Chromatic homology, Khovanov homology, and torsion

Adam Lowrance - Vassar College
Joint with Radmila Sazdanović - North Carolina State University

November 12, 2016

Overview

- Chromatic homology is a categorification of the chromatic polynomial. Khovanov homology is a categorification of the Jones polynomial.
- There is a partial isomorphism between the Khovanov homology of a link and the chromatic homology of an all- A state graph of the link.
- We show that the chromatic homology of a graph contains only torsion of order 2.
- In gradings where the partial isomorphism is defined, Khovanov homology has only torsion of order 2.

Kauffman states

- Each crossing has an A and a B resolution.

- The collection of simple closed curves in the plane obtained by taking an A or B resolution at each crossing is a Kauffman state.
- The all- A state graph $G_{A}(D)$ of D has vertices corresponding to the components of the all- A state of D and edges corresponding to the crossings of D.

Constructing $G_{A}(D)$

Khovanov and chromatic homology

- Let D be a link diagram, and let G be its all- A state graph.
- The Khovanov homology of D is $K h(D)$.
- The chromatic homology of G is $H(G)$.
- Both are bigraded:

$$
K h(D)=\bigoplus_{i, j} K h^{i, j}(D) \text { and } H(G)=\bigoplus_{i, j} H^{i, j}(G) .
$$

- Let $A=R[x] /\left(x^{2}\right)$ where $R=\mathbb{Z}, \mathbb{Z}_{p}$, or \mathbb{Q}.

Hypercube

Kauffman states

Spanning subgraphs

Kauffman states and spanning subgraphs

Kauffman states and spaces

Spanning subgraphs and spaces

Spaces for both

Multiplication until a cycle closes

The multiplication map

Define the R-linear multiplication map by

$$
m: A \otimes A \rightarrow A \quad m: \begin{cases}1 \otimes 1 \mapsto 1 & 1 \otimes x \mapsto x \\ x \otimes 1 \mapsto x & x \otimes x \mapsto 0\end{cases}
$$

Partial Isomorphism Picture

Comparing $K h(D)$ and $H(G)$

Theorem (Helme-Guizon, Przytycki, Rong - 2006)
If the length g of the shortest cycle in G is greater than one, then there is an isomorphism between $K h(D)$ and $H(G)$ in the first $g-1$ supported i-gradings and an isomorphism of $\operatorname{Tor} \operatorname{Kh}(D)$ and Tor $H(G)$ in the gth i-grading.

Example: 3_{1}

$j \backslash i$	0	1	2
3	\mathbb{Z}		
2		\mathbb{Z}_{2}	
1		\mathbb{Z}	

$\mathrm{j} \backslash \mathrm{i}$	-3	-2	-1	0
-1				\mathbb{Z}
-3				\mathbb{Z}
-5		\mathbb{Z}		
-7		\mathbb{Z}_{2}		
-9	\mathbb{Z}			

Example: 3_{1}

$j \backslash i$	0	1	2
3	\mathbb{Z}		
2		\mathbb{Z}_{2}	
1		\mathbb{Z}	

$j \backslash i$	-3	-2	-1	0
-1				\mathbb{Z}
-3				\mathbb{Z}
-5		\mathbb{Z}		
-7		\mathbb{Z}_{2}		
-9	\mathbb{Z}			

Example: 5_{1}

$j \backslash i$	0	1	2	3	4
5	\mathbb{Z}				
4		\mathbb{Z}_{2}			
3		\mathbb{Z}	\mathbb{Z}		
2				\mathbb{Z}_{2}	
1				\mathbb{Z}	

$j \backslash i$	-5	-4	-3	-2	-1	0
-3						\mathbb{Z}
-5						\mathbb{Z}
-7				\mathbb{Z}		
-9				\mathbb{Z}_{2}		
-11		\mathbb{Z}	\mathbb{Z}			
-13		\mathbb{Z}_{2}				
-15	\mathbb{Z}					

\bigcirc

Example: 5_{1}

$j \backslash i$	0	1	2	3	4
5	\mathbb{Z}				
4		\mathbb{Z}_{2}			
3		\mathbb{Z}	\mathbb{Z}		
2				\mathbb{Z}_{2}	
1				\mathbb{Z}	

$j \backslash i$	-5	-4	-3	-2	-1	0
-3						\mathbb{Z}
-5						\mathbb{Z}
-7				\mathbb{Z}		
-9				\mathbb{Z}_{2}		
-11		\mathbb{Z}	\mathbb{Z}			
-13		\mathbb{Z}_{2}				
-15	\mathbb{Z}					

\bigcirc

Torsion in chromatic homology

Theorem (L - Sazdanović)
The chromatic homology of a graph contains only torsion of order two.

The shape of $H(G)$

Theorem (Helme-Guizon, Przytycki, Rong - 2006)
Let G be a connected graph with n vertices. Then $H^{i . j}(G)=0$ unless $n-1 \leqslant i+j \leqslant n$, and Tor $H^{i, j}(G)=0$ unless $i+j=n$.

$j \backslash i$	0	1	2	3
5	\mathbb{Z}			
4		\mathbb{Z}_{2}		
3		\mathbb{Z}	\mathbb{Z}	
2				\mathbb{Z}_{2}
1				\mathbb{Z}

The shape of $H(G)$

Theorem (Chmutov, Chmutov, Rong - 2008)
Let G be a connected non-bipartite graph. Then the summands of $H(G ; \mathbb{Q})$ can be arranged in "knight move" pairs.

$\mathrm{j} \backslash \mathrm{i}$	0	1	2	3
5	\mathbb{Q}			
4				
3		\mathbb{Q}	\mathbb{Q}	
2				
1				\mathbb{Q}

$H(G)$ contains no torsion of odd order

$j \backslash i$	0	1	2	3
5	\mathbb{Q}			
4				
3		\mathbb{Q}	\mathbb{Q}	
2				
1				\mathbb{Q}

Suppose that $H(G ; \mathbb{Q})$ is above.
$H(G)$ contains no torsion of odd order

$j \backslash i$	0	1	2	3
5	\mathbb{Q}			
4				
3		\mathbb{Q}	\mathbb{Q}	
2				
1				\mathbb{Q}

$\mathrm{j} \backslash \mathrm{i}$	0	1	2	3
5	\mathbb{Z}_{p}			
4				
3		\mathbb{Z}_{p}	\mathbb{Z}_{p}	
2				
1				\mathbb{Z}_{p}

Then $H\left(G ; \mathbb{Z}_{p}\right)$ has at least these summands.
$H(G)$ contains no torsion of odd order

$j \backslash i$	0	1	2	3
5	\mathbb{Q}			
4				
3		\mathbb{Q}	\mathbb{Q}	
2				
1				\mathbb{Q}

$j \backslash i$	0	1	2	3
5	\mathbb{Z}_{p}			
4				
3		\mathbb{Z}_{p}	\mathbb{Z}_{p}	
2				
1				\mathbb{Z}_{p}

$j \backslash i$	0	1	2	3
5	\mathbb{Z}			
4				
3		\mathbb{Z}	\mathbb{Z}	
2				
1				\mathbb{Z}

The free part of $H(G)$ looks as above.
$H(G)$ contains no torsion of odd order

$j \backslash i$	0	1	2	3
5	\mathbb{Q}			
4				
3		\mathbb{Q}	\mathbb{Q}	
2				
1				\mathbb{Q}

$j \backslash i$	0	1	2	3
5	\mathbb{Z}_{p}			
4		\mathbb{Z}_{p}		
3		\mathbb{Z}_{p}	\mathbb{Z}_{p}	
2				
1				\mathbb{Z}_{p}

$\mathrm{j} \backslash \mathrm{i}$	0	1	2	3
5	\mathbb{Z}			
4		$\mathbb{Z}_{p^{k}}$		
3		\mathbb{Z}	\mathbb{Z}	
2				
1				\mathbb{Z}

Suppose that $H(G)$ has torsion of order p^{k} for some odd p. Let the pictured $\mathbb{Z}_{p^{k}}$ summand be in the maximum i-grading of any p^{m} torsion in $H(G)$.
$H(G)$ contains no torsion of odd order

$j \backslash i$	0	1	2	3
5	\mathbb{Q}			
4				
3		\mathbb{Q}	\mathbb{Q}	
2				
1				\mathbb{Q}

$j \backslash i$	0	1	2	3
5	\mathbb{Z}_{p}			
4		\mathbb{Z}_{p}		
3		\mathbb{Z}_{p}	\mathbb{Z}_{p}	
2			\mathbb{Z}_{p}	
1				\mathbb{Z}_{p}

$j \backslash i$	0	1	2	3
5	\mathbb{Z}			
4		$\mathbb{Z}_{p^{k}}$		
3		\mathbb{Z}	\mathbb{Z}	
2				
1				\mathbb{Z}

Theorem. $H\left(G ; \mathbb{Z}_{p}\right)$ can be arranged in knight move pairs.
$H(G)$ contains no torsion of odd order

$j \backslash i$	0	1	2	3
5	\mathbb{Q}			
4				
3		\mathbb{Q}	\mathbb{Q}	
2				
1				\mathbb{Q}

$j \backslash \mathrm{i}$	0	1	2	3
5	\mathbb{Z}_{p}			
4		\mathbb{Z}_{p}		
3		\mathbb{Z}_{p}	\mathbb{Z}_{p}	
2			\mathbb{Z}_{p}	\mathbb{Z}_{p}
1				\mathbb{Z}_{p}

$j \backslash i$	0	1	2	3
5	\mathbb{Z}			
4		$\mathbb{Z}_{p^{k}}$		
3		\mathbb{Z}	\mathbb{Z}	
2				$\mathbb{Z}_{p^{\ell}}$
1				\mathbb{Z}

The universal coefficient theorem implies that $H\left(G ; \mathbb{Z}_{p}\right)$ and $H(G)$ looks like above.

Progress so far

- $H(G)$ contains no torsion of odd order.
- All torsion in $H(G)$ must be of order 2^{k} for some k.
- It remains to show that $k=1$.

The vertical map

- For a connected graph G, there is an isomorphism

$$
\nu_{\downarrow}^{*}: H^{i, n-i}\left(G ; \mathbb{Z}_{2}\right) \rightarrow H^{i, n-i-1}\left(G ; \mathbb{Z}_{2}\right) .
$$

\mathbb{Z}_{2}	
\mathbb{Z}_{2}	\mathbb{Z}_{2}
	\mathbb{Z}_{2}

\mathbb{Z}	
	$\mathbb{Z}_{2^{k}}$
	\mathbb{Z}

knight move pair
tetromino
with \mathbb{Z} coefficients

Bockstein spectral sequence

The \mathbb{Z}_{2}-Bockstein spectral sequence satisfies the following.

- The E_{1} page of the Bockstein spectral sequence is $H\left(G ; \mathbb{Z}_{2}\right)$.
- The E_{∞} page of the Bockstein spectral sequence is $[H(G) / \operatorname{Tor} H(G)] \otimes \mathbb{Z}_{2}$.
- If the Bockstein spectral sequence converges at the 2nd page, then $H(G)$ has no torsion of order 2^{k} for $k \geqslant 2$.

Bockstein example

- $H(G)=\mathbb{Z}^{a_{0}} \oplus \mathbb{Z}_{2}^{a_{1}} \oplus \mathbb{Z}_{4}^{a_{2}} \oplus \cdots \oplus \mathbb{Z}_{2^{k}}^{a_{k}}$.
- $E_{1}=\mathbb{Z}_{2}^{a_{0}} \oplus \mathbb{Z}_{2}^{a_{1}} \oplus \mathbb{Z}_{2}^{a_{1}} \oplus \mathbb{Z}_{2}^{a_{2}} \oplus \mathbb{Z}_{2}^{a_{2}} \oplus \cdots \oplus \mathbb{Z}_{2}^{a_{k}} \oplus \mathbb{Z}_{2}^{a_{k}}$.
- $E_{2}=\mathbb{Z}_{2}^{a_{0}} \oplus \mathbb{Z}_{2}^{a_{2}} \oplus \mathbb{Z}_{2}^{a_{2}} \oplus \cdots \oplus \mathbb{Z}_{2}^{a^{k}} \oplus \mathbb{Z}_{2}^{a_{k}}$.
- $E_{\infty}=\mathbb{Z}_{2}^{a_{0}}$.

Goal: If β is the Bockstein map on the E_{1} page, then we want to show that the rank of β is the number of tetrominoes N in $H\left(G ; \mathbb{Z}_{2}\right)$.

The Turner differential

- There is a differential $d_{T}: C^{i, j}\left(G ; \mathbb{Z}_{2}\right) \rightarrow C^{i+1, j-1}\left(G ; \mathbb{Z}_{2}\right)$.
- It induces a map $d_{T}^{*}: H^{i, j}\left(G ; \mathbb{Z}_{2}\right) \rightarrow H^{i+1, j-1}\left(G ; \mathbb{Z}_{2}\right)$.

The Bockstein sequence converges at the E_{2} page

1. $\nu_{\downarrow}^{*} \circ d_{T}^{*}=d_{T}^{*} \circ \nu_{\downarrow}^{*}$.
2. On each diagonal, rank $d_{T}^{*}=N$.
3. $d_{T}^{*}=\beta \circ \nu_{\downarrow}^{*}+\nu_{\downarrow}^{*} \circ \beta$.
4. $\operatorname{rank} \beta=N$.

Our example

j\i	0	1	2	3
5	\mathbb{Z}_{2}			
4	\mathbb{Z}_{2}	\mathbb{Z}_{2}		
3		\mathbb{Z}_{2}	\mathbb{Z}_{2}	
2			\mathbb{Z}_{2}	\mathbb{Z}_{2}
1				\mathbb{Z}_{2}

Our example: d_{T}^{*}

j\i	0	1	2	3
5	\mathbb{Z}_{2}			
4	\mathbb{Z}_{2}	\mathbb{Z}_{2}		
3		\mathbb{Z}_{2}	\mathbb{Z}_{2}	
2			\mathbb{Z}_{2}	
1				\mathbb{Z}_{2}

Our example: $\beta \circ \nu_{\downarrow}^{*}+\nu_{\downarrow}^{*} \circ \beta$

Consequences

1. Chromatic homology $H(G)$ contains only torsion of order two.
2. Let D be a link diagram with all- A state graph $G_{A}(D)$ where the shortest cycle in $G_{A}(D)$ is of length g. The first g homological gradings of $K h(D)$ have only torsion of order two.
3. Chromatic homology $H(G)$ is determined by the chromatic polynomial.

Thank you!

