Crossing Change

Sarah Goodhill, Valeria Munoz Gonzales, Jessica Rattray, Amelia Zeh Vassar College

July 20, 2019

Overview

- Define a region crossing change, an unknotting operation, and the region index of a knot.
- Introduce our knot invariant, the multi-region index.
- Explain the Goeritz matrix of a knot diagram and show how it can be used to find a lower bound on the multi-region index.
- Demonstrate an upper bound for the multi-region index.
- Present a list of unanswered questions regarding our research.

Region Crossing Change

If a knot diagram D has a region R, which contains crossings c_{1}, \ldots, c_{m}, then a region crossing change on R is the operation that yields a diagram D^{\prime} obtained from D by changing crossings c_{1}, \ldots, c_{m}.

A region crossing change on 7_{2}

Unknotting Operation

- Shimizu proved that a region crossing change is an unknotting operation.
- Shimizu defined the region unknotting number $u_{R}(D)$ to be the fewest number of region crossing changes necessary to obtain the unknot from a minimal crossing diagram D.

$$
u_{R}\left(8_{2}\right)=2
$$

Unknotting Regions and Region Index

- Aida proved that for any knot K, there is a diagram D of K with a single region crossing change necessary to produce the unknot. We call such a region an unknotting region.
- Tanaka defined the region index $\operatorname{Reg}(K)$ of a knot K to be the fewest number of crossings in any unknotting region of any diagram of K.

$\operatorname{Reg}\left(8_{5}\right)=2$

Multi-Region Index

- A set of unknotting regions is a set of regions such that performing a region crossing change on all of the regions in the set produces the unknot.
- The multi-region index $\operatorname{MRI}(K)$ of a knot K is the fewest number of crossings changed in any set of unknotting regions of any diagram of K.

$\operatorname{MRI}\left(7_{2}\right) \leq 4$

Multi-Region Index

Since changing a region with only one crossing does not change the knot, $1<\operatorname{MRI}(K)$ for any nontrivial knot K.

Example

$\operatorname{MRI}\left(3_{1}\right)=2$

Multi-Region Index

- Let $u(K)$ be the unknotting number of K.
- For any knot $K, u(K) \leq \operatorname{MRI}(K) \leq \operatorname{Reg}(K)$.

$$
u\left(9_{4}\right)=\operatorname{MRI}\left(9_{4}\right)=\operatorname{Reg}\left(9_{4}\right)=2
$$

Multi-Region Index

- The multi-region index of a diagram can change for different minimal crossing diagrams of the same knot.

D_{1}
$\operatorname{MRI}\left(D_{1}\right)=3$
$\operatorname{MRI}\left(D_{2}\right)=4$

Checkerboard Shading and Crossings

$$
\zeta(c)= \pm 1
$$

Checkerboard shading

Goeritz Matrix

- Checkerboard shade the knot diagram D and label the shaded regions R_{0}, \ldots, R_{m}.
- Let \bar{G}_{D} be the symmetric matrix whose (i, j)th entry is $\sum \zeta(c)$. The entries on the diagonal are the negative of the sum of the column.

$$
\bar{G}_{D}=\begin{gathered}
R_{0} \\
R_{0} \\
R_{1} \\
\vdots \\
R_{m}
\end{gathered}\left[\begin{array}{llll}
& R_{1} & \ldots & R_{m} \\
& & & \\
& & * & \\
& & &
\end{array}\right]
$$

Goeritz Matrix

- The Goeritz matrix of D is obtained by deleting the first row and column.

$$
G_{D}=\begin{array}{ccc}
R_{1} & \ldots & R_{m} \\
R_{1} \\
\vdots \\
R_{m}
\end{array}\left[\begin{array}{lll}
& * & \\
& &
\end{array}\right]
$$

Smith Normal Form

- There are invertible $m \times m$ matrices S and T with integer entries such that

$$
S G_{D} T=\left[\begin{array}{ccccccc}
\alpha_{1} & 0 & 0 & & \cdots & & 0 \\
0 & \alpha_{2} & 0 & & \cdots & & 0 \\
0 & 0 & \ddots & & & & 0 \\
\vdots & & & \alpha_{r} & & & \vdots \\
& & & & 0 & & \\
& & & & & \ddots & \\
0 & & & \cdots & & & 0
\end{array}\right]
$$

where each α_{j} is a positive integer such that $\alpha_{j} \mid \alpha_{j+1}$ for $1 \leq j<r$.

- The matrix $S G_{D} T$ is called the Smith normal form of G_{D}.

Smith Normal Form

- A matrix with integer entries can be transformed into its Smith normal form by a sequence of the following row and column operations:
- Replacing row or column i with $i+m * j$, where j is another row or column and m is an integer.
- Switching rows and columns.
- Scaling rows or columns by ± 1.

Example

Knot $3_{1} \# 3_{1}$

Example

$\overline{\mathbf{G}}_{\mathrm{D}}$

	R_{0}	R_{1}	R_{2}	R_{3}	R_{4}			R_{1}	R_{2}	R_{3}	R_{4}
R_{0}	4	-1		-1	-1			R_{1}		R_{3}	R_{4}
R_{1}	-1	2	-1	0	0		R_{1}	-		0	
R_{2}	-1	-1	2	0	0	\rightarrow	R_{3}	-1	0		
R_{3} R_{4}	-1 -1	0	0 0	2 -1	-1 2		R_{4}		0		2

Example

$$
\begin{aligned}
G_{D}=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
0 & 0 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] & \rightarrow\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 0 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
\end{aligned} \rightarrow
$$

- Let K be a knot with diagram D. The set of diagonal entries of the Smith normal form of G_{D} that are greater than one is an invariant of K.
- Define $d(K)$ to be the number of entries α_{j} on the diagonal of the Smith normal form of G_{D} where $\alpha_{j}>1$.

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]} \\
& d\left(3_{1} \# 3_{1}\right)=2 .
\end{aligned}
$$

Lower Bounds

Theorem (Nakanishi)
If K is a knot, then $d(K) \leq u(K)$.

Theorem (Tanaka)
If K is a knot, then $d(K)<\operatorname{Reg}(K)$.
Theorem (G, L, MG, R, Z)
If K is a knot, then $d(K)<\operatorname{MRI}(K)$.

Examples

$\operatorname{MRI}\left(5_{1}\right)=2, d\left(5_{1}\right)=1$

$$
\operatorname{MRI}\left(9_{41}\right)=3, d\left(9_{41}\right)=2
$$

$\operatorname{MRI}\left(9_{48}\right) \leq 4, d\left(9_{48}\right)=2$

Upper Bound on $\operatorname{MRI}(K)$

Theorem

For any knot $K, \operatorname{MRI}(K) \leq 2 c(K)$.

- A set of unknotting regions is $\left\{R_{0}, R_{3}, R_{5}, R_{6}\right\}$.
- All regions in a single checkerboard coloring has $2 c(K)$ crossings.
- The set of shaded unknotting regions is $\left\{R_{3}, R_{5}, R_{6}\right\}$ with 9 crossing changes, its complement is $\left\{R_{1}\right\}$ with 3 crossing changes.

Knot 6_{3}

Upper Bound on $\operatorname{MRI}(K)$

- The set of unshaded unknotting regions is $\left\{R_{0}\right\}$ with 3 crossing changes, and $3<c=6$.
- Crossings in new set of unknotting regions
$=6 \leq 2 c(K)=12$.

Knot 6_{3}

Questions

- Is there a knot K where $\operatorname{MRI}(K)<\operatorname{Reg}(K)$?
- Can $\operatorname{MRI}(K)-u(K)$ be arbitrarily large?
- What are other lower bounds on $\operatorname{MRI}(K)$?

Thank You!

