Gordian distance and spectral sequences in Khovanov homology

Adam Lowrance - Vassar College
Radmila Sazdanović - North Carolina State University

January 18, 2019

Gordian distance

- Murakami defined the Gordian distance $d_{G}(K, J)$ between knots K and J to be the fewest number of crossing changes needed to transform any diagram of K into a diagram of J.
- Kawauchi defined the alternation number alt (K) of a knot K to be the minimum Gordian distance between K and the set of alternating knots, that is

$$
\operatorname{alt}(K)=\min \left\{d_{G}(K, J) \mid J \text { is alternating }\right\} .
$$

- The unknotting number $u(K)$ of K is

$$
u(K)=\min \left\{d_{G}(K, U) \mid U \text { is the unknot }\right\}
$$

Example: $\operatorname{alt}(K)=u(K)=1$

Goal of this talk

Find a lower bound for alt (K) using some spectral sequences arising from the Khovanov homology of K.

We look to work of Alishahi and Dowlin for inspiration (more on this later).

Khovanov homology

- Let R be \mathbb{Z}, \mathbb{Q}, or \mathbb{Z}_{p} where p is a prime.
- The Khovanov homology $K h(K ; R)$ of K over R is a bigraded R-module that categorifies the Jones polynomial.
- There is a direct sum decomposition

$$
K h(K ; R)=\bigoplus_{i, j} K h^{i, j}(K ; R)
$$

where $K h^{i, j}(K ; R)$ is the summand in homological grading i and polynomial grading j.

Lee spectral sequence

- Let $R=\mathbb{Q}$ or \mathbb{Z}_{p} for an odd prime p.
- There is a spectral sequence ($E_{\text {Lee }}^{r}, d_{\text {Lee }}^{r}$) such that $E_{\text {Lee }}^{1} \cong K h(K ; R)$ and $E_{\text {Lee }}^{\infty} \cong R \oplus R$.
- The differential $d_{\text {Lee }}^{r}$ has bidegree $(1,4 r)$.

Lee spectral sequence example 1

	0	1	2	3
9				1
7				
5			1	
3	1			
1	1			

	0	1	2	3
9				2
7				
5			1	
3	1			
1	1			

K
$E_{\text {Lee }}^{1}$

Lee spectral sequence example 2

74

	0	1	2	3	4	5	6	7
17								1
15								
13						2	1	
11					1			
9				1	2			
7			2	1				
5			1					
3	1	2						
1	1							

$K h\left(7_{4} ; \mathbb{Q}\right)$

	0	1	2	3	4	5	6	7
17								7
15								
13						2	1	
11					2			
9				1	2			
7			2	$\mathbf{1}$				
5			$\mathbf{1}$					
3	1	2						
1	1							

$E_{\text {Lee }}^{1}$

Lee spectral sequence example 3

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
43														1	1
41													1	1	
39														1	
37												2	1		
35										2			1		
33								1		1	1				
31						1		1	2						
29						1	1		1						
27				1	1		1								
25					1										
23			1												
21	1														
19	1														

$$
K h\left(T(5,6) ; \mathbb{Z}_{3}\right)
$$

$$
E_{\text {Lee }}^{1}
$$

Lee spectral sequence example 4

A positive full-twist goes in the +1 box.

$K h(K ; \mathbb{Q})$

Manolescu and Marengon recently proved that there is a knot K where the Lee spectral sequence over \mathbb{Q} collapses after the second page.

The Turner spectral sequence

- Bar-Natan defined a Khovanov-like homology theory with coefficients in \mathbb{Z}_{2}. For a knot K, the homology is always isomorphic to $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
- Turner showed there is a spectral sequence $\left(E_{T}^{r}, d_{T}^{r}\right)$ such that $E_{T}^{1} \cong K h\left(K ; \mathbb{Z}_{2}\right)$ and $E_{T}^{\infty} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$, the Bar-Natan homology of K.
- The differential d_{T}^{r} has bidegree $(1,2 r)$.

Turner spectral sequence example 1

74

	0	1	2	3	4	5	6	7
17								1
15							1	1
13						2	1	
11					3	2		
9				2	3			
7			3	2				
5		2	3					
3	1	2						
1	1							

$K h\left(7_{4} ; \mathbb{Z}_{2}\right)$

	0	1	2	3	4	5	6	7
17								1
15							1	2
13						2	1	
11					3	2		
9				2	3			
7			1	7				
5		2	2					
3	1	2						
1	1							

E_{T}^{1}

Turner spectral sequence example 2

$K h\left(T(5,6) ; \mathbb{Z}_{2}\right)$

E_{T}^{1}

Spectral sequences and the unknotting number

Let R be \mathbb{Q} or \mathbb{Z}_{p} where p is an odd prime. Define $p_{\text {Lee }}(K ; R)$ and $p_{T}(K)$ be the pages where the Lee spectral sequence of K over R and the Turner spectral sequences of K collapse respectively. Let $u(K)$ be the unknotting number of K.

Theorem (Alishahi, Dowlin)

Let $R=\mathbb{Q}$ or \mathbb{Z}_{p} where p is an odd prime. For any knot K,

$$
p_{\text {Lee }}(K ; R) \leq\left\lceil\frac{u(K)+2}{2}\right\rceil \text {. }
$$

Theorem (Alishahi)
For any nontrivial knot K,

$$
p_{T}(K) \leq u(K)+1
$$

Kh-thin knots

Let R be \mathbb{Z}, \mathbb{Q} or \mathbb{Z}_{p} for a prime p. A knot is $K h$-thin over R if there is an $s \in \mathbb{Z}$ such that $K h^{i, j}(K ; R)=0$ for all i and j where $2 i-j \neq s \pm 1$.
Lee proved that alternating knots are $K h$-thin over all R.

74

	0	1	2	3	4	5	6	7
17								1
15								
13						2	1	
11					1			
9				1	2			
7			2	1				
5			1					
3	1	2						
1	1							

$K h\left(7_{4} ; \mathbb{Q}\right)$

	0	1	2	3	4	5	6	7
17								1
15							1	1
13						2	1	
11					3	2		
9				2	3			
7			3	2				
5		2	3					
3	1	2						
1	1							

$K h\left(7_{4} ; \mathbb{Z}_{2}\right)$

Spectral sequences and $K h$-thin knots

Suppose that K is a nontrivial $K h$-thin knot. Then

$$
p_{\text {Lee }}(K)=p_{T}(K)=2 .
$$

74

$K h\left(7_{4} ; \mathbb{Q}\right)$

	0	1	2	3	4	5	6	7
17								1
15							1	1
13						2	1	
11					3	2		
9				2	3			
7				7				
5		2						
3	1	2						
1	1							

$K h\left(7_{4} ; \mathbb{Z}_{2}\right)$

Gordian distance and $K h$-thin knots

Let $d_{\text {thin }}(K ; R)$ be the minimum Gordian distance between K and any knot that is $K h$-thin over R, that is

$$
d_{\mathrm{thin}}(K ; R)=\min \left\{d_{G}(K, J) \mid J \text { is } K h \text {-thin over } R\right\}
$$

Since alternating knots are $K h$-thin for all R, for every knot K

$$
d_{\mathrm{thin}}(K ; R) \leq \operatorname{alt}(K)
$$

$p_{\text {Lee }}(K ; R)$ and $d_{\text {thin }}(K ; R)$

Theorem (L, Sazdanović)
Let R be \mathbb{Q} or \mathbb{Z}_{p} for an odd prime p. For any knot K, we have

$$
p_{\text {Lee }}(K ; R) \leq\left\lceil\frac{d_{\mathrm{thin}}(K ; R)+3}{2}\right\rceil \leq\left\lceil\frac{\operatorname{alt}(K)+3}{2}\right\rceil
$$

Corollary
If $p_{\text {Lee }}(K ; R)=3$, then $2 \leq d_{\text {thin }}(K ; R) \leq \operatorname{alt}(K)$.

Alternation number at least two

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
43														1	1
41													1	1	
39														1	
37												2	1		
35										2			1		
33								1		1	1				
31						1		1	2						
29						1	1		1						
27				1	1		1								
25					1										
23			1												
21	1														
19	1														

$K h\left(T(5,6) ; \mathbb{Z}_{3}\right)$

$$
K h\left(T(5,6) ; \mathbb{Z}_{3}\right)
$$

Alternation number at least two

$K h(K ; \mathbb{Q})$

$p_{T}(K)$ and $d_{\text {thin }}\left(K ; \mathbb{Z}_{2}\right)$

Theorem (L, Sazdanović)
For any knot K, we have

$$
p_{T}(K) \leq d_{\text {thin }}\left(K ; \mathbb{Z}_{2}\right)+2 \leq \operatorname{alt}(K)+2 .
$$

Corollary
If $p_{T}(K ; R)=4$, then $2 \leq d_{\text {thin }}(K ; R) \leq \operatorname{alt}(K)$.

$K h\left(T(7,8) ; \mathbb{Z}_{2}\right)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
81																										1	1
79																										1	1
77																							1	1	1	1	
75																							2	2	1	1	
73																					2	3	2	2	1		
71																			1	2	4	5	2	1	1		
69																	1	1	2	5	3	2	1				
67																1	3	5	4	4	2						
65															1	4	3	5	4	1	1						
63													1	3	3	5	3	1	1								
61												1	2	6	4	2	2										
59									1	1	3	3	3	2													
57										3	3	3	3														
55							1	1	2	3	1	1															
53				1	1	2	2		1																		
51					1	2	1	1																			
49			1	1		1																					
47		1	1	1																							
45		1																									
43	1																										
41	1																										

$K h\left(T(7,8) ; \mathbb{Z}_{2}\right)$

	0	1	2	3	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
81																											1	1
79																											1	F
77																								1	1	1		
75																								2	2		7	
73																						2	3	2	2	1		
71																				1	2	4	5	2	1	5		
69																		1	1	2	5	3	2	1				
67																	1	3	5	4	4	2						
65																1	4	3	5	4	1	1						
63														1	3	3	5	3	1	1								
61													1	2	6	4	2	2										
59											1	1	3	3	3	2												
57											3	3	3	3														
55									1	1	2	3	1	1														
53							1	1	2	2		1																
51							1	2	1	1																		
49				1	1	1		1																				
47			1	1	1	1																						
45			1																									
43	1																											
41	1																											

Since $p_{T}(T(7,8))=4$, it follows that

$$
2 \leq d_{\text {thin }}\left(T(7,8) ; \mathbb{Z}_{2}\right) \leq \operatorname{alt}(T(7,8)) .
$$

The dealternating number

- Define dalt (D) to be the fewest number of crossing changes to change the knot diagram D into an alternating diagram.
- Adams et al. defines the dealternating number of K by

$$
\operatorname{dalt}(K)=\min \{\operatorname{dalt}(D) \mid D \text { is a diagram of } K\}
$$

- For each knot K,

$$
\operatorname{alt}(K) \leq \operatorname{dalt}(K)
$$

and the gap between them can be arbitrarily large.

Turaev genus

- The Turaev surface of a knot diagram D is an unknotted surface on which the knot has an alternating projection constructed from a cobordism between the all- A and all- B Kauffman states of D.
- For a knot diagram D, the genus of the Turaev surface is

$$
g_{T}(D)=\frac{1}{2}\left(2+c(D)-s_{A}(D)-s_{B}(D)\right)
$$

where $c(D)$ is the number of crossings in D and $s_{A}(D)$ and $s_{B}(D)$ are the number of components in the all- A and all- B Kauffman states of D respectively.

- The Turaev genus $g_{T}(K)$ of the knot K is

$$
g_{T}(K)=\min \left\{g_{T}(D) \mid D \text { is a diagram of } K\right\}
$$

The Turaev surface

Turaev surface of D

$p_{\text {Lee }}(K ; R), p_{T}(K), g_{T}(K)$, and $\operatorname{dalt}(K)$

Theorem
Let R be \mathbb{Q} or \mathbb{Z}_{p} where p is an odd prime. For all nontrivial knots K,

$$
\left.\begin{array}{rl}
p_{\text {Lee }}(K ; R)-2 & \leq g_{T}(K)
\end{array}\right) \leq \operatorname{dalt}(K) \text { and } \text {. }
$$

Sketch of proof.
This theorem follows from grading considerations, and the fact that the number of diagonals supporting $K h(K)$ is bounded from above by $g_{T}(K)+2$ and $\operatorname{dalt}(K)+2$.

Lee sequence and torsion in $K h(K ; \mathbb{Z})$

Theorem (L, Sazdanović)
Let K be a knot and p be an odd prime. If
$p_{\text {Lee }}(K ; \mathbb{Q})<p_{\text {Lee }}\left(K ; \mathbb{Z}_{p}\right)$, then the Khovanov homology $K h(K ; \mathbb{Z})$ has torsion of order p.

Idea of proof: If $K h(K, \mathbb{Z})$ has no torsion of order p, then the differentials in the \mathbb{Z}_{p} Lee spectral sequence are the differentials in the \mathbb{Q} Lee spectral sequence tensored with \mathbb{Z}_{p}.

The converse fails

The Khovanov homology $\operatorname{Kh}(T(5,6), \mathbb{Z})$ has torsion of order 5 , but $p_{\text {Lee }}(T(5,6) ; \mathbb{Q})=p_{\text {Lee }}\left(T(5,6) ; \mathbb{Z}_{5}\right)=2$.

$$
K h(T(5,6) ; \mathbb{Q})
$$

$K h\left(T(5,6) ; \mathbb{Z}_{5}\right)$

Questions

- Does $p_{\text {Lee }}(K ; R)$ say anything about torsion of order p^{k} for $k>1$?
- Does $p_{T}(K)$ say anything about 2^{k} torsion?
- Can the alternation lower bounds be improved by using more information from the Khovanov homology of K?

Thank you！

