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Outline

» What are Turaev genus one links?

» How are Turaev genus one links related to some familiar
families of links?

» What can we say about the Jones polynomial and Khovanov
homology of a Turaev genus one link?



The Turaev surface

The Turaev surface of a link diagram D is obtained by
1. constructing a cobordism between the all-A and all-B
Kauffman states of D that has saddles corresponding with
crossings, and
2. capping off the boundary components of the above cobordism
with disks.



The Turaev surface at a crossing
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The Turaev surface

all-A state
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all-B state Turaev surface of D




The Turaev genus of a link

» For a connected link diagram D, the genus of the Turaev
surface is

(2+ ¢(D) = sa(D) — s8(D))
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gr(D) =

where ¢(D) is the number of crossings in D and sa(D) and
sg(D) are the number of components in the all-A and all-B
Kauffman states of D respectively.

» The Turaev genus gr(L) of a link L is

gr(L) = min{gr(D) | D is a diagram of L}.



Facts about the Turaev surface and Turaev genus

» The link L has an alternating projection on any of its Turaev
surfaces.

» The Turaev genus of a link is zero if and only if the link is
alternating.



Turaev genus one links

Theorem (Armond, L.; Kim)

Every non-split Turaev genus one link has a diagram as depicted
below where each R; is an alternating tangle and + or — indicates
that the first crossing that strand meets is an over or under
crossing respectively.
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Pretzel links

Non-alternating pretzel links are Turaev genus one.
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Montesinos links
Non-alternating Montesinos links are Turaev genus one.
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Almost-alternating links

» A non-alternating link is almost-alternating if it has a diagram
that can be transformed into an alternating diagram via one
crossing change.

» Every almost-alternating link is Turaev genus one.

» Open Question. Is every Turaev genus one link
almost-alternating?
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Almost-alternating links and mutation

Theorem (Armond, L.)

Every Turaev genus one links is mutant to an almost-alternating
link.



Mutation proof



Mutation proof continued



The Jones polynomial of a Turaev genus one link

Theorem (Dasbach, L., Spyropoulos)
Let L be a Turaev genus one link with Jones polynomial

Vi(t) = amt™ + ampat™ ™+ a1t 4 apt”

where a,, and a, are nonzero. Either
» |am| =1 and amam+1 <0, or
» |a,| =1 and ap_1a, < 0.



Example 11ngs
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The Jones polynomial of 11ngs is
Viings(t) = 2t% — 3t3 + 5t* — 6t° + 6t° — 5t + 43 — 2¢°.

Since 11ngs has a diagram of Turaev genus two, it follows that
g-r(llng5) =2.



Example 15[741133
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The Jones polynomial of 15n41133 is

t* 4+ 23t 48¢t7 —12¢8 +14¢°% — 15104+ 13¢11 — 10¢12 +- 6413 — 2114,

Thus gT(15n41133) > 2



Non-triviality of the Jones polynomial

Theorem (L., Spyropoulos)

Let L be an m-component link of Turaev genus one where m > 1,
and let V[ (t) be the Jones polynomial of L. Then

Vi(t) # ¢ (—t% _ t_%)m—l

for any k € Z. In particular, the Jones polynomial of L is different
from the Jones polynomial of the m-component unlink.



Example with trivial Jones polynomial
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Eliahou, Kauffman, and Thistlethwaite found non-trivial links

whose Jones polynomials are trivial. Since the above link L has
1 1
Jones polynomial V| (t) = (—t2 —t~2)4, it follows that g1 (L) > 2.



Khovanov homology

Khovanov homology is a Z-module equipped with two gradings i
and j such that

Z(-l)" rank Kh'J(L) ¥ = (t + t~ 1)V (t?).

Let jmin(L) and jmax(L) denote the minimum and maximum
J-gradings where Kh(L) is supported respectively.



Extremal Khovanov homology

Theorem (Champanerkar, Kofman, Stotlzfus)

If L is a Turaev genus one link, then Kh(L) is supported on at most
three adjacent diagonals, i.e. there is an integer k such that
Kh'J(L) =0 unless 2i — j = k, k + 2, or k + 4.

Theorem (Dasbach, L.)

Let L be a non-split link of Turaev genus one. Either
@D Khidmin(L) 22 Z or @D Kh'im(L) = Z.
i€Z i€z

Moreover, the summand of Z above appears on the penultimate
diagonal.



Example: the (3, 4)-torus knot
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Example: the (3, 4)-torus knot
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Example: Kh(1013,#1013))
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Example: 11n376
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Legendrian front diagrams: the (3,4) torus knot
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Thurston Bennequin numbers

Let £ be a Legendrian link with front diagram F. The Thurston
Bennequin number tb(L) of L is the difference between the writhe
of F and half the number of cusps of F. The maximal Thurston
Bennequin number of a classical link L is

tb(L) = max{tb(L) | £ has topological type L}.



tb(L) and Khovanov homology

Theorem (Ng)
Let L be a non-split link. Then

tb(L) < min{j — i | Kh'¥(L) # 0}.
Theorem (Ng)
Let L be a non-split link with reduced alternating diagram D. Then

th(L) = w(D) — sa(D).



tb(L) for Turaev genus one links

Theorem (Dasbach, L.)

Let L be a link with Turaev genus one diagram D. At least one of
the following inequalities hold:

(L)
(L)

w(D) — sa(D)
—w(D) — s(D)

w(D) — sa(D) + 1, or
—w(D) — sg(D) + 1.
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Relationship to semi-adequate links

Every theorem above about the Jones polynomial or Khovanov
homology of a Turaev genus one link also holds for semi-adequate
links (Lickorish, Thistlethwaite; Stoimenov; Khovanov; Abe;
Kélman).

Open Question. Is every Turaev genus one link semi-adequate?

Kim proved every inadequate Turaev genus one link is
almost-alternating. So it suffices to answer the above question for
almost-alternating links.



Thank you!



