Signatures and alternating tangle decompositions

Adam Lowrance Joint with Cody Armond and Oliver Dasbach

Joint Mathematical Meetings
January 8, 2016

Turaev surfaces

The \boldsymbol{A}-resolution and \boldsymbol{B}-resolution of a crossing:

Create Turaev surface from link diagram:

Turaev surface: $\boldsymbol{P}(3,3,-2)$

Turaev surfaces

* Start with cobordism between all- \boldsymbol{A} and all- \boldsymbol{B} state.
* Cap off boundary components with disks.
* Turaev genus $\mathrm{g}_{\mathrm{T}}(\mathrm{L})$: Minimal genus among all Turaev surfaces.
* The link projection on the Turaev surface is alternating.
* $g_{T}(\mathrm{~L})=0$ if and only if the link is alternating.

Turaev surfaces

* Replace crossings with disks.
* Replace edges with possibly twisted bands.
* Cap off boundary components with disks.

\square

Turaev surfaces

Alternating decompositions

* Separate a link diagram into its maximal alternating regions.
* Mark each non-alternating edge with two points.
* Inside each face, connect the marked points with arcs as below.

Alternating decompositions

Alternating decompositions

Alternating decompositions

Alternating decompositions

* The alternating decomposition determines a graph: curves \rightarrow vertices; non-alternating arcs \rightarrow edges.
* The graph determines the genus of the Turaev surface.
* There is a recursive algorithm on graphs to compute the genus of the Turaev surface.

Turaev genus one diagrams

(Armond, L.; Kim) Let \boldsymbol{D} a prime link diagram. The Turaev surface of \boldsymbol{D} is genus one if and only if the alternating decomposition graph is a doubled cycle of even length.

Classification results

* Lengthening/shortening doubled paths preserves the genus of the Turaev surface.
* There are a finite number of double-path equivalence classes of alternating decomposition graphs of any fixed Turaev genus.
* There are five equivalence classes for Turaev genus two.

Determinant and Signature of a knot

V Seifert matrix for knot
Determinant:

$$
\left|\operatorname{det}\left(V+V^{T}\right)\right|=\left|\Delta_{K}(-1)\right|=\left|V_{K}(-1)\right|
$$

Signature:

$$
\sigma\left(V+V^{T}\right)
$$

Determinant and Signature of a knot

Determinant of a knot is odd and the signature is even

Known: Changing a positive to
a negative crossing:

$$
\sigma\left(K_{-}\right)-2 \leq \sigma\left(K_{+}\right) \leq \sigma\left(K_{-}\right)
$$

Signature for Turaev genus 0 links (alternating links)

(Gordon-Litherland, Traczyk) For an alternating knot \boldsymbol{K} with alternating diagram \boldsymbol{D}

$$
\sigma(K)=s_{A}(D)-c_{+}(D)-1=-s_{B}(D)+c_{-}(D)+1
$$

Signature and Turaev genus

The genus $g_{T}(D)$ of the Turaev surface is given by

$$
\begin{gathered}
2 g_{\top}(D)=2+c(D)-s_{A}(D)-S_{B}(D) \\
=\left(-s_{B}(D)+c_{-}(D)+1\right)-\left(s_{A}(D)-c_{+}(D)-1\right)
\end{gathered}
$$

(Dasbach, L.) For a knot \boldsymbol{K} with diagram \boldsymbol{D}
$\mathrm{s}_{\mathrm{A}}(\mathrm{D})-\mathrm{C}_{+}(\mathrm{D})-1 \leq \sigma(\mathrm{K}) \leq-\mathrm{S}_{\mathrm{B}}(\mathrm{D})+\mathrm{c}_{-}(\mathrm{D})+1$

Example: Signature of $\boldsymbol{P}(3,3,-2)$

$$
\begin{gathered}
\mathrm{S}_{A}(\mathrm{D})-\mathrm{C}_{+}(\mathrm{D})-1=3-8-1=-6 \\
g_{T}(\mathrm{D})=1 \\
-6 \leq \sigma(\mathrm{K}) \leq-4
\end{gathered}
$$

Signature and Turaev genus

(Murasugi) For a knot \boldsymbol{K}

$$
\sigma(K)=\operatorname{det}(K)-1 \bmod 4
$$

(Dasbach, L.) For a knot \boldsymbol{K} with diagram \boldsymbol{D} of Turaev genus 1 the signature is determined by:

$$
\begin{gathered}
\sigma(K)=\mathrm{s}_{\mathrm{A}}(\mathrm{D})-\mathrm{c}_{+}(\mathrm{D}) \pm 1 \\
\text { and } \\
\sigma(K)=\operatorname{det}(K)-1 \bmod 4
\end{gathered}
$$

Example: Signature of $\boldsymbol{P}(3,3,-2)$

$$
\begin{aligned}
\sigma(K) & =-6 \text { or } \sigma(K)=-4 \\
\operatorname{det}(K) & =3 \\
\sigma(K) & \equiv 2 \quad \bmod 4 \\
\Rightarrow \sigma(K) & =-6
\end{aligned}
$$

Closures of tangles

Signature and Turaev genus

(Dasbach, L.) Let \boldsymbol{K} be a knot with diagram as above. Then

$$
\sigma(K)= \pm 1+\sum \sigma\left(N\left(R_{i}\right)\right)
$$

or

$$
\sigma(K)= \pm 1+\sum \sigma\left(D\left(R_{i}\right)\right)
$$

Signatures of Montesinos knots

* Murasugi computes the signature of the rational knot $K(p / q)$ from p and q.
* Qazaqzeh, Yasein, and Abu-Qamar compute the signature of $K(p / q)$ from the continued fraction expansion of p / q.
* Champanerkar and Ording give a formula for the determinant of a Montesinos link.
* The theorem on the previous slide then tells us how to compute the signature of a Montesinos knot.

Thank you

