Gordian distance and spectral sequences in
Khovanov homology

Adam Lowrance - Vassar College
Radmila Sazdanovi¢ - North Carolina State University

January 18, 2019



Gordian distance

» Murakami defined the Gordian distance dg(K,J) between
knots K and J to be the fewest number of crossing changes
needed to transform any diagram of K into a diagram of J.

» Kawauchi defined the alternation number alt(K) of a knot K
to be the minimum Gordian distance between K and the set
of alternating knots, that is

alt(K) = min{dg(K,J) | J is alternating}.
» The unknotting number u(K) of K is

u(K) = min{dg(K, U) | U is the unknot}.



Example: alt(K)



Goal of this talk

Find a lower bound for alt(K) using some spectral sequences
arising from the Khovanov homology of K.

We look to work of Alishahi and Dowlin for inspiration (more on
this later).



Khovanov homology

» Let R be Z, Q, or Z, where p is a prime.

» The Khovanov homology Kh(K; R) of K over R is a bigraded
R-module that categorifies the Jones polynomial.

» There is a direct sum decomposition

Kh(K; R) = ) Kh/(K; R)
i

where Kh'Y(K; R) is the summand in homological grading i
and polynomial grading ;.



Lee spectral sequence

» Let R = Q or Z, for an odd prime p.

» There is a spectral sequence (E/.., d/,.) such that
EL. = Kh(K;R) and E = R& R.

» The differential d/, has bidegree (1,4r).
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Lee spectral sequence example 2
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Lee spectral sequence example 3
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Lee spectral sequence example 4
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the +1 box. Kh(K;Q)

Manolescu and Marengon recently proved that there is a knot K
where the Lee spectral sequence over Q collapses after the second
page.



The Turner spectral sequence

» Bar-Natan defined a Khovanov-like homology theory with
coefficients in Zy. For a knot K, the homology is always
isomorphic to Zy @ Z».

» Turner showed there is a spectral sequence (E7, d7) such that
Eﬁ,l- = Kh(K;Zy) and E = Zy ® Zy, the Bar-Natan
homology of K.

» The differential d¥ has bidegree (1,2r).



Turner spectral sequence example 1
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Turner spectral sequence example 2

1[2[3]4[s[6[7[8[o]10[11]12]13 4[s5[6[7[8]9[10]11]12]13
41 e 41 T
39 T[I][1 39 T
37 I[1[2(1 37 1 T
35 3[2 (1|1 35 T
33 HEEAE 33 T
31 T[T[2[2 31 T 2
29 HEBE 29 T T
27 NHEE 27 T
25 (11 25 T
23 T 23
21 21
19 19




Spectral sequences and the unknotting number

Let R be Q or Z, where p is an odd prime. Define p e.(K; R) and
p71(K) be the pages where the Lee spectral sequence of K over R
and the Turner spectral sequences of K collapse respectively. Let
u(K) be the unknotting number of K.

Theorem (Alishahi, Dowlin)
Let R = Q or Z, where p is an odd prime. For any knot K,

pree(K; R) < {U(K%Hw '

Theorem (Alishahi)
For any nontrivial knot K,

pT(K) S U(K) + 1.



Kh-thin knots

Let R be Z, Q or Z, for a prime p. A knot is Kh-thin over R if
there is an s € Z such that Kh'Y(K; R) = 0 for all i and j where
2i—j#s+1.

Lee proved that alternating knots are Kh-thin over all R.
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Spectral sequences and Kh-thin knots

Suppose that K is a nontrivial Kh-thin knot. Then

&
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PLee(K) = pT(K) = 2.
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Gordian distance and Kh-thin knots

Let dihin(K; R) be the minimum Gordian distance between K and
any knot that is Kh-thin over R, that is

dihin(K; R) = min{dg(K,J) | J is Kh-thin over R}.

Since alternating knots are Kh-thin for all R, for every knot K

dihin(K; R) < alt(K).



pLee(K; R) and dthin(K; R)

Theorem (L, Sazdanovi¢)
Let R be Q or Zy for an odd prime p. For any knot K, we have

pLee(K: R) < Vt“i”(KQRHﬂ < [a't(K”ﬂ.

2

Corollary
If pLee(K; R) = 3, then 2 < din(K; R) < alt(K).



Alternation number at least two
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Alternation number at least two
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p7(K) and duin(K; Zy)

Theorem (L, Sazdanovi¢)

For any knot K, we have

pT(K) < dinin(K; Z2) +2 < alt(K) + 2.

Corollary
If pr(K; R) =4, then 2 < diyin(K; R) < alt(K).
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Since pr(T(7,8)) = 4, it follows that

2 < dun(T(7,8); Z2) < alt(T(7,8)).



The dealternating number

» Define dalt(D) to be the fewest number of crossing changes
to change the knot diagram D into an alternating diagram.

> Adams et al. defines the dealternating number of K by
dalt(K) = min{dalt(D) | D is a diagram of K}.

» For each knot K,
alt(K) < dalt(K),

and the gap between them can be arbitrarily large.



Turaev genus

» The Turaev surface of a knot diagram D is an unknotted
surface on which the knot has an alternating projection
constructed from a cobordism between the all-A and all-B
Kauffman states of D.

» For a knot diagram D, the genus of the Turaev surface is

(2+ ¢(D) = sa(D) — s8(D))

N

gr(D) =

where ¢(D) is the number of crossings in D and sa(D) and
sg(D) are the number of components in the all-A and all-B
Kauffman states of D respectively.

» The Turaev genus g7(K) of the knot K is

g7(K) = min{gr(D) | D is a diagram of K}.



The Turaev surface

all-A state

i
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all-B state Turaev surface of D




pLee(K; R), pr(K), g7(K), and dalt(K)

Theorem

Let R be Q or Z,, where p is an odd prime. For all nontrivial knots
KV

PLee(K; R) — 2 < g7(K) < dalt(K) and
pr(K) —2 < g7(K) < dalt(K).

Sketch of proof.

This theorem follows from grading considerations, and the fact
that the number of diagonals supporting Kh(K) is bounded from
above by g7(K) + 2 and dalt(K) + 2.

L]



Lee sequence and torsion in Kh(K; Z)

Theorem (L, Sazdanovic¢)

Let K be a knot and p be an odd prime. If
PLee(K; Q) < pLee(K; Zp), then the Khovanov homology Kh(K;Z)
has torsion of order p.

Idea of proof: If Kh(K,Z) has no torsion of order p, then the
differentials in the Z, Lee spectral sequence are the differentials in
the Q Lee spectral sequence tensored with Z,,.



The converse fails

The Khovanov homology Kh(T(5,6),

Z) has torsion of order 5, but
pLee(T(5 6) Q) - pLee(T(5 6) ZS) =2.
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Questions

» Does pLee(K; R) say anything about torsion of order p* for
k> 17

» Does p7(K) say anything about 2 torsion?

» Can the alternation lower bounds be improved by using more
information from the Khovanov homology of K?



Thank you!




