Measuring a knot's distance from alternating

Adam Lowrance - Vassar College

January 15, 2014

Distance from alternating

A real valued knot invariant $d(K)$ measures a knot's distance from alternating if

- $d(K) \geq 0$ for every knot K,
- $d(K)=0$ if and only if K is alternating, and
- $d\left(K_{1} \# K_{2}\right) \leq d\left(K_{1}\right)+d\left(K_{2}\right)$ for all knots K_{1} and K_{2}.

Let's meet the invariants

1. The dealternating number of K, denoted dalt (K), defined by Adams.
2. The alternation number of K, denoted alt (K), defined by Kawauchi.
3. The alternating genus of K, denoted $g_{\text {alt }}(K)$, defined by Adams.
4. The Turaev genus of K, denoted $g_{T}(K)$, defined by Turaev and Dasbach et. al.

The dealternating number

Let D be a diagram of K. The dealternating number of D, denoted dalt (D), is the minimum number of crossing changes required to transform D into an alternating diagram.

The dealternating number of K is defined as

$$
\operatorname{dalt}(K)=\min \{\operatorname{dalt}(D) \mid D \text { is a diagram of } K\}
$$

The alternation number

Let D be a diagram of K. The alternation number of D, denoted $\operatorname{alt}(D)$, is the minimum number of crossing changes required to transform D into a (possibly non-alternating) diagram of an alternating knot.

The alternation number of K is defined as

$$
\operatorname{alt}(K)=\min \{\operatorname{alt}(D) \mid D \text { is a diagram of } K\} .
$$

Our first inequality

$$
\operatorname{alt}(K) \leq \operatorname{dalt}(K)
$$

Question. Are there knots where dalt $(K)-\operatorname{alt}(K)$ is arbitrarily large?
Answer. Yes, more on this later.

The alternating genus

Let Σ be a Heegaard surface in S^{3}. Suppose that K lies in a neighborhood $\Sigma \times[-\varepsilon, \varepsilon]$ of Σ, and let $\pi: \Sigma \times[-\varepsilon, \varepsilon] \rightarrow \Sigma$ be the projection map. Suppose that

- $\pi(K)$ is alternating on Σ, and
- $\Sigma-\pi(K)$ is a collection of disks.

The alternating genus of K, denoted $g_{\text {alt }}(K)$, is the minimum genus surface onto which K has such a projection.

The Turaev surface

Every knot diagram D has an associated Turaev surface Σ_{D} constructed as follows. Think of the diagram D as a subset of S^{2}, which itself is a subset of S^{3}. Replace the crossings of D with saddles so that the A-smoothing lies on one side of S^{2} and the B-smoothing lies on the other side of S^{2}. Replace the arcs of D not near crossings with bands orthogonal to S^{2}. The resulting surface is a cobordism between the all- A Kauffman state and the all- B Kauffman state. The Turaev surface Σ_{D} is obtained by capping off the boundary components of this cobordism with disks.

A picture is worth a thousand (really 96) words

A picture is worth a thousand (really 96) words

Turaev genus

The Turaev genus of K, denoted $g_{T}(K)$, is defined as

$$
g_{T}(K)=\min \left\{g\left(\Sigma_{D}\right) \mid D \text { is a diagram of } K\right\} .
$$

Another inequality

Dasbach, Futer, Kalfagianni, Lin, and Stoltzfus proved that

- the Turaev surface Σ_{D} is a Heegaard surface in S^{3},
- K has an alternating projection to Σ_{D}, and
- the complement of the projection of K to Σ_{D} is a collection of disks.
Resulting inequality.

$$
g_{\mathrm{alt}}(K) \leq g_{T}(K)
$$

Question. Are there knots where $g_{T}(K)-g_{\text {alt }}(K)$ is arbitrarily large?
Answer. Yes, again more on this later.

Abe's inequality

By studying the behavior of the Turaev surface under crossing changes, Abe proved that

$$
g_{T}(K) \leq \operatorname{dalt}(K)
$$

Question. Are there knots where $\operatorname{dalt}(K)-g_{T}(K)$ is arbitrarily large?
Easier Question. Are there knots where $g_{T}(K)<\operatorname{dalt}(K)$? Answer to both. I don't know.

Our inequalities

What we will show

Let d_{1} and d_{2} be two different measures of a knot's distance from alternating. We decorate the previous slide with a line from d_{1} to d_{2} as follows.

- Strict $(\longrightarrow): d_{1}(K) \geq d_{2}(K)$ for all K and there exists a knot K^{\prime} with $d_{1}\left(K^{\prime}\right)>d_{2}\left(K^{\prime}\right)$.
- Possibly strict $(-$? $\rightarrow): d_{1}(K) \geq d_{2}(K)$ for all K and it is unknown whether there exists a knot K^{\prime} with $d_{1}\left(K^{\prime}\right)>d_{2}\left(K^{\prime}\right)$.
- Incomparable (\longleftrightarrow)): There exists knots K_{1} and K_{2} such that $d_{1}\left(K_{1}\right)<d_{2}\left(K_{1}\right)$ and $d_{1}\left(K_{2}\right)>d_{2}\left(K_{2}\right)$.
- Possibly comparable $(-$? \rightarrow): It is unknown whether $d_{1}(K) \geq d_{2}(K)$ for all knots.

What we will show

\qquad
\longleftrightarrow incomparable

Our invariants and iterated Whitehead doubles

Theorem
Let W_{k} be the untwisted k-th iterated Whitehead double of the Figure-8 knot. Then $g_{a l t}\left(W_{k}\right)>1$ for all k. Also

$$
g_{T}\left(W_{k}\right)-\operatorname{alt}\left(W_{k}\right) \rightarrow \infty \text { as } k \rightarrow \infty
$$

and consequently

$$
\operatorname{dalt}\left(W_{k}\right)-\operatorname{alt}\left(W_{k}\right) \rightarrow \infty \text { as } k \rightarrow \infty
$$

Proof

Adams showed that if K is prime and $g_{\text {alt }}(K)=1$, then K is a hyperbolic knot. Since W_{k} is a prime, non-alternating, satellite knot, it follows that $g_{\text {alt }}\left(W_{k}\right)>1$ for all k.

Proof, continued

For each k, we have $\operatorname{alt}\left(W_{k}\right)=1$ since the unknotting number of W_{k} is one for all k.

Proof, continued

- Hedden proved that the width of the knot Floer homology of W_{k}, denoted width $\left(\overparen{H F K}\left(W_{k}\right)\right)$, is k.
- For any knot K,

$$
\text { width }(\widehat{H F K}(K))-1 \leq g_{T}(K)
$$

- Thus $g_{T}\left(W_{k}\right) \geq k-1$, and so $g_{T}\left(W_{k}\right)-\operatorname{alt}\left(W_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$.
- Abe's inequality $\left(g_{T}(K) \leq \operatorname{dalt}(K)\right)$ implies that $\operatorname{dalt}\left(W_{k}\right)-\operatorname{alt}\left(W_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$.

What we've shown so far

A modified torus knot $\widetilde{T}_{p, q}$

Let B_{p} be the braid group on p-strands, and let $\Delta_{p} \in B_{p}$ denote the braid

$$
\Delta_{p}=\sigma_{1} \sigma_{2} \sigma_{3} \cdots \sigma_{p-1}
$$

Let $\widetilde{\Delta}_{p}$ denote the braid

$$
\widetilde{\Delta}_{p}=\sigma_{1} \sigma_{2}^{-1} \sigma_{3} \cdots \sigma_{p-1}^{(-1)^{p}}
$$

Assume p and q are positive and coprime. Then the (p, q)-torus knot $T_{p, q}$ is the closure of the braid $\left(\Delta_{p}\right)^{q}$. Define $\widetilde{T}_{p, q}$ to be the closure of the braid

$$
\left(\Delta_{p}\right)^{(q-1)} \widetilde{\Delta}_{p}
$$

Example: $\widetilde{T}_{4,3}$

Example: $\widetilde{T}_{4,3}$

$\widetilde{T}_{p, q}$ and our invariants

Theorem
Let p and q be coprime integers both greater than 2. For any such fixed p,

$$
g_{T}\left(\widetilde{T}_{p, q}\right)-g_{a l t}\left(\widetilde{T}_{p, q}\right) \rightarrow \infty \text { as } q \rightarrow \infty
$$

and

$$
\operatorname{alt}\left(\widetilde{T}_{p, q}\right)-g_{a l t}\left(\widetilde{T}_{p, q}\right) \rightarrow \infty \text { as } q \rightarrow \infty
$$

Sketch of proof

We see in the following picture that $g_{\text {alt }}\left(\widetilde{T}_{4,7}\right)=1$.

One can show that $g_{\text {alt }}\left(\widetilde{T}_{p, q}\right)=1$ similarly.

Sketch of proof, continued

Alternation number and Turaev genus have a common lower bound:

$$
\begin{aligned}
& \frac{|s(K)+\sigma(K)|}{2} \leq \text { alt }(K) \text { (due to Abe) } \\
& \frac{|s(K)+\sigma(K)|}{2} \leq g_{T}(K) \text { (due to Dasbach-L.) }
\end{aligned}
$$

where $s(K)$ is the Rasmussen invariant and $\sigma(K)$ is the signature of the knot.
One can show that this lower bound goes to infinity as $q \rightarrow \infty$. \square

Summary

\longrightarrow inequality
\qquad
\longleftrightarrow incomparable

