The Jones polynomial of almost alternating links

Adam Lowrance - Vassar College

April 22, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Collaborators

Oliver Dasbach Louisiana State University

Dean Spyropoulos Vassar College

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Facts about alternating links

Let D be an alternating diagram of the link L with n crossings.

• (Kauffman, Murasugi, Thistlethwaite)

span
$$V_L(t) = c(L) = n$$
.

- L is the unknot if and only if $V_L(t) = 1$.
- (Kauffman) The first and last coefficients of $V_L(t)$ are ± 1 .
- (Dasbach, Lin) The first and last three coefficients of $V_L(t)$ can be expressed in terms of the checkerboard graph of D.

Trefoil states

Almost alternating links

A link diagram D is almost alternating if D can be transformed into an alternating diagram via one crossing change. A link L is almost alternating if it is non-alternating and if it has an almost alternating diagram.

 $T_{3,4}$ is almost alternating.

Facts about almost alternating links

Let D be an almost alternating diagram of the link L with n crossings.

• (Adams et. al)

span $V_L(t) \leq n-3$

- (Dasbach, L, Spyropoulos) The first and last two potential coefficients of $V_L(t)$ can be expressed in terms of the checkerboard graph of D.
- (Dasbach, L) At least one of the first and last coefficient of $V_L(t)$ is ± 1 .

• (L, Spyropoulos) L is the unknot if and only if $V_L(t) = 1$.

An almost alternating unknot

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Extremal coefficients

Theorem (Dasbach, Lin)

Let L be a link with reduced alternating diagram D. Let α_0 , α_1 , and α_3 be the first three coefficients of $V_L(t)$. Then (up to sign)

$$egin{aligned} &lpha_0 = 1, \ &lpha_1 = \mathbf{v} - \mathbf{e} - 1, \ \textit{and} \ &lpha_2 = egin{pmatrix} \mathbf{v} - 1 \ 2 \end{pmatrix} - \mathbf{e}(\mathbf{v} - 2) + \mu + egin{pmatrix} \mathbf{e} \ 2 \end{pmatrix} - au, \end{aligned}$$

where all variables come from the checkerboard graph of D.

Example

$$\begin{split} \alpha_0 &= 1, \\ \alpha_1 &= v - e - 1 = 4 - 4 - 1 = -1, \\ \alpha_2 &= \binom{v-1}{2} - e(v-2) + \mu + \binom{e}{2} - \tau \\ &= 3 - 4(4-2) + 1 + 6 - 0 = 2, \\ V_K(t) &= t - t^2 + 2t^3 - t^4 + t^5 - t^6. \end{split}$$

◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

Extremal coefficients for almost alternating

Theorem (Dasbach, L, Spyropoulos)

Let L be a link with almost alternating diagram D. Let α_0 and α_1 be the potential first two coefficients of $V_L(t)$. Then (up to sign)

$$\alpha_0 = 1 - P_{N,2}, \text{ and}$$

 $\alpha_1 = (\beta_1 + 1)(P_{N,2} - 1) - {P_{N,2} \choose 2}$
 $+ P_{N,2,2} - P_{N,2,0} + P_{N,3} - S_N$

The other side

By a symmetric argument, we have that the potential first and last coefficients of $V_L(t)$ are (up to sign)

$$lpha_0 = 1 - P_{N,2}, \text{ and} \ lpha_{n-3} = 1 - P_{D,2}.$$

There is also an expression for α_{n-4} similar to the expression for α_1 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$P_{N,2}$ and $P_{D,2}$

Let G and G^* be the checkerboard graphs of an almost alternating diagram with vertices u_1, u_2, v_1 , and v_2 as below. Define $P_{N,2}$ to be the number of paths of length two between u_1 and u_2 in the simplification of G, and define $P_{D,2}$ to be the number of paths of length two between v_1 and v_2 in the simplification of G^* .

An example

$$P_{N,2} = 3$$
 and $P_{D,2} = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Zero coefficients

Lemma

Let D be an almost alternating diagram of L such that D has the fewest possible crossings among all almost alternating diagrams of L. Then at least one of α_0 and α_{n-3} is nonzero.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

If $\alpha_0 = \alpha_{n-3} = 0$, then $P_{N,2} = P_{D,2} = 1$ and D has diagram as below.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆圖▶ ◆필▶ ◆필▶ - ヨー のへで

Minimal crossing almost alternating diagrams

Theorem (L, Spyropoulos)

Let D be an almost alternating diagram of L.

- If P_{N,2} ≠ 1 and P_{D,2} ≠ 1, then D has the fewest crossings among all almost alternating diagrams of L.
- If $P_{N,2} = 1$ and $P_{D,2} = 1$, then there exists an almost alternating diagram D' of L with fewer crossings than D.

Monic Jones polynomial for almost alternating

Theorem (Dasbach, L)

Let L be an almost alternating link, then at least one of the first or the last coefficient of $V_L(t)$ is ± 1 .

Sketch of the proof

- $\alpha_0 = 1 P_{N,2}$ and $\alpha_{n-3} = 1 P_{D,2}$.
- At least one of α_0 and α_1 is nonzero.
- If $P_{N,2} \ge 3$, then $P_{D,2} = 0$ (and vice versa).
- So either $\alpha_0 = 1$ or $\alpha_{n-3} = 1$.

 $P_{N,2} \ge 2$ implies $P_{D,2} = 0$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Is 11n₉₅ almost alternating?

Since

$$V_{11n_{95}}(t) = 2t^2 - 3t^3 + 5t^4 - 6t^5 + 6t^6 - 5t^7 + 4t^8 - 2t^9,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

the knot $11n_{95}$ above is not almost alternating.

Detecting the unknot

Theorem (L, Spyropoulos)

Let D be an almost-alternating diagram of the link L. Then $V_L(t) = 1$ if and only if L is the unknot.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Sketch of the proof

- The potential first and last two coefficients of $V_L(t)$ are α_0 , α_1 , α_{n-4} , and α_{n-3} .
- Assuming minimal crossings, the zero coefficient lemma tells us at least one of the four coefficients is nonzero.
- If two of the coefficients are nonzero, then $V_L(t) \neq 1$.
- If only one coefficient is nonzero, then we handle it case by case.

Questions

- Can we determine the minimal crossing almost alternating diagram of a link?
- 2 Do the coefficients of the Jones polynomial of an almost alternating link give bounds on its hyperbolic volume?
- Ooes the Jones polynomial detect the unknot on the class of k-almost alternating links for k > 1?

Thank you!

・ロト ・四ト ・ヨト ・ヨト

æ