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Important problems in knot theory

1. Knot recognition. Determine whether two given knots K1

and K2 are equivalent.

2. Unknot detection. Determine whether a given knot K is
equivalent to the unknot.



Unknot detection methods

1. Haken (1968) via normal surface theory.

2. Birman and Hirsch (1998) via braid foliations.

3. Haas and Lagarias (1998) proved that any diagram D of the
unknot with n crossings can be unknotted by a sequence of
Reidemeister moves where each intermediate diagram has at
most 210

11n crossings.

4. Dynnikov (2002) proved that any grid diagram of the unknot
can be transformed into the 2× 2 grid diagram of the unknot
by a sequence of grid moves that are non-increasing in grid
number.



The culprit



Unknotting the culprit



Monotonic simplification of grid diagrams



More unknot detection methods

5. Ozsváth and Szabó (2003) proved that knot Floer homology
detects the unknot.

6. Kronheimer and Mrowka (2010) proved that Khovanov
homology detects the unknot.

7. Many more I’ve excluded.



Unknot detection and the Jones polynomial

The Jones polynomial of a knot K is a Laurent polynomial
VK (t) ∈ Z[t, t−1].

Conjecture (Jones unknot conjecture)

If VK (t) = 1, then K is the unknot.



Plan for the rest of the talk

I Define the Jones polynomial.

I Evidence for/against the conjecture.

I Some classes where the conjecture is true.

I Strategies to prove or disprove the conjecture.



Kauffman states

A Kauffman state is the set of curves resulting from choosing an
A-resolution or a B-resolution at each crossing of a knot diagram.

A B



Kauffman state example



Kauffman state examples



The Kauffman bracket via state sums

I For each Kauffman state S , define |S | to be the number of
components of S .

I Define

〈D|S〉 = A#A-resolutions−#B-resolutions(−A2 − A−2)|S |−1.

I Define the Kauffman bracket of D by

〈D〉 =
∑
S

〈D|S〉.



Kauffman bracket example

A3(−A2 − A−2)

A

A

A

A−1(−A2 − A−2)

A−1(−A2 − A−2)

A−1(−A2 − A−2)

A−3(−A2 − A−2)2

〈D〉 = −A5 − A−3 + A−7.



Writhe

+ −

The writhe w(D) is the difference between number of positive and
negative crossings in the knot diagram D.



Writhe example

w(D) = 3



The Jones polynomial

If a knot K has diagram D, then its Jones polynomial VK (t) is
defined by

VK (t) = (−A)−3w(D)〈D〉|A=t−1/4 .



The Jones polynomial of our example

VK (t) = (−A)−9(−A5 − A−3 + A−7)|A=t−1/4

= t + t3 − t4.



The Jones polynomial of the unknot

I 〈©〉 = 1.

I w(©) = 0.

I V©(t) = 1.



Evidence for the conjecture

1. If K has at most 23 crossings and VK (t) = 1, then K is the
unknot.

2. Khovanov homology is a generalization of the Jones
polynomial, and it detects the unknot.

3. We haven’t found a counterexample yet.



Evidence against the conjecture

1. A generalization of the conjecture for links is false.

2. A generalization of the conjecture for virtual knots is false.

3. We haven’t proven it yet.



Link with trivial Jones polynomial

VL(t) = −t−1/2 − t1/2 = V©©(t)



Virtual knot with trivial Jones polynomial

VK (t) = 1



Some strategies to disprove the conjecture

I Some virtual knot diagrams with trivial Jones polynomial may
secretly be classical.

I (Bigelow, Ito) If the Burau representation of B4 is not faithful,
then the conjecture is false.

I Generalized forms of mutation may change knot type but not
the Jones polynomial.



Genus two mutation

Genus two mutation preserves the Jones polynomial but can
change the knot type.



Families where the Jones polynomial detects the unknot

1. Alternating knots (Kauffman, Murasugi, Thistlethwaite).

2. Adequate knots (Lickorish, Thistlethwaite).

3. Semi-adequate knots (Stoimenow)

4. Positive knots (Stoimenow)

5. Almost-alternating (L, Spyropolous)



Alternating/adequate proof

I Let D be an alternating (or adequate) diagram of a knot K .
Let SA and SB be the all-A and all-B Kauffman states of D.

I If S 6= SA, then max deg〈D|SA〉 > max deg〈D|S〉.
I If S 6= SB , then min deg〈D|SB〉 < min deg〈D|S〉.
I The Kauffman bracket 〈D〉 has two different powers of A. So

VK (t) 6= 1.



Kauffman bracket example

A3(−A2 − A−2)

A

A

A

A−1(−A2 − A−2)

A−1(−A2 − A−2)

A−1(−A2 − A−2)

A−3(−A2 − A−2)2

〈D〉 = −A5 − A−3 + A−7.



Alternating/semi-adequate proof

I If K is alternating or semi-adequate, then there are formulas
for the extreme coefficients of VK (t).

I Analyze those formulas to ensure that if K is a nontrivial
alternating/semi-adequate knot, then VK (t) has at least two
nonzero coefficients.



Almost-alternating knots

A knot is almost-alternating if it is non-alternating and has a
diagram that can be transformed into an alternating diagram via
one crossing change.

T3,4 is almost alternating.



Almost alternating knots and the Jones polynomial

Theorem (L, Spyropolous)

If K is almost alternating, then VK (t) 6= 1.

Proof sketch. Find formulas for the first or last few coefficients of
the Jones polynomial. Show that if K is almost-alternating, at
least two coefficients are non-zero.



An optimistic approach

I A knot K is n-almost-alternating if it has a diagram that can
be transformed into an alternating diagram via n crossing
changes and no diagram of K can be transformed into an
alternating diagram with fewer than n crossing changes.

I Optimistic goal: Show that if the Jones unknotting conjecture
is true for n-almost-alternating knots, then it must be true for
(n + 1)-almost-alternating knots.

I More realistic goal: Show the Jones unknotting conjecture is
true for 2-almost-alternating knots.



Thank you!


