The Jones polynomial of almost alternating links

Adam Lowrance - Vassar College

April 22, 2017

Collaborators

Oliver Dasbach Louisiana State University

Dean Spyropoulos Vassar College

Facts about alternating links

Let D be an alternating diagram of the link L with n crossings.

- (Kauffman, Murasugi, Thistlethwaite)

$$
\operatorname{span} V_{L}(t)=c(L)=n
$$

- L is the unknot if and only if $V_{L}(t)=1$.
- (Kauffman) The first and last coefficients of $V_{L}(t)$ are ± 1.
- (Dasbach, Lin) The first and last three coefficients of $V_{L}(t)$ can be expressed in terms of the checkerboard graph of D.

Trefoil states

Almost alternating links

A link diagram D is almost alternating if D can be transformed into an alternating diagram via one crossing change. A link L is almost alternating if it is non-alternating and if it has an almost alternating diagram.

$T_{3,4}$ is almost alternating.

Facts about almost alternating links

Let D be an almost alternating diagram of the link L with n crossings.

- (Adams et. al)

$$
\operatorname{span} V_{L}(t) \leq n-3
$$

- (Dasbach, L, Spyropoulos) The first and last two potential coefficients of $V_{L}(t)$ can be expressed in terms of the checkerboard graph of D.
- (Dasbach, L) At least one of the first and last coefficient of $V_{L}(t)$ is ± 1.
- (L, Spyropoulos) L is the unknot if and only if $V_{L}(t)=1$.

An almost alternating unknot

Extremal coefficients

Theorem (Dasbach, Lin)
Let L be a link with reduced alternating diagram D. Let α_{0}, α_{1}, and α_{3} be the first three coefficients of $V_{L}(t)$. Then (up to sign)

$$
\begin{aligned}
& \alpha_{0}=1, \\
& \alpha_{1}=v-e-1, \text { and } \\
& \alpha_{2}=\binom{v-1}{2}-e(v-2)+\mu+\binom{e}{2}-\tau,
\end{aligned}
$$

where all variables come from the checkerboard graph of D.

Example

$$
\begin{aligned}
\alpha_{0} & =1, \\
\alpha_{1} & =v-e-1=4-4-1=-1, \\
\alpha_{2} & =\binom{v-1}{2}-e(v-2)+\mu+\binom{e}{2}-\tau \\
& =3-4(4-2)+1+6-0=2, \\
V_{K}(t) & =t-t^{2}+2 t^{3}-t^{4}+t^{5}-t^{6} .
\end{aligned}
$$

Extremal coefficients for almost alternating

Theorem (Dasbach, L, Spyropoulos)
Let L be a link with almost alternating diagram D. Let α_{0} and α_{1} be the potential first two coefficients of $V_{L}(t)$. Then (up to sign)

$$
\begin{aligned}
\alpha_{0}= & 1-P_{N, 2}, \text { and } \\
\alpha_{1}= & \left(\beta_{1}+1\right)\left(P_{N, 2}-1\right)-\binom{P_{N, 2}}{2} \\
& +P_{N, 2,2}-P_{N, 2,0}+P_{N, 3}-S_{N} .
\end{aligned}
$$

The other side

By a symmetric argument, we have that the potential first and last coefficients of $V_{L}(t)$ are (up to sign)

$$
\begin{aligned}
\alpha_{0} & =1-P_{N, 2}, \text { and } \\
\alpha_{n-3} & =1-P_{D, 2} .
\end{aligned}
$$

There is also an expression for α_{n-4} similar to the expression for α_{1}.

$P_{N, 2}$ and $P_{D, 2}$

Let G and G^{*} be the checkerboard graphs of an almost alternating diagram with vertices u_{1}, u_{2}, v_{1}, and v_{2} as below. Define $P_{N, 2}$ to be the number of paths of length two between u_{1} and u_{2} in the simplification of G, and define $P_{D, 2}$ to be the number of paths of length two between v_{1} and v_{2} in the simplification of G^{*}.

An example

$$
P_{N, 2}=3 \text { and } P_{D, 2}=0
$$

Zero coefficients

Lemma
Let D be an almost alternating diagram of L such that D has the fewest possible crossings among all almost alternating diagrams of L. Then at least one of α_{0} and α_{n-3} is nonzero.

Proof of the zero coefficient lemma

If $\alpha_{0}=\alpha_{n-3}=0$, then $P_{N, 2}=P_{D, 2}=1$ and D has diagram as below.

Proof of the zero coefficient lemma

Minimal crossing almost alternating diagrams

Theorem (L, Spyropoulos)
Let D be an almost alternating diagram of L.

- If $P_{N, 2} \neq 1$ and $P_{D, 2} \neq 1$, then D has the fewest crossings among all almost alternating diagrams of L.
- If $P_{N, 2}=1$ and $P_{D, 2}=1$, then there exists an almost alternating diagram D^{\prime} of L with fewer crossings than D.

Monic Jones polynomial for almost alternating

Theorem (Dasbach, L)
Let L be an almost alternating link, then at least one of the first or the last coefficient of $V_{L}(t)$ is ± 1.

Sketch of the proof

- $\alpha_{0}=1-P_{N, 2}$ and $\alpha_{n-3}=1-P_{D, 2}$.
- At least one of α_{0} and α_{1} is nonzero.
- If $P_{N, 2} \geq 3$, then $P_{D, 2}=0$ (and vice versa).
- So either $\alpha_{0}=1$ or $\alpha_{n-3}=1$.

$P_{N, 2} \geq 2$ implies $P_{D, 2}=0$

Is $11 n_{95}$ almost alternating?

Since

$$
V_{11 n_{95}}(t)=2 t^{2}-3 t^{3}+5 t^{4}-6 t^{5}+6 t^{6}-5 t^{7}+4 t^{8}-2 t^{9}
$$

the knot $11 n_{95}$ above is not almost alternating.

Detecting the unknot

Theorem (L, Spyropoulos)
Let D be an almost-alternating diagram of the link L. Then $V_{L}(t)=1$ if and only if L is the unknot.

Sketch of the proof

- The potential first and last two coefficients of $V_{L}(t)$ are α_{0}, α_{1}, α_{n-4}, and α_{n-3}.
- Assuming minimal crossings, the zero coefficient lemma tells us at least one of the four coefficients is nonzero.
- If two of the coefficients are nonzero, then $V_{L}(t) \neq 1$.
- If only one coefficient is nonzero, then we handle it case by case.

Questions

(1) Can we determine the minimal crossing almost alternating diagram of a link?
(2) Do the coefficients of the Jones polynomial of an almost alternating link give bounds on its hyperbolic volume?
(3) Does the Jones polynomial detect the unknot on the class of k-almost alternating links for $k>1$?

Thank you!

