Invariants of Turaev genus one links

Adam Lowrance Vassar College

March 23, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline

- What are Turaev genus one links?
- How are Turaev genus one links related to some familiar families of links?
- What can we say about the Jones polynomial and Khovanov homology of a Turaev genus one link?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The *Turaev surface* of a link diagram *D* is obtained by

- 1. constructing a cobordism between the all-A and all-BKauffman states of D that has saddles corresponding with crossings, and
- 2. capping off the boundary components of the above cobordism with disks.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Turaev surface at a crossing

<ロト <回ト < 注ト < 注ト

æ

The Turaev surface

Turaev surface of ${\cal D}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The Turaev genus of a link

For a connected link diagram D, the genus of the Turaev surface is

$$g_T(D) = \frac{1}{2} (2 + c(D) - s_A(D) - s_B(D))$$

where c(D) is the number of crossings in D and $s_A(D)$ and $s_B(D)$ are the number of components in the all-A and all-B Kauffman states of D respectively.

• The Turaev genus $g_T(L)$ of a link L is

 $g_T(L) = \min\{g_T(D) \mid D \text{ is a diagram of } L\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Facts about the Turaev surface and Turaev genus

- The link L has an alternating projection on any of its Turaev surfaces.
- The Turaev genus of a link is zero if and only if the link is alternating.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Turaev genus one links

Theorem (Armond, L.; Kim)

Every non-split Turaev genus one link has a diagram as depicted below where each R_i is an alternating tangle and + or - indicates that the first crossing that strand meets is an over or under crossing respectively.

Pretzel links

Non-alternating pretzel links are Turaev genus one.

Montesinos links

Non-alternating Montesinos links are Turaev genus one.

Almost-alternating links

- A non-alternating link is *almost-alternating* if it has a diagram that can be transformed into an alternating diagram via one crossing change.
- Every almost-alternating link is Turaev genus one.
- Open Question. Is every Turaev genus one link almost-alternating?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Almost-alternating links and mutation

Theorem (Armond, L.)

Every Turaev genus one links is mutant to an almost-alternating link.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Mutation proof

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 - のへで

Mutation proof continued

The Jones polynomial of a Turaev genus one link

Theorem (Dasbach, L., Spyropoulos) Let L be a Turaev genus one link with Jones polynomial

$$V_L(t) = a_m t^m + a_{m+1} t^{m+1} + \dots + a_{n-1} t^{n-1} + a_n t^n$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example 11n₉₅

The Jones polynomial of $11n_{95}$ is

$$V_{11n_{95}}(t) = 2t^2 - 3t^3 + 5t^4 - 6t^5 + 6t^6 - 5t^7 + 4t^8 - 2t^9.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Since $11n_{95}$ has a diagram of Turaev genus two, it follows that $g_T(11n_{95}) = 2$.

Example 15*n*₄₁₁₃₃

The Jones polynomial of $15n_{41133}$ is

 $t^4 + t^5 - 3t^6 + 8t^7 - 12t^8 + 14t^9 - 15t^{10} + 13t^{11} - 10t^{12} + 6t^{13} - 2t^{14}.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Thus $g_T(15n_{41133}) \ge 2$.

Non-triviality of the Jones polynomial

Theorem (L., Spyropoulos)

Let L be an m-component link of Turaev genus one where $m \ge 1$, and let $V_L(t)$ be the Jones polynomial of L. Then

$$V_L(t) \neq t^k \left(-t^{rac{1}{2}}-t^{-rac{1}{2}}
ight)^{m-1}$$

for any $k \in \mathbb{Z}$. In particular, the Jones polynomial of L is different from the Jones polynomial of the m-component unlink.

Example with trivial Jones polynomial

Eliahou, Kauffman, and Thistlethwaite found non-trivial links whose Jones polynomials are trivial. Since the above link *L* has Jones polynomial $V_L(t) = (-t^{\frac{1}{2}} - t^{-\frac{1}{2}})^4$, it follows that $g_T(L) \ge 2$.

Khovanov homology is a $\mathbb{Z}\text{-module}$ equipped with two gradings i and j such that

$$\sum_{i,j} (-1)^i \operatorname{rank} Kh^{i,j}(L) \ t^j = (t+t^{-1})V_L(t^2).$$

Let $j_{\min}(L)$ and $j_{\max}(L)$ denote the minimum and maximum *j*-gradings where Kh(L) is supported respectively.

Extremal Khovanov homology

Theorem (Champanerkar, Kofman, Stotlzfus)

If L is a Turaev genus one link, then Kh(L) is supported on at most three adjacent diagonals, i.e. there is an integer k such that $Kh^{i,j}(L) = 0$ unless 2i - j = k, k + 2, or k + 4.

Theorem (Dasbach, L.)

Let L be a non-split link of Turaev genus one. Either

$$\bigoplus_{i\in\mathbb{Z}} \mathcal{K}h^{i,j_{\min}}(L)\cong\mathbb{Z} \text{ or } \bigoplus_{i\in\mathbb{Z}} \mathcal{K}h^{i,j_{\max}}(L)\cong\mathbb{Z}.$$

Moreover, the summand of \mathbb{Z} above appears on the penultimate diagonal.

Example: the (3, 4)-torus knot

j∖i	0	1	2	3	4	5
17						1
15						1
13				1	1	
11				12	1	
9			1			
7	1					
5	1					

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Example: the (3, 4)-torus knot

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Example: $10_{132} \# \overline{10_{132}}$

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ● ●

Example: $Kh(10_{132}\#\overline{10_{132}})$

j∖i	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
13														1	1
11													1	12	12
9												2	3,12	1	
7										1	5	3,22	22		
5									1	3,1 ₂	3,52	2,22			
3								1	7,1 ₂	8,3 ₂	2,12				
1							3	8,12	4,62	1,32					
-1						1	4,3 ₂	8,62	3,12						
-3					2	8,12	7,3 ₂	$1, 1_{2}$							
-5				2	3,22	3,52	$1, 1_{2}$								
-7				3,22	5,2 ₂	1									
-9		1	3	$^{2,1_{2}}$											
-11		12	$1,1_{2}$												
-13	1	1													

Example: 11n₃₇₆

j∖i	-7	-6	-5	-4	-3	-2	-1	0
-3								2
-5							1	2
-7						2	12	
-9				1	1	1,22		
-11				4	2,12			
-13				2,22				
-15		1	2					
-17		12						
-19	1							

Example: $11n_{376}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Legendrian front diagrams: the (3, 4) torus knot

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thurston Bennequin numbers

Let \mathcal{L} be a Legendrian link with front diagram F. The *Thurston Bennequin number* $tb(\mathcal{L})$ of \mathcal{L} is the difference between the writhe of F and half the number of cusps of F. The maximal Thurston Bennequin number of a classical link L is

 $\overline{\mathsf{tb}}(L) = \max\{\mathsf{tb}(\mathcal{L}) \mid \mathcal{L} \text{ has topological type } L\}.$

 $\overline{\mathrm{tb}}(L)$ and Khovanov homology

Theorem (Ng) Let L be a non-split link. Then

$$\overline{\mathsf{tb}}(L) \leq \min\{j-i \mid Kh^{i,j}(L) \neq 0\}.$$

Theorem (Ng) Let L be a non-split link with reduced alternating diagram D. Then

$$\overline{\operatorname{tb}}(L) = w(D) - s_A(D).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$\overline{\text{tb}}(L)$ for Turaev genus one links

Theorem (Dasbach, L.)

Let L be a link with Turaev genus one diagram D. At least one of the following inequalities hold:

$$w(D) - s_A(D) \leq \overline{tb}(L) \leq w(D) - s_A(D) + 1, \text{ or} -w(D) - s_B(D) \leq \overline{tb}(\overline{L}) \leq -w(D) - s_B(D) + 1.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Relationship to semi-adequate links

Every theorem above about the Jones polynomial or Khovanov homology of a Turaev genus one link also holds for semi-adequate links (Lickorish, Thistlethwaite; Stoimenov; Khovanov; Abe; Kálmán).

Open Question. Is every Turaev genus one link semi-adequate?

Kim proved every inadequate Turaev genus one link is almost-alternating. So it suffices to answer the above question for almost-alternating links.

Thank you!