Chromatic homology, Khovanov homology, and torsion

Adam Lowrance - Vassar College Joint with Radmila Sazdanović - North Carolina State University

November 12, 2016

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Overview

- Chromatic homology is a categorification of the chromatic polynomial. Khovanov homology is a categorification of the Jones polynomial.
- There is a partial isomorphism between the Khovanov homology of a link and the chromatic homology of an all-A state graph of the link.
- We show that the chromatic homology of a graph contains only torsion of order 2.

ション ふゆ く 山 マ チャット しょうくしゃ

 In gradings where the partial isomorphism is defined, Khovanov homology has only torsion of order 2.

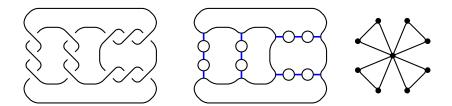
Kauffman states

• Each crossing has an A and a B resolution.

- The collection of simple closed curves in the plane obtained by taking an *A* or *B* resolution at each crossing is a *Kauffman* state.
- ► The all-A state graph G_A(D) of D has vertices corresponding to the components of the all-A state of D and edges corresponding to the crossings of D.

ション ふゆ く 山 マ チャット しょうくしゃ

Constructing $G_A(D)$



・ロト ・個ト ・モト ・モト

æ

Khovanov and chromatic homology

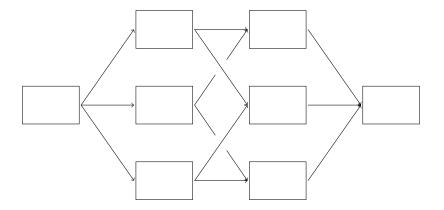
- Let D be a link diagram, and let G be its all-A state graph.
- The Khovanov homology of D is Kh(D).
- The chromatic homology of G is H(G).
- Both are bigraded:

$$Kh(D) = \bigoplus_{i,j} Kh^{i,j}(D) \text{ and } H(G) = \bigoplus_{i,j} H^{i,j}(G).$$

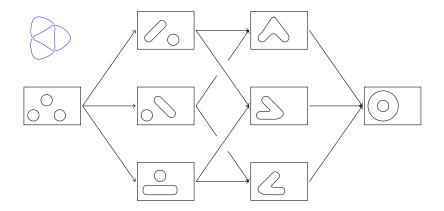
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Let $A = R[x]/(x^2)$ where $R = \mathbb{Z}, \mathbb{Z}_p$, or \mathbb{Q} .

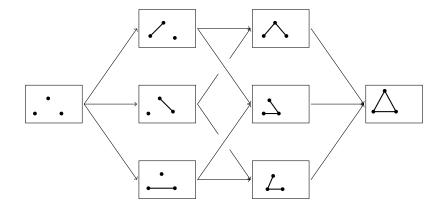
Hypercube



Kauffman states

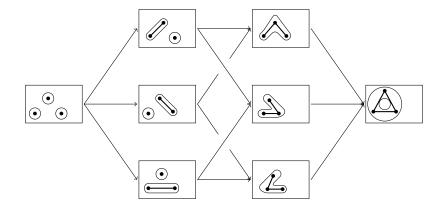


Spanning subgraphs



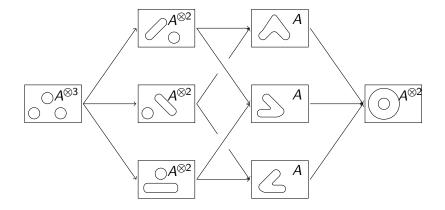
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Kauffman states and spanning subgraphs



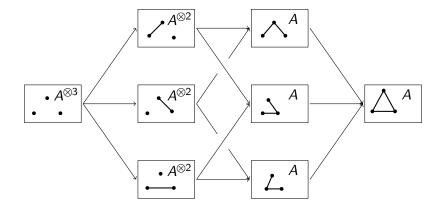
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Kauffman states and spaces



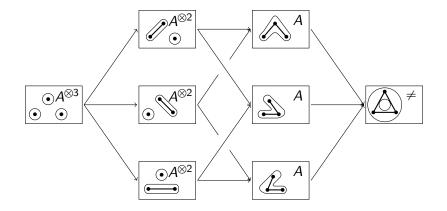
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Spanning subgraphs and spaces



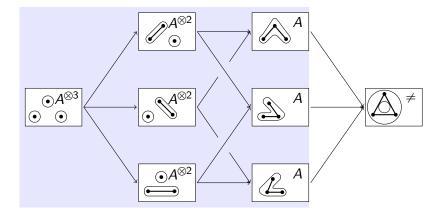
▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Spaces for both



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Multiplication until a cycle closes



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

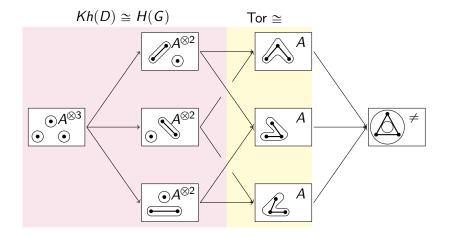
The multiplication map

Define the *R*-linear multiplication map by

$$m: A \otimes A \to A \qquad m: \begin{cases} 1 \otimes 1 \mapsto 1 & 1 \otimes x \mapsto x \\ x \otimes 1 \mapsto x & x \otimes x \mapsto 0 \end{cases}$$

◆□ > < 個 > < E > < E > E 9 < 0</p>

Partial Isomorphism Picture



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Comparing Kh(D) and H(G)

Theorem (Helme-Guizon, Przytycki, Rong - 2006)

If the length g of the shortest cycle in G is greater than one, then there is an isomorphism between Kh(D) and H(G) in the first g - 1 supported i-gradings and an isomorphism of Tor Kh(D) and Tor H(G) in the gth i-grading.

ション ふゆ く 山 マ チャット しょうくしゃ

j\i	0	1	2
З	\mathbb{Z}		
2		\mathbb{Z}_2	
1		\mathbb{Z}	

j \ i	-3	-2	-1	0
-1				\mathbb{Z}
-3				\mathbb{Z}
-5		Z		
-7		\mathbb{Z}_2		
-9	\mathbb{Z}			

j \ i	0	1	2
3	\mathbb{Z}		
2		\mathbb{Z}_2	
1		Z	

j \ i	-3	-2	-1	0
-1				\mathbb{Z}
-3				\mathbb{Z}
-5		\mathbb{Z}		
-7		\mathbb{Z}_2		
-9	\mathbb{Z}			

j∖i	0	1	2	3	4
5	\mathbb{Z}				
4		\mathbb{Z}_2			
3		\mathbb{Z}	\mathbb{Z}		
2				\mathbb{Z}_2	
1				\mathbb{Z}	

j∖i	-5	-4	-3	-2	-1	0
-3						\mathbb{Z}
-5						\mathbb{Z}
-7				\mathbb{Z}		
-9				\mathbb{Z}_2		
-11		\mathbb{Z}	\mathbb{Z}			
-13		\mathbb{Z}_2				
-15	\mathbb{Z}					

j∖i	0	1	2	3	4
5	\mathbb{Z}				
4		\mathbb{Z}_2			
3		\mathbb{Z}	\mathbb{Z}		
2				\mathbb{Z}_2	
1				\mathbb{Z}	

j∖i	-5	-4	-3	-2	-1	0
-3						\mathbb{Z}
-5						\mathbb{Z}
-7				\mathbb{Z}		
-9				\mathbb{Z}_2		
-11		\mathbb{Z}	\mathbb{Z}			
-13		\mathbb{Z}_2				
-15	\mathbb{Z}					

Torsion in chromatic homology

Theorem (L - Sazdanović)

The chromatic homology of a graph contains only torsion of order two.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The shape of H(G)

Theorem (Helme-Guizon, Przytycki, Rong - 2006) Let G be a connected graph with n vertices. Then $H^{i,j}(G) = 0$ unless $n - 1 \le i + j \le n$, and Tor $H^{i,j}(G) = 0$ unless i + j = n.

j∖i	0	1	2	3
5	\mathbb{Z}			
4		\mathbb{Z}_2		
3		\mathbb{Z}	\mathbb{Z}	
2				\mathbb{Z}_2
1				\mathbb{Z}

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

The shape of H(G)

Theorem (Chmutov, Chmutov, Rong - 2008)

Let G be a connected non-bipartite graph. Then the summands of $H(G; \mathbb{Q})$ can be arranged in "knight move" pairs.

j∖i	0	1	2	3
5	\mathbb{Q}			
4				
3		Q	\mathbb{Q}	
2				
1				Q

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

j∖i	0	1	2	3
5	\mathbb{Q}			
4				
3		Q	\mathbb{Q}	
2				
1				Q

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Suppose that $H(G; \mathbb{Q})$ is above.

j∖i	0	1	2	3	j∖i	0	1	2	3
5	\mathbb{Q}				5	\mathbb{Z}_p			
4					4				
3		Q	\mathbb{Q}		3		\mathbb{Z}_p	\mathbb{Z}_p	
2					2				
1				\mathbb{Q}	1				\mathbb{Z}_p

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

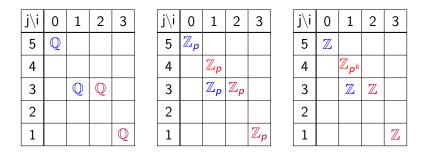
Then $H(G; \mathbb{Z}_p)$ has at least these summands.

j∖i	0	1	2	3	j∖i	0	1	2	3
5	\mathbb{Q}				5	\mathbb{Z}_p			
4					4				
3		Q	\mathbb{Q}		3		\mathbb{Z}_p	\mathbb{Z}_p	
2					2				
1				Q	1				\mathbb{Z}_p

j∖i	0	1	2	3
5	\mathbb{Z}			
4				
3		\mathbb{Z}	\mathbb{Z}	
2				
1				\mathbb{Z}

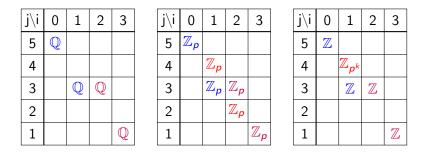
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The free part of H(G) looks as above.



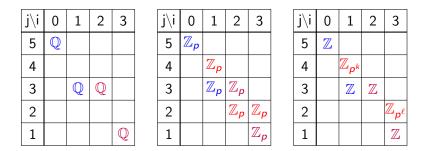
Suppose that H(G) has torsion of order p^k for some odd p. Let the pictured \mathbb{Z}_{p^k} summand be in the maximum *i*-grading of any p^m torsion in H(G).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Theorem. $H(G; \mathbb{Z}_p)$ can be arranged in knight move pairs.



The universal coefficient theorem implies that $H(G; \mathbb{Z}_p)$ and H(G) looks like above.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- H(G) contains no torsion of odd order.
- All torsion in H(G) must be of order 2^k for some k.

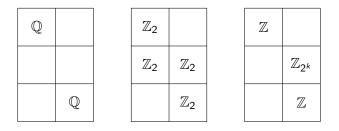
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• It remains to show that k = 1.

The vertical map

• For a connected graph G, there is an isomorphism

$$\nu_{\downarrow}^{*}: H^{i,n-i}(G;\mathbb{Z}_{2}) \to H^{i,n-i-1}(G;\mathbb{Z}_{2}).$$



knight move pair tetromino with \mathbb{Z} coefficients

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Bockstein spectral sequence

The \mathbb{Z}_2 -Bockstein spectral sequence satisfies the following.

- The E_1 page of the Bockstein spectral sequence is $H(G; \mathbb{Z}_2)$.
- The E_{∞} page of the Bockstein spectral sequence is $[H(G)/\operatorname{Tor} H(G)]\otimes \mathbb{Z}_2.$
- If the Bockstein spectral sequence converges at the 2nd page, then H(G) has no torsion of order 2^k for $k \ge 2$.

ション ふゆ アメリア メリア しょうくしゃ

Bockstein example

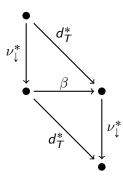
- $H(G) = \mathbb{Z}^{a_0} \oplus \mathbb{Z}_2^{a_1} \oplus \mathbb{Z}_4^{a_2} \oplus \cdots \oplus \mathbb{Z}_{2^k}^{a_k}$.
- $\bullet \ E_1 = \mathbb{Z}_2^{a_0} \oplus \mathbb{Z}_2^{a_1} \oplus \mathbb{Z}_2^{a_2} \oplus \mathbb{Z}_2^{a_2} \oplus \mathbb{Z}_2^{a_2} \oplus \cdots \oplus \mathbb{Z}_2^{a_k} \oplus \mathbb{Z}_2^{a_k}.$
- $\bullet \ E_2 = \mathbb{Z}_2^{a_0} \oplus \mathbb{Z}_2^{a_2} \oplus \mathbb{Z}_2^{a_2} \oplus \cdots \oplus \mathbb{Z}_2^{a_k} \oplus \mathbb{Z}_2^{a_k}.$
- $E_{\infty} = \mathbb{Z}_2^{a_0}$.

Goal: If β is the Bockstein map on the E_1 page, then we want to show that the rank of β is the number of tetrominoes N in $H(G; \mathbb{Z}_2)$.

ション ふゆ く 山 マ チャット しょうくしゃ

The Turner differential

- There is a differential $d_T : C^{i,j}(G; \mathbb{Z}_2) \to C^{i+1,j-1}(G; \mathbb{Z}_2)$.
- It induces a map $d_T^*: H^{i,j}(G; \mathbb{Z}_2) \to H^{i+1,j-1}(G; \mathbb{Z}_2).$



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

The Bockstein sequence converges at the E_2 page

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

1.
$$\nu_{\downarrow}^* \circ d_T^* = d_T^* \circ \nu_{\downarrow}^*$$
.

2. On each diagonal, rank $d_T^* = N$.

3.
$$d_T^* = \beta \circ \nu_{\downarrow}^* + \nu_{\downarrow}^* \circ \beta$$
.

4. rank $\beta = N$.

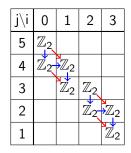
Our example

j∖i	0	1	2	3
5	\mathbb{Z}_2			
4	\mathbb{Z}_2	\mathbb{Z}_2		
3		\mathbb{Z}_2	\mathbb{Z}_2	
2			\mathbb{Z}_2	\mathbb{Z}_2
1				\mathbb{Z}_2

Our example: d_T^*

j∖i	0	1	2	3
5	\mathbb{Z}_2			
4	\mathbb{Z}_2	\mathbb{Z}_2		
3		\mathbb{Z}_2	\mathbb{Z}_2	
2			\mathbb{Z}_2	\mathbb{Z}_2
1				\mathbb{Z}_2

Our example: $\beta \circ \nu^*_{\downarrow} + \nu^*_{\downarrow} \circ \beta$



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Consequences

- 1. Chromatic homology H(G) contains only torsion of order two.
- 2. Let *D* be a link diagram with all-*A* state graph $G_A(D)$ where the shortest cycle in $G_A(D)$ is of length *g*. The first *g* homological gradings of Kh(D) have only torsion of order two.
- 3. Chromatic homology H(G) is determined by the chromatic polynomial.

ション ふゆ く 山 マ チャット しょうくしゃ

Thank you!

◆□ > < 個 > < E > < E > E 9 < 0</p>