Gordian distance and spectral sequences in Khovanov homology

Adam Lowrance - Vassar College Radmila Sazdanović - North Carolina State University

January 18, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Gordian distance

- Murakami defined the Gordian distance d_G(K, J) between knots K and J to be the fewest number of crossing changes needed to transform any diagram of K into a diagram of J.
- Kawauchi defined the alternation number alt(K) of a knot K to be the minimum Gordian distance between K and the set of alternating knots, that is

$$alt(K) = min\{d_G(K, J) \mid J \text{ is alternating}\}.$$

The unknotting number u(K) of K is

 $u(K) = \min\{d_G(K, U) \mid U \text{ is the unknot}\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example: alt(K) = u(K) = 1

$$\operatorname{alt}(K) = u(K) = 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Find a lower bound for alt(K) using some spectral sequences arising from the Khovanov homology of K.

We look to work of Alishahi and Dowlin for inspiration (more on this later).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Khovanov homology

- Let R be \mathbb{Z} , \mathbb{Q} , or \mathbb{Z}_p where p is a prime.
- The Khovanov homology Kh(K; R) of K over R is a bigraded R-module that categorifies the Jones polynomial.
- There is a direct sum decomposition

$$Kh(K;R) = \bigoplus_{i,j} Kh^{i,j}(K;R)$$

where $Kh^{i,j}(K; R)$ is the summand in homological grading *i* and polynomial grading *j*.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Lee spectral sequence

• Let
$$R = \mathbb{Q}$$
 or \mathbb{Z}_p for an odd prime p .

▶ There is a spectral sequence $(E_{\text{Lee}}^r, d_{\text{Lee}}^r)$ such that $E_{\text{Lee}}^1 \cong Kh(K; R)$ and $E_{\text{Lee}}^\infty \cong R \oplus R$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The differential d_{Lee}^r has bidegree (1, 4r).

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣ん(で)

		0	1	2	3	4	5	6	7
	17								1
	15								
	13						2	1	
	11					1			
1	9				1	2			
	7			2	1				
	5			1					
	3	1	2						
	1	1							

 $Kh(7_4; \mathbb{Q})$

 E^1_{Lee}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

74

T(5, 6)

 $Kh(T(5,6);\mathbb{Z}_3)$

 E^{1}_{Iee}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A positive full-twist goes in the +1 box.

 $Kh(K; \mathbb{Q})$

Manolescu and Marengon recently proved that there is a knot K where the Lee spectral sequence over \mathbb{Q} collapses after the second page.

The Turner spectral sequence

- Bar-Natan defined a Khovanov-like homology theory with coefficients in Z₂. For a knot K, the homology is always isomorphic to Z₂ ⊕ Z₂.
- Turner showed there is a spectral sequence (E^r_T, d^r_T) such that E¹_T ≅ Kh(K; Z₂) and E[∞]_T ≅ Z₂ ⊕ Z₂, the Bar-Natan homology of K.

• The differential d_T^r has bidegree (1, 2r).

Turner spectral sequence example 1

	0	1	2	3	4	5	6	7
17								1
15							1	1
13						2	1	
11					3	2		
9				2	3			
7			3	2				
5		2	3					
3	1	2						
1	1							

 $Kh(7_4; \mathbb{Z}_2)$

 E_T^1

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

74

Turner spectral sequence example 2

T(5, 6)

 $Kh(T(5,6);\mathbb{Z}_2)$

 E_T^1

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Spectral sequences and the unknotting number

Let R be \mathbb{Q} or \mathbb{Z}_p where p is an odd prime. Define $p_{\text{Lee}}(K; R)$ and $p_T(K)$ be the pages where the Lee spectral sequence of K over R and the Turner spectral sequences of K collapse respectively. Let u(K) be the unknotting number of K.

Theorem (Alishahi, Dowlin)

Let $R = \mathbb{Q}$ or \mathbb{Z}_p where p is an odd prime. For any knot K,

$$p_{Lee}(K; R) \leq \left\lceil \frac{u(K)+2}{2} \right\rceil$$

Theorem (Alishahi) For any nontrivial knot K,

 $p_T(K) \leq u(K) + 1.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Kh-thin knots

Let R be \mathbb{Z} , \mathbb{Q} or \mathbb{Z}_p for a prime p. A knot is Kh-thin over R if there is an $s \in \mathbb{Z}$ such that $Kh^{i,j}(K; R) = 0$ for all i and j where $2i - j \neq s \pm 1$.

Lee proved that alternating knots are Kh-thin over all R.

74

 $Kh(7_4; \mathbb{Q})$

 $Kh(7_4; \mathbb{Z}_2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Spectral sequences and Kh-thin knots

Suppose that K is a nontrivial Kh-thin knot. Then

$$p_{\mathsf{Lee}}(K) = p_{\mathcal{T}}(K) = 2.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Gordian distance and Kh-thin knots

Let $d_{\text{thin}}(K; R)$ be the minimum Gordian distance between K and any knot that is Kh-thin over R, that is

 $d_{\text{thin}}(K; R) = \min\{d_G(K, J) \mid J \text{ is } Kh\text{-thin over } R\}.$

Since alternating knots are Kh-thin for all R, for every knot K

 $d_{\mathrm{thin}}(K; R) \leq \mathrm{alt}(K).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $p_{\text{Lee}}(K; R)$ and $d_{\text{thin}}(K; R)$

Theorem (L, Sazdanović) Let R be \mathbb{Q} or \mathbb{Z}_p for an odd prime p. For any knot K, we have

$$p_{\text{Lee}}(K; R) \leq \left\lceil \frac{d_{\text{thin}}(K; R) + 3}{2} \right\rceil \leq \left\lceil \frac{\operatorname{alt}(K) + 3}{2} \right\rceil.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary If $p_{\text{Lee}}(K; R) = 3$, then $2 \le d_{\text{thin}}(K; R) \le \text{alt}(K)$.

Alternation number at least two

T(5, 6)

 $Kh(T(5,6);\mathbb{Z}_3)$

 E^{1}_{Iee}

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Alternation number at least two

A positive full-twist goes in the +1 box.

 $Kh(K; \mathbb{Q})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $p_T(K)$ and $d_{thin}(K; \mathbb{Z}_2)$

Theorem (L, Sazdanović) For any knot K, we have

$$p_{\mathcal{T}}({\mathcal{K}}) \leq d_{\mathsf{thin}}({\mathcal{K}};{\mathbb{Z}}_2) + 2 \leq \mathsf{alt}({\mathcal{K}}) + 2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Corollary If $p_T(K; R) = 4$, then $2 \le d_{\text{thin}}(K; R) \le \text{alt}(K)$.

$\textit{Kh}(\textit{T}(7,8);\mathbb{Z}_2)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
81																										1	1
79																										1	1
77																							1	1	1	1	
75																							2	2	1	1	
73																					2	3	2	2	1		
71																			1	2	4	5	2	1	1		
69																	1	1	2	5	3	2	1				
67																1	3	5	4	4	2						
65															1	4	3	5	4	1	1						
63													1	3	3	5	3	1	1								
61												1	2	6	4	2	2										
59										1	1	3	3	3	2												
57										3	3	3	3														
55								1	1	2	3	1	1														
53						1	1	2	2		1																
51						1	2	1	1																		
49				1	1		1																				
47			1	1	1																						
45			1																								
43	1																										
41	1																										

$\mathit{Kh}(T(7,8);\mathbb{Z}_2)$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
81																										1	1
79																										17	F
77																							1	1	1		
75																							2	2	1	1	
73																					2	3	2	2	77		
71																			1	2	4	5	2	1	1		
69																	1	1	2	5	3	2	1				
67																1	3	5	4	4	2						
65															1	4	3	5	4	1	1						
63													1	3	3	5	3	1	1								
61												1	2	6	4	2	2										
59										1	1	3	3	3	2												
57										3	3	3	3														
55								1	1	2	3	1	1														
53						1	1	2	2		1																
51						1	2	1	1																		
49				1	1		1																				
47			1	1	1																						
45			1																								
43	1																										
41	1																										

Since $p_T(T(7,8)) = 4$, it follows that

 $2 \leq d_{\mathsf{thin}}(T(7,8);\mathbb{Z}_2) \leq \mathsf{alt}(T(7,8)).$

The dealternating number

- Define dalt(D) to be the fewest number of crossing changes to change the knot diagram D into an alternating diagram.
- Adams et al. defines the *dealternating number* of K by

 $dalt(K) = min\{dalt(D) \mid D \text{ is a diagram of } K\}.$

 $\operatorname{alt}(K) \leq \operatorname{dalt}(K),$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

and the gap between them can be arbitrarily large.

Turaev genus

- The Turaev surface of a knot diagram D is an unknotted surface on which the knot has an alternating projection constructed from a cobordism between the all-A and all-B Kauffman states of D.
- ▶ For a knot diagram *D*, the genus of the Turaev surface is

$$g_T(D) = \frac{1}{2} (2 + c(D) - s_A(D) - s_B(D))$$

where c(D) is the number of crossings in D and $s_A(D)$ and $s_B(D)$ are the number of components in the all-A and all-B Kauffman states of D respectively.

• The Turaev genus $g_T(K)$ of the knot K is

 $g_T(K) = \min\{g_T(D) \mid D \text{ is a diagram of } K\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The Turaev surface

Turaev surface of ${\cal D}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 $p_{\text{Lee}}(K; R), p_T(K), g_T(K), \text{ and } \text{dalt}(K)$

Theorem

Let R be \mathbb{Q} or \mathbb{Z}_p where p is an odd prime. For all nontrivial knots K,

$$p_{\mathsf{Lee}}(K;R) - 2 \le g_{\mathcal{T}}(K) \le \mathsf{dalt}(K)$$
 and $p_{\mathcal{T}}(K) - 2 \le g_{\mathcal{T}}(K) \le \mathsf{dalt}(K).$

Sketch of proof.

This theorem follows from grading considerations, and the fact that the number of diagonals supporting Kh(K) is bounded from above by $g_T(K) + 2$ and dalt(K) + 2.

Lee sequence and torsion in $Kh(K; \mathbb{Z})$

Theorem (L, Sazdanović)

Let K be a knot and p be an odd prime. If $p_{\text{Lee}}(K; \mathbb{Q}) < p_{\text{Lee}}(K; \mathbb{Z}_p)$, then the Khovanov homology $Kh(K; \mathbb{Z})$ has torsion of order p.

Idea of proof: If $Kh(K, \mathbb{Z})$ has no torsion of order p, then the differentials in the \mathbb{Z}_p Lee spectral sequence are the differentials in the \mathbb{Q} Lee spectral sequence tensored with \mathbb{Z}_p .

The converse fails

The Khovanov homology $Kh(T(5,6),\mathbb{Z})$ has torsion of order 5, but $p_{\text{Lee}}(T(5,6);\mathbb{Q}) = p_{\text{Lee}}(T(5,6);\mathbb{Z}_5) = 2.$

T(5,6)

 $Kh(T(5,6);\mathbb{Q})$

 $Kh(T(5,6);\mathbb{Z}_5)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Questions

- Does p_{Lee}(K; R) say anything about torsion of order p^k for k > 1?
- Does $p_T(K)$ say anything about 2^k torsion?
- Can the alternation lower bounds be improved by using more information from the Khovanov homology of K?

Thank you!

