Invariants of Turaev genus one links

Adam Lowrance
Vassar College

March 23, 2019

Outline

- What are Turaev genus one links?
- How are Turaev genus one links related to some familiar families of links?
- What can we say about the Jones polynomial and Khovanov homology of a Turaev genus one link?

The Turaev surface

The Turaev surface of a link diagram D is obtained by

1. constructing a cobordism between the all- A and all- B Kauffman states of D that has saddles corresponding with crossings, and
2. capping off the boundary components of the above cobordism with disks.

The Turaev surface at a crossing

The Turaev surface

Turaev surface of D

The Turaev genus of a link

- For a connected link diagram D, the genus of the Turaev surface is

$$
g_{T}(D)=\frac{1}{2}\left(2+c(D)-s_{A}(D)-s_{B}(D)\right)
$$

where $c(D)$ is the number of crossings in D and $s_{A}(D)$ and $s_{B}(D)$ are the number of components in the all- A and all- B Kauffman states of D respectively.

- The Turaev genus $g_{T}(L)$ of a link L is

$$
g_{T}(L)=\min \left\{g_{T}(D) \mid D \text { is a diagram of } L\right\}
$$

Facts about the Turaev surface and Turaev genus

- The link L has an alternating projection on any of its Turaev surfaces.
- The Turaev genus of a link is zero if and only if the link is alternating.

Turaev genus one links

Theorem (Armond, L.; Kim)

Every non-split Turaev genus one link has a diagram as depicted below where each R_{i} is an alternating tangle and + or - indicates that the first crossing that strand meets is an over or under crossing respectively.

Pretzel links

Non-alternating pretzel links are Turaev genus one.

Montesinos links

Non-alternating Montesinos links are Turaev genus one.

Almost-alternating links

- A non-alternating link is almost-alternating if it has a diagram that can be transformed into an alternating diagram via one crossing change.
- Every almost-alternating link is Turaev genus one.
- Open Question. Is every Turaev genus one link almost-alternating?

Almost-alternating links and mutation

Theorem (Armond, L.)
Every Turaev genus one links is mutant to an almost-alternating link.

Mutation proof

Mutation proof continued

The Jones polynomial of a Turaev genus one link

Theorem (Dasbach, L., Spyropoulos)
Let L be a Turaev genus one link with Jones polynomial

$$
V_{L}(t)=a_{m} t^{m}+a_{m+1} t^{m+1}+\cdots+a_{n-1} t^{n-1}+a_{n} t^{n}
$$

where a_{m} and a_{n} are nonzero. Either

- $\left|a_{m}\right|=1$ and $a_{m} a_{m+1} \leq 0$, or
- $\left|a_{n}\right|=1$ and $a_{n-1} a_{n} \leq 0$.

Example $11 n_{95}$

The Jones polynomial of $11 n_{95}$ is

$$
V_{11 n_{95}}(t)=2 t^{2}-3 t^{3}+5 t^{4}-6 t^{5}+6 t^{6}-5 t^{7}+4 t^{8}-2 t^{9}
$$

Since $11 n_{95}$ has a diagram of Turaev genus two, it follows that $g_{T}\left(11 n_{95}\right)=2$.

Example $15 n_{41133}$

The Jones polynomial of $15 n_{41133}$ is
$t^{4}+t^{5}-3 t^{6}+8 t^{7}-12 t^{8}+14 t^{9}-15 t^{10}+13 t^{11}-10 t^{12}+6 t^{13}-2 t^{14}$.
Thus $g_{T}\left(15 n_{41133}\right) \geq 2$.

Non-triviality of the Jones polynomial

Theorem (L., Spyropoulos)
Let L be an m-component link of Turaev genus one where $m \geq 1$, and let $V_{L}(t)$ be the Jones polynomial of L. Then

$$
V_{L}(t) \neq t^{k}\left(-t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)^{m-1}
$$

for any $k \in \mathbb{Z}$. In particular, the Jones polynomial of L is different from the Jones polynomial of the m-component unlink.

Example with trivial Jones polynomial

Eliahou, Kauffman, and Thistlethwaite found non-trivial links whose Jones polynomials are trivial. Since the above link L has Jones polynomial $V_{L}(t)=\left(-t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)^{4}$, it follows that $g_{T}(L) \geq 2$.

Khovanov homology

Khovanov homology is a \mathbb{Z}-module equipped with two gradings i and j such that

$$
\sum_{i, j}(-1)^{i} \operatorname{rank} K h^{i, j}(L) t^{j}=\left(t+t^{-1}\right) V_{L}\left(t^{2}\right)
$$

Let $j_{\text {min }}(L)$ and $j_{\text {max }}(L)$ denote the minimum and maximum j-gradings where $K h(L)$ is supported respectively.

Extremal Khovanov homology

Theorem (Champanerkar, Kofman, StotIzfus)
If L is a Turaev genus one link, then $K h(L)$ is supported on at most three adjacent diagonals, i.e. there is an integer k such that $K h^{i, j}(L)=0$ unless $2 i-j=k, k+2$, or $k+4$.

Theorem (Dasbach, L.)
Let L be a non-split link of Turaev genus one. Either

$$
\bigoplus_{i \in \mathbb{Z}} K h^{i, j_{\min }}(L) \cong \mathbb{Z} \text { or } \bigoplus_{i \in \mathbb{Z}} K h^{i, j_{\max }}(L) \cong \mathbb{Z}
$$

Moreover, the summand of \mathbb{Z} above appears on the penultimate diagonal.

Example: the (3,4)-torus knot

$j \backslash i$	0	1	2	3	4	5
17						1
15						1
13				1	1	
11				12	1	
9			1			
7	1					
5	1					

Example: the (3,4)-torus knot

$j \backslash i$	0	1	2	3	4	5
17						1
15						1
13				1	1	
11				$1 / 2$	1	
9			1			
7	1					
5	1					

Example: $10_{132} \# \overline{10_{132}}$

Example: $K h\left(10_{132} \# \overline{10_{132}}\right)$

$j \backslash i$	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
13														1	1
11													1	1_{2}	1_{2}
9												2	$3,1_{2}$	1	
7										1	5	$3,2_{2}$	2_{2}		
5									1	$3,1_{2}$	$3,5_{2}$	$2,2_{2}$			
3								1	$7,1_{2}$	$8,3_{2}$	$2,1_{2}$				
1							3	$8,1_{2}$	$4,6_{2}$	$1,3_{2}$					
-1						1	$4,3_{2}$	$8,6_{2}$	$3,1_{2}$						
-3					2	$8,1_{2}$	$7,3_{2}$	$1,1_{2}$							
-5				2	$3,2_{2}$	$3,5_{2}$	$1,1_{2}$								
-7				$3,2_{2}$	$5,2_{2}$	1									
-9		1	3	$2,1_{2}$											
-11		1_{2}	$1,1_{2}$												
-13	1	1													

Example: $11 n_{376}$

$j \backslash i$	-7	-6	-5	-4	-3	-2	-1	0
-3								2
-5							1	2
-7						2	1_{2}	
-9				1	1	$1,2_{2}$		
-11				4	$2,1_{2}$			
-13				$2,2_{2}$				
-15		1	2					
-17		1_{2}						
-19	1							

Example: $11 n_{376}$

$j \backslash i$	-7	-6	-5	-4	-3	-2	-1	0
-3								2
-5								2
-7							1	
-9						122		
-11					2	12		
-13				2	2			
-15		2						
-17								
-19								

Legendrian front diagrams: the $(3,4)$ torus knot

Thurston Bennequin numbers

Let \mathcal{L} be a Legendrian link with front diagram F. The Thurston Bennequin number $\operatorname{tb}(\mathcal{L})$ of \mathcal{L} is the difference between the writhe of F and half the number of cusps of F. The maximal Thurston Bennequin number of a classical link L is

$$
\overline{\mathrm{tb}}(L)=\max \{\operatorname{tb}(\mathcal{L}) \mid \mathcal{L} \text { has topological type } L\}
$$

$\overline{\mathrm{tb}}(L)$ and Khovanov homology

Theorem (Ng)
Let L be a non-split link. Then

$$
\overline{\mathrm{tb}}(L) \leq \min \left\{j-i \mid K h^{i, j}(L) \neq 0\right\} .
$$

Theorem (Ng)
Let L be a non-split link with reduced alternating diagram D. Then

$$
\overline{\mathrm{tb}}(L)=w(D)-s_{A}(D)
$$

$\overline{\mathrm{tb}}(L)$ for Turaev genus one links

Theorem (Dasbach, L.)
Let L be a link with Turaev genus one diagram D. At least one of the following inequalities hold:

$$
\begin{aligned}
w(D)-s_{A}(D) & \leq \overline{\mathrm{tb}}(L) \leq w(D)-s_{A}(D)+1 \text {, or } \\
-w(D)-s_{B}(D) & \leq \overline{\mathrm{tb}}(\bar{L}) \leq-w(D)-s_{B}(D)+1 .
\end{aligned}
$$

Relationship to semi-adequate links

Every theorem above about the Jones polynomial or Khovanov homology of a Turaev genus one link also holds for semi-adequate links (Lickorish, Thistlethwaite; Stoimenov; Khovanov; Abe; Kálmán).

Open Question. Is every Turaev genus one link semi-adequate?
Kim proved every inadequate Turaev genus one link is almost-alternating. So it suffices to answer the above question for almost-alternating links.

Thank you!

