Knots of Turaev genus one

Adam Lowrance - Vassar College

March 6, 2016

Construction of the Turaev surface $F(D)$

(1) Replace arcs of D not near crossings with bands transverse to the projection plane.
(2) Replace crossings of D with saddles interpolating between the all- B and all- A states of D
(3) Cap off the boundary components with disks to obtain $F(D)$.

The Turaev surface in pictures

The pretzel knot $P(3,3,-2)$

The Turaev surface $F(P(3,3,-2))$

Turaev genus

- For a diagram D of a link L, let $g_{T}(D)$ denote the genus of the Turaev surface $F(D)$.
- The Turaev genus $g_{T}(L)$ of the link L is

$$
g_{T}(L)=\min \left\{g_{T}(D) \mid D \text { is a diagram of } L\right\}
$$

Some history of the Turaev surface

- Turaev (1987) related $F(D)$ to the difference between the span of the Jones polynomial and the crossing number.
- DFKLS (2006) - Connections with the Jones polynomial.
- Champanerkar, Kofman, and Stoltzfus (2007) - Connections with spanning tree version of Khovanov homology.
- L. (2007) - Connections with spanning tree version knot Floer homology.
- Dasbach, L. (2009) - Connections with signature, and the s and τ invariants.
- Dasbach, L. (2015) - A Turaev surface model of Khovanov homology.

Classification of links of Turaev genus one

Theorem (Armond, L.; Kim)
(1) Let $R_{1}, \ldots, R_{2 k}$ be alternating two-tangles, and let D be a link diagram connecting $R_{1}, \ldots, R_{2 k}$ as depicted above. Then $g_{T}(D)=1$.
(2) Moreover, if L is a non-split link with $g_{T}(L)=1$, then L has a diagram as above.

Almost-alternating links

- A link diagram D is almost-alternating if one crossing change transforms D into an alternating diagram (Adams, Brock, Bugbee - 1992).
- A link L is almost-alternating if it is non-alternating and has an almost-alternating diagram.
- If L is almost-alternating, then $g_{T}(L)=1$.

Mutation

- Let B be a 3-ball whose boundary intersects the link L in exactly 4 -points. A mutation of L is a link obtained by removing B from S^{3}, rotating it 180° about a principle axis, and then gluing B back into S^{3}.
- Any two links related to one another via a sequence of mutations are said to be mutant to one another.

Theorem (Armond, L.)
If $g_{T}(L)=1$, then L is mutant to an almost-alternating link.

Mutation proof

Mutation proof continued

Jones polynomial results

Let $V_{L}(t)=a_{m} t^{m}+a_{m+1} t^{m+1}+\cdots+a_{n-1} t^{n-1}+a_{n} t^{n}$ be the Jones polynomial of L where a_{m} and a_{n} are nonzero.

Theorem (Dasbach, L.)
If L is almost-alternating, then either $\left|a_{m}\right|=1$ or $\left|a_{n}\right|=1$ (or both equal 1).

Corollary
If $g_{T}(L)=1$, then either $\left|a_{m}\right|=1$ or $\left|a_{n}\right|=1$ (or both equal 1).

Numerator and denominator

A tangle R, its numerator closure $N(R)$ and its denominator closure $D(R)$.

Jones polynomial proof

If D is almost-alternating, then it has a diagram as below.

Jones polynomial proof

- $\langle D\rangle=A\langle D(R)\rangle+A^{-1}\langle N(R)\rangle$.
- Both $D(R)$ and $N(R)$ are alternating diagrams.
- For any alternating diagram $D_{\text {alt }}$, the extreme coefficients of $\left\langle D_{\text {alt }}\right\rangle$ are ± 1.
- For any alternating diagram $D_{\text {alt }}$, the penultimate coefficients of $\left\langle D_{\text {alt }}\right\rangle$ are determined by counting the vertices and certain edges of the checkerboard graphs of $D_{\text {alt }}$.

Adjacent faces

- Let $\operatorname{adj}\left(u_{1}, u_{2}\right)$ be the number of faces of $N(R)$ adjacent to both u_{1} and u_{2}.
- Let $\operatorname{adj}\left(v_{1}, v_{2}\right)$ be the number of faces of $D(R)$ adjacent to both v_{1} and v_{2}.

Example

$\operatorname{adj}\left(v_{1}, v_{2}\right)=0$

Kauffman bracket computation

- Suppose D is almost-alternating.

$$
\begin{aligned}
\langle D\rangle= & A\langle D(R)\rangle+A^{-1}\langle N(R)\rangle \\
= & A\left(\pm A^{p-1} \mp b_{1} A^{p+3} \pm \cdots \pm b_{2} A^{q-5} \mp A^{q-1}\right) \\
& +A^{-1}\left(\mp A^{p+1} \pm c_{1} A^{p+5} \mp \cdots \mp c_{2} A^{q-3} \pm A^{q+1}\right) \\
= & \pm\left(c_{1}-b_{1}\right) A^{p+4} \mp \cdots \mp\left(b_{2}-c_{2}\right) A^{q-4} .
\end{aligned}
$$

- Dasbach, Lin (2006) implies that $\left|c_{1}-b_{1}\right|=\left|\operatorname{adj}\left(u_{1}, u_{2}\right)-1\right|$ and $\left|b_{2}-c_{2}\right|=\left|\operatorname{adj}\left(v_{1}, v_{2}\right)-1\right|$.

The penultimate coefficients

- We want either $\left|\operatorname{adj}\left(u_{1}, u_{2}\right)-1\right|=1$ or $\left|\operatorname{adj}\left(v_{1}, v_{2}\right)-1\right|=1$.
- If $\operatorname{adj}\left(u_{1}, u_{2}\right) \geq 3$, then $\operatorname{adj}\left(v_{1}, v_{2}\right)=0$, and if $\operatorname{adj}\left(v_{1}, v_{2}\right) \geq 3$, then $\operatorname{adj}\left(u_{1}, u_{2}\right)=0$.
- Unless $\operatorname{adj}\left(u_{1}, u_{2}\right)=\operatorname{adj}\left(v_{1}, v_{2}\right)=1$, then we have achieved our goal.

The example ... again

$\operatorname{adj}\left(u_{1}, u_{2}\right)=3$

$\operatorname{adj}\left(v_{1}, v_{2}\right)=0$

The remaining case

If $\operatorname{adj}\left(u_{1}, u_{2}\right)=\operatorname{adj}\left(v_{1}, v_{2}\right)=1$, then D has diagram as below.

Isotopy

Isotopy

Isotopy

Isotopy

Isotopy

Summary of the $\operatorname{adj}\left(u_{1}, u_{2}\right)=\operatorname{adj}\left(v_{1}, v_{2}\right)=1$ case

- If $\operatorname{adj}\left(u_{1}, u_{2}\right)=\operatorname{adj}\left(v_{1}, v_{2}\right)=1$, then we can describe the tangle structure of D.
- The diagram D can be isotoped to another almost-alternating diagram D^{\prime} with two fewer crossings.
- Thus by induction (on the number of crossings in an almost-alternating diagram), the Jones polynomial of L satisfies the desired condition.

An example: $12 n 375$

$$
V_{12 n 375}(t)=2 t^{2}-4 t^{3}+8 t^{4}-9 t^{5}+10 t^{6}-10 t^{7}+7 t^{8}-5 t^{9}+2 t^{10}
$$

Low crossing results

- Among all knots with 12 or fewer crossings, it is unknown whether 37 of them are almost-alternating or have Turaev genus one (according to Knot Info).
- Our work shows that 11 of these 37 knots are not almost-alternating and do not have Turaev genus one.

Thank you!

